Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Probing short-lived reaction species is challenging owing to the need for both high signal-to-noise ratio, which can require long measurement time, and fast time resolution. Here, a novel in situ sample environment is presented that decouples time resolution from measurement time by distributing reaction time over space for the reaction under flow. In the mixing-flow reactor, precursor solutions are mixed at a specific position along the flow path, where the reaction is initiated. As the reaction mixture flows within a reaction capillary, the reaction time increases with distance from the mixing point. A measurement can be taken at a specific distance from the mixing point for as long as is needed to accumulate good statistics without compromising the time resolution of the measurement. Applications of the mixing-flow reactor for pair distribution function measurements of the initial nuclei formed during the hydrolysis of Al3+ at high pH are shown.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds