Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Measurement of laboratory atomic pair distribution function data has improved with contemporary X-ray sources, optics and detectors, with acquisition times of the order of minutes for ideal samples. This paper examines resolution effects in pair distribution function data obtained using a convergent-beam configuration and an Ag X-ray tube from standard silicon powder and from 10 nm BaTiO3 nanocubes. The elliptical multilayer X-ray mirror reflects a non-trivial X-ray spectrum and introduces resolution effects not commonly treated in ordinary parafocusing divergent-beam laboratory diffraction. These resolution effects are modeled using the fundamental parameters approach, and the influence this has on interpretation and modeling of the resulting reduced atomic pair distribution function data is demonstrated.

Supporting information

zip

Zip compressed file https://doi.org/10.1107/S1600576724008355/vb5084sup1.zip
Silicon standard data and TOPAS input scripts in a ZIP archive


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds