Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The local monodisperse approximation (LMA) is a two-parameter model commonly employed for the retrieval of size distributions from the small-angle scattering (SAS) patterns obtained from dense nanoparticle samples (e.g. dry powders and concentrated solutions). This work features a novel implementation of the LMA model resolution for the inverse scattering problem. The method is based on the expectation-maximization iterative algorithm and is free of any fine-tuning of model parameters. The application of this method to SAS data acquired under laboratory conditions from dense nanoparticle samples is shown to provide good results.

Supporting information

zip

Zip compressed file https://doi.org/10.1107/S1600576719009373/vg5107sup1.zip
Data sets used for the computations presented in the article


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds