Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Despite a wealth of studies exemplifying the utility of the 2-5 keV X-ray range in speciation and electronic structure elucidation, the exploitation of this energy regime for the study of photochemical processes has not been forthcoming. Herein, a new endstation set-up for in situ photochemical soft X-ray spectroscopy in the 2-5 keV energy region at the Stanford Synchrotron Radiation Lightsource is described for continuous photolysis under anaerobic conditions at both cryogenic and ambient temperatures. Representative examples of this approach are used to demonstrate the potential information content in several fields of study, including organometallic chemistry, biochemistry and materials chemistry.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0909049509021384/wa5008sup1.pdf
Analysis of reproduceability of data in Fig. 4(b)


Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds