Download citation
Download citation
link to html
Fexofenadine [systematic name: (±)-(4-{1-hydroxy-4-[4-(hydroxydiphenyl­methyl)­piperidinium-1-yl]-butyl}phenyl)-2-methyl­propionate], crystallizes in two forms, viz. as the methanol disolvate, C32H39NO4·2CH4O, and as the dihydrate, C32H39NO4·2H2O. It exists in the two structures as a zwitterion, which self-assembles as dimers sustained by a pair of charged-assisted N—H...OOC hydrogen bonds. In the methanol disolvate, the supramolecular organization consists of discrete fexofenadine dimers solvated by four mol­ecules of methanol. The dihydrate structure is sustained by a more extended hydrogen-bonding scheme, wherein the hydrated dimeric entities are inter­linked by additional hydrogen bonds. The fexofenadine mol­ecule adopts different and differently disordered conformations of the 1-hydroxy­butyl residue in the two structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105035651/ln1187sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035651/ln1187Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035651/ln1187IIsup3.hkl
Contains datablock II

CCDC references: 294346; 294347

Comment top

We have been investigating the structural chemistry and pseudo-polymorphism of a series of pharmaceutical compounds (Tessler & Goldberg, 2004a,b, 2005a,b). Fexofenadine is an antihistamine used to relieve hay fever and allergy symptoms. The drug is administered orally in its hydrochloride form as the active ingredient. Fexofenadine was approved by the US Food and Drug Administration in July 1995. It works by preventing the activation of H1-receptor-containing cells by histamine, a chemical which is released in the body by other cells. Fexofenadine (L) contains several functional groups with hydrogen-bonding capacity, and normally exists as a zwitterion. Therefore, not surprisingly, it forms sizeable single crystals more readily in a solvated (with polar and protic solvents) rather than a pure form, as co-crystallization with protic solvents allows for better (strain free) optimization of the hydrogen-bonding potential (Etter, 1991).

The conformational flexibility of L aids in the formation of pseudo-polymorphic crystals of this compound. In this context, we were able to crystallize and analyze (at ca 110 K) the structures of the methanol disolvate, (I), and the dihydrate, (II), of L. The corresponding molecular structures are illustrated in Fig. 1, showing the different conformations of the molecular framework.

The main conformational degrees of freedom of the fexofenadine framework are about the C7—C14 and C26—C29 single bonds, and atoms C19–C22 in the central aliphatic chain (Tables 1 and 3). Inspection of the torsion angles indicates a minor difference between the two structures in the conformation about the C7—C14 bond. More significant variation is associated with the rotation of the α,α-dimethyl acetic acid residue with respect to the adjacent phenyl ring in (I) and (II), in order to optimize the corresponding intermolecular interaction scheme (see below). However, the most distinct flexibility is apparent in the N1—C19—C20—C21 and C19—C20—C21—C22 torsion angles (Tables 1 and 3). They impart a bent molecular framework structure in (I), as opposed to a more extended conformation in (II). The disorder of the O2—H functions, with C20—C21—C22—O2A torsion angles of 59.4 (3)° in (I) and 60.6 (4)° in (II) at the major site, but with C20—C21—C22—O2B torsion angles of −5.6 (7)° in (I) and −28.8 (4)° in (II) at the minor site, further attests to the conformational flexibility of L.

The above conformational details (Tables 1 and 3) are closely related to the intermolecular interaction patterns revealed by the two crystals. The most dominant intermolecular interaction in both structures is the charge-assisted hydrogen-bonding attraction between the NH+ and the COO sites of adjacent molecules (Jeffrey, 1997). This leads to the the formation of dimeric entities paired by two NH+···COO hydrogen bonds between molecules related to each other by crystallographic inversion (Tables 2 and 4).

In (I), the two methanol molecules incorporated into the lattice provide the solvation environment as H-atom acceptors for the two hydroxylic acid functions O1—H and O2—H (disordered as O2A and O2B), which point to the concave side of the paired molecules, by hydrogen bonding (Table 2). Each methanol species also solvates the carboxylate function by donating its H atom to the second carboxylate O atom (O4). The hydrogen-bonded clusters in this structure consist of two molecules of fexofenadine and four molecules of methanol, and have an oval shape (Fig. 2, Table 2). The crystal packing of these discrete hydrogen-bonded clusters in (I) is stabilized by common dispersion between their lipophilic C—H lined surfaces.

While similar NH+···COO bound dimers form in structure (II) around inversion centres, the different conformation of the fexofenadine framework causes the O2—H site to point outward and be exposed on the periphery of the dimeric entities to hydrogen-bonding interaction with neighbouring dimers (Fig. 3). This results in the formation of an extended hydrogen-bonding pattern that propagates continuously throughout the crystal within molecular layers perpendicular to the a axis and centered at x = 0 (Fig. 4). The water molecules incorporated into (II) take part in the solvation of one of the hydroxylic acid functions (O1—H) and of the carboxylate anion. In this structure, the fexofenadine dimers are interlinked with neighbouring dimeric entities by four additional hydrogen bonds, utilizing to this end the disordered O2—H H-atom donors and the COO H-atom acceptors (Table 4). The crystal packing of the hydrogen-bonded layers in (II) is illustrated in Fig. 4.

All bond lengths and angles are in normal ranges (Reference for standard values?), including indication of partial delocalization of the electron density within the C32—O3 and C32—O4 bonds of the carboxylate group, which is consistent with the zwitterionic nature of L. To the authors' knowledge, this is the first crystallographic report of the fexofenadine structure (Cambridge Structural Database, Version?; Allen, 2002).

Experimental top

Crude fexofenadine powder was obtained from Teva Pharmaceutical Industries Ltd. Compound (I) was crystallized by slow evaporation from methanol. Compound (II) was crystallized by slow evaporation from wet acetonitrile. Thermal analyses of both compounds confirmed their chemical purity. In both cases, the crystals obtained were characterized by relatively high mosaicity, which is most probably affected by the conformational disorder of the fexofenadine compound, and yielded generally weak diffraction. Correspondingly, the crystallographic refinements were based on data sets containing a high percentage of weak reflections and they concluded in relatively high R values. Attempts to crystallize unsolvated fexofenadine were not successful.

Refinement top

Both compounds reveal structural disorder, which results in two posssible positions for the central O2—H group in each structure. In the refined structural models, the relative occupancies of these positions refined to 0.867 (5) (O2A) and 0.133 (5) (O2B) in (I), and 0.573 (5) (O2A) and O.427 (5) (O2B) in (II), while the bond lengths for C22—O2A and C22—O2B were restrained to be similar. In both structures, the methyl H atoms were constrained to an ideal geometry, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the parent C—C bonds. All other H atoms bound to C atoms were placed in idealized positions and were constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C). In (I), H atoms attached to N and O atoms (except for the minor O2B site) were located in difference Fourier maps and their parameters were refined freely (except for the H atom attached to O2A, which did not refine well and was fixed in its initial position). The H atom attached to atom O2B was fixed in an initially calculated position, with Uiso(H) = 1.2Ueq(O2B). In (II), only H atoms bound to atoms O1 and N1 were located in a difference Fourier map and their parameters were refined freely. The H atoms attached to the disordered O2A and O2B sites, as well as water H atoms, were placed in calculated positions by taking into account the most probable hydrogen-bonding interactions, as indicated by O···O intermolecular distances <3.0 Å. These H atoms did not refine well and were subsequently held fixed in their initial positions. The Uiso(H) parameters were refined for the water H atoms, while the H atoms on O2A and O2B were assigned Uiso(H) = 1.2Ueq(O).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (a) (I) and (b) (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level at ca 110 K. Both of the disordered positions for atom O2 are shown (O2A and O2B). H atoms bound to N and O atoms are involved in the hydrogen bonding and are shown; all other H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The hydrogen-bonding assembly mode in (I), showing the fexofenadine dimer solvated by four molecules of methanol. The dimer consists of molecules related by inversion at (1/2, 1/2, 1). Only the major disordered site (O2A) is shown. H atoms have been omitted for clarity, except for those attached to N and O atoms that are involved in the hydrogen bonding. Hydrogen bonds are denoted by dashed lines. [Symmetry code: (i) 1 − x, 1 − y, 2 − z.]
[Figure 3] Fig. 3. The hydrogen-bonding assembly mode in (II), showing the fexofenadine dimer solvated by molecules of water (shown as small spheres), and further hydrogen bonding of this dimer to neighbouring molecules through atoms O2 and O3 [only the major disordered site (O2A) is shown; see also Table 4]. The dimer consists of molecules related by inversion at (1, 0, 1/2). H atoms have been omitted for clarity, except for those attached to N and O atoms that are involved in the hydrogen bonding. Hydrogen bonds are denoted by dashed lines. The spheres marked with an asterisk (without H atoms attached to them) mark the O2A sites of two additional molecules of fexofenadine hydrogen-bonded to the carboxylate groups of the central dimer.
[Figure 4] Fig. 4. The crystal packing of (II), showing four fexofenadine dimers and the solvate water molecules (small spheres). Hydrogen bonds are denoted by dashed lines. H atoms have been omitted for clarity. The dimeric entities are distributed between two different continuously hydrogen-bonded layers formed in the crystal which are centered at x = 0.0 and x = 1.0. A t the interface between the layers (at x = 1/2), the diphenylmethyl embraces provide the stabilizing van der Waals interaction.
(I) (±)-(4-{1-hydroxy-4-[4-(hydroxydiphenylmethyl)piperidinium-1-yl]- butyl}phenyl)-2-methylpropionate methanol disolvate top
Crystal data top
C32H39NO4·2CH4OF(000) = 1224
Mr = 565.73Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6836 reflections
a = 20.8661 (3) Åθ = 2.1–27.9°
b = 9.6138 (2) ŵ = 0.08 mm1
c = 16.0702 (5) ÅT = 110 K
β = 107.8870 (8)°Prism, colourless
V = 3067.90 (12) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 27.9°, θmin = 2.1°
Detector resolution: 56 microns pixels mm-1h = 2725
0.8° ϕ and ω scansk = 1111
22588 measured reflectionsl = 2121
7172 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0734P)2 + 1.5166P]
where P = (Fo2 + 2Fc2)/3
7172 reflections(Δ/σ)max = 0.007
396 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
C32H39NO4·2CH4OV = 3067.90 (12) Å3
Mr = 565.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.8661 (3) ŵ = 0.08 mm1
b = 9.6138 (2) ÅT = 110 K
c = 16.0702 (5) Å0.30 × 0.25 × 0.25 mm
β = 107.8870 (8)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4405 reflections with I > 2σ(I)
22588 measured reflectionsRint = 0.072
7172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0643 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.42 e Å3
7172 reflectionsΔρmin = 0.41 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The O2 site reveals a slight disorder, with relative occupancies of 86.7 (5)% (O2A) and 13.3 (5)% (O2B).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.85065 (8)0.25534 (16)0.95396 (10)0.0268 (4)
H1O0.8327 (15)0.202 (3)0.989 (2)0.049 (9)*
O2A0.46297 (10)0.06053 (17)0.82889 (13)0.0308 (6)0.867 (5)
H2OA0.50060.08730.87270.093 (16)*0.867 (5)
O2B0.4092 (6)0.0485 (9)0.7607 (8)0.027 (4)*0.133 (5)
H2OB0.42870.00840.71890.032*0.133 (5)
O30.36132 (8)0.58642 (15)1.11448 (10)0.0287 (4)
O40.32270 (8)0.70335 (15)0.98886 (11)0.0297 (4)
N10.63474 (9)0.24557 (18)0.74387 (13)0.0215 (4)
H1N0.6284 (13)0.292 (3)0.7906 (17)0.032 (7)*
C10.93531 (12)0.3742 (2)0.88167 (17)0.0315 (6)
H10.92920.40610.93470.038*
C20.97854 (14)0.4452 (3)0.84589 (19)0.0399 (6)
H21.00210.52460.87500.048*
C30.98773 (14)0.4015 (3)0.76802 (19)0.0407 (7)
H31.01720.45070.74360.049*
C40.95328 (13)0.2852 (3)0.72634 (18)0.0370 (6)
H40.95890.25450.67280.044*
C50.91075 (12)0.2135 (2)0.76240 (16)0.0312 (5)
H50.88780.13340.73340.037*
C60.90082 (11)0.2564 (2)0.84048 (15)0.0255 (5)
C70.85197 (11)0.1790 (2)0.87858 (15)0.0247 (5)
C80.87673 (12)0.0295 (2)0.90400 (15)0.0258 (5)
C90.91272 (12)0.0023 (2)0.99032 (16)0.0303 (5)
H90.92340.06971.03290.036*
C100.93327 (13)0.1383 (3)1.01516 (17)0.0346 (6)
H100.95740.15831.07440.042*
C110.91873 (13)0.2435 (3)0.95417 (18)0.0369 (6)
H110.93220.33620.97140.044*
C120.88444 (14)0.2137 (3)0.86785 (19)0.0396 (6)
H120.87530.28590.82540.048*
C130.86332 (13)0.0792 (2)0.84290 (17)0.0336 (6)
H130.83940.06030.78340.040*
C140.78052 (11)0.1794 (2)0.81106 (15)0.0229 (5)
H140.78320.13050.75730.027*
C150.72809 (11)0.1041 (2)0.84322 (15)0.0252 (5)
H15A0.74320.00750.85950.030*
H15B0.72410.15140.89610.030*
C160.65971 (12)0.1017 (2)0.77358 (15)0.0252 (5)
H16A0.66300.04730.72270.030*
H16B0.62680.05460.79720.030*
C170.68667 (11)0.3260 (2)0.71555 (15)0.0244 (5)
H17A0.67090.42300.70210.029*
H17B0.69120.28400.66140.029*
C180.75475 (11)0.3272 (2)0.78479 (15)0.0246 (5)
H18A0.75130.37750.83700.029*
H18B0.78740.37740.76220.029*
C190.57039 (11)0.2413 (2)0.66770 (15)0.0242 (5)
H19A0.57900.18920.61910.029*
H19B0.55800.33760.64720.029*
C200.51128 (11)0.1749 (2)0.68867 (15)0.0256 (5)
H20A0.52600.08400.71710.031*
H20B0.47530.15660.63310.031*
C210.48148 (12)0.2607 (2)0.74773 (16)0.0257 (5)
H21A0.51840.29520.79830.031*
H21B0.45780.34240.71480.031*
C220.43287 (13)0.1779 (2)0.78063 (17)0.0305 (6)
H22A0.39790.14160.72750.037*0.867 (5)
H22B0.46850.14760.83490.037*0.133 (5)
C230.39524 (12)0.2615 (2)0.83062 (15)0.0266 (5)
C240.32577 (12)0.2531 (2)0.80871 (15)0.0263 (5)
H240.30150.20000.75920.032*
C250.29084 (12)0.3214 (2)0.85814 (15)0.0252 (5)
H250.24320.31330.84200.030*
C260.32455 (12)0.4012 (2)0.93066 (14)0.0226 (5)
C270.39454 (12)0.4119 (2)0.95153 (15)0.0251 (5)
H270.41870.46730.99990.030*
C280.42936 (12)0.3430 (2)0.90279 (15)0.0271 (5)
H280.47700.35140.91860.033*
C290.28703 (12)0.4647 (2)0.98987 (14)0.0247 (5)
C300.21488 (12)0.5093 (2)0.93878 (16)0.0301 (5)
H30A0.21620.57490.89260.045*
H30B0.19390.55420.97870.045*
H30C0.18850.42720.91250.045*
C310.28375 (14)0.3543 (2)1.05783 (16)0.0327 (6)
H31A0.25790.27391.02790.049*
H31B0.26180.39391.09830.049*
H31C0.32950.32471.09060.049*
C320.32692 (12)0.5950 (2)1.03564 (15)0.0247 (5)
O50.79472 (10)0.14643 (17)1.07495 (12)0.0337 (4)
H5O0.7542 (17)0.182 (3)1.057 (2)0.053 (10)*
C330.78843 (16)0.0039 (3)1.0927 (2)0.0435 (7)
H33A0.83050.02921.13440.065*
H33B0.77890.04941.03830.065*
H33C0.75150.00841.11770.065*
O60.58651 (13)0.1004 (2)0.94094 (18)0.0795 (9)
H6O0.617 (2)0.172 (4)0.963 (2)0.081 (12)*
C340.60201 (17)0.0223 (3)0.98536 (19)0.0505 (8)
H34A0.63850.06840.96950.076*
H34B0.56220.08250.97010.076*
H34C0.61650.00391.04840.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (9)0.0246 (8)0.0239 (9)0.0001 (7)0.0093 (7)0.0022 (7)
O2A0.0352 (13)0.0173 (10)0.0402 (13)0.0025 (8)0.0121 (10)0.0027 (8)
O30.0353 (10)0.0245 (8)0.0248 (9)0.0016 (7)0.0071 (8)0.0030 (7)
O40.0383 (10)0.0202 (8)0.0292 (9)0.0012 (7)0.0086 (8)0.0027 (7)
N10.0231 (10)0.0193 (9)0.0235 (10)0.0015 (7)0.0092 (8)0.0013 (8)
C10.0328 (14)0.0257 (12)0.0354 (14)0.0016 (10)0.0097 (11)0.0016 (10)
C20.0392 (16)0.0292 (13)0.0528 (18)0.0046 (11)0.0166 (14)0.0002 (12)
C30.0398 (16)0.0337 (14)0.0551 (18)0.0024 (11)0.0243 (14)0.0086 (13)
C40.0365 (15)0.0413 (15)0.0380 (15)0.0060 (11)0.0184 (13)0.0035 (12)
C50.0284 (13)0.0318 (13)0.0332 (14)0.0026 (10)0.0093 (11)0.0011 (10)
C60.0237 (12)0.0226 (11)0.0298 (13)0.0062 (9)0.0075 (10)0.0022 (9)
C70.0259 (12)0.0236 (11)0.0250 (12)0.0024 (9)0.0084 (10)0.0020 (9)
C80.0242 (12)0.0236 (11)0.0306 (13)0.0020 (9)0.0097 (10)0.0002 (9)
C90.0288 (13)0.0296 (12)0.0320 (13)0.0024 (10)0.0087 (11)0.0014 (10)
C100.0348 (15)0.0328 (13)0.0350 (14)0.0064 (10)0.0088 (12)0.0053 (11)
C110.0367 (15)0.0257 (12)0.0467 (16)0.0083 (10)0.0106 (13)0.0039 (11)
C120.0424 (16)0.0275 (13)0.0445 (16)0.0056 (11)0.0069 (13)0.0078 (11)
C130.0350 (14)0.0303 (13)0.0324 (14)0.0057 (10)0.0059 (12)0.0030 (10)
C140.0254 (12)0.0204 (11)0.0240 (12)0.0014 (8)0.0093 (10)0.0004 (9)
C150.0283 (13)0.0209 (11)0.0261 (12)0.0031 (9)0.0077 (10)0.0021 (9)
C160.0298 (13)0.0165 (10)0.0290 (13)0.0001 (8)0.0087 (10)0.0004 (9)
C170.0275 (13)0.0203 (11)0.0276 (12)0.0020 (9)0.0117 (10)0.0036 (9)
C180.0260 (12)0.0203 (11)0.0291 (12)0.0011 (9)0.0110 (10)0.0021 (9)
C190.0251 (12)0.0230 (11)0.0242 (12)0.0028 (9)0.0072 (10)0.0018 (9)
C200.0243 (12)0.0234 (11)0.0287 (13)0.0001 (9)0.0075 (10)0.0041 (9)
C210.0285 (13)0.0210 (11)0.0286 (12)0.0022 (9)0.0104 (10)0.0017 (9)
C220.0356 (14)0.0209 (11)0.0391 (15)0.0004 (9)0.0174 (12)0.0019 (10)
C230.0366 (14)0.0175 (11)0.0292 (13)0.0014 (9)0.0152 (11)0.0001 (9)
C240.0343 (14)0.0195 (11)0.0274 (12)0.0030 (9)0.0129 (11)0.0028 (9)
C250.0273 (12)0.0238 (11)0.0255 (12)0.0002 (9)0.0095 (10)0.0003 (9)
C260.0317 (13)0.0166 (10)0.0202 (11)0.0031 (8)0.0091 (10)0.0028 (8)
C270.0318 (13)0.0212 (11)0.0214 (12)0.0001 (9)0.0070 (10)0.0003 (9)
C280.0269 (13)0.0221 (11)0.0320 (13)0.0005 (9)0.0084 (11)0.0009 (10)
C290.0330 (13)0.0203 (11)0.0223 (12)0.0002 (9)0.0105 (10)0.0012 (9)
C300.0318 (14)0.0286 (12)0.0312 (13)0.0002 (10)0.0114 (11)0.0048 (10)
C310.0487 (16)0.0233 (12)0.0295 (13)0.0064 (10)0.0171 (12)0.0015 (10)
C320.0277 (13)0.0231 (11)0.0258 (13)0.0015 (9)0.0118 (10)0.0028 (9)
O50.0389 (11)0.0283 (9)0.0359 (10)0.0028 (8)0.0144 (9)0.0037 (7)
C330.0615 (19)0.0275 (13)0.0516 (17)0.0007 (12)0.0323 (15)0.0006 (12)
O60.0642 (16)0.0480 (13)0.0881 (19)0.0280 (11)0.0328 (14)0.0360 (13)
C340.071 (2)0.0282 (14)0.0420 (17)0.0044 (13)0.0019 (15)0.0015 (12)
Geometric parameters (Å, º) top
O1—C71.424 (3)C17—H17A0.9900
O1—H1O0.93 (3)C17—H17B0.9900
O2A—C221.404 (3)C18—H18A0.9900
O2A—H2OA0.9161C18—H18B0.9900
O2B—C221.340 (8)C19—C201.516 (3)
O2B—H2OB0.9660C19—H19A0.9900
O3—C321.253 (3)C19—H19B0.9900
O4—C321.272 (3)C20—C211.526 (3)
N1—C161.504 (3)C20—H20A0.9900
N1—C171.511 (3)C20—H20B0.9900
N1—C191.514 (3)C21—C221.507 (3)
N1—H1N0.92 (3)C21—H21A0.9900
C1—C21.389 (4)C21—H21B0.9900
C1—C61.395 (3)C22—C231.515 (3)
C1—H10.9500C22—H22A1.0000
C2—C31.388 (4)C22—H22B1.0000
C2—H20.9500C23—C241.385 (3)
C3—C41.386 (4)C23—C281.400 (3)
C3—H30.9500C24—C251.396 (3)
C4—C51.383 (4)C24—H240.9500
C4—H40.9500C25—C261.392 (3)
C5—C61.395 (3)C25—H250.9500
C5—H50.9500C26—C271.398 (3)
C6—C71.533 (3)C26—C291.533 (3)
C7—C81.539 (3)C27—C281.389 (3)
C7—C141.551 (3)C27—H270.9500
C8—C91.393 (3)C28—H280.9500
C8—C131.402 (3)C29—C301.538 (3)
C9—C101.395 (3)C29—C311.540 (3)
C9—H90.9500C29—C321.558 (3)
C10—C111.376 (4)C30—H30A0.9800
C10—H100.9500C30—H30B0.9800
C11—C121.381 (4)C30—H30C0.9800
C11—H110.9500C31—H31A0.9800
C12—C131.385 (3)C31—H31B0.9800
C12—H120.9500C31—H31C0.9800
C13—H130.9500O5—C331.414 (3)
C14—C151.528 (3)O5—H5O0.88 (3)
C14—C181.532 (3)C33—H33A0.9800
C14—H141.0000C33—H33B0.9800
C15—C161.519 (3)C33—H33C0.9800
C15—H15A0.9900O6—C341.365 (3)
C15—H15B0.9900O6—H6O0.93 (4)
C16—H16A0.9900C34—H34A0.9800
C16—H16B0.9900C34—H34B0.9800
C17—C181.512 (3)C34—H34C0.9800
C7—O1—H1O110.7 (18)N1—C19—H19A108.7
C22—O2A—H2OA109.3C20—C19—H19A108.7
C22—O2B—H2OB109.5N1—C19—H19B108.7
C16—N1—C17110.85 (17)C20—C19—H19B108.7
C16—N1—C19111.50 (16)H19A—C19—H19B107.6
C17—N1—C19108.08 (17)C19—C20—C21115.18 (18)
C16—N1—H1N108.1 (16)C19—C20—H20A108.5
C17—N1—H1N107.1 (16)C21—C20—H20A108.5
C19—N1—H1N111.1 (16)C19—C20—H20B108.5
C2—C1—C6120.6 (2)C21—C20—H20B108.5
C2—C1—H1119.7H20A—C20—H20B107.5
C6—C1—H1119.7C22—C21—C20112.31 (18)
C1—C2—C3120.8 (2)C22—C21—H21A109.1
C1—C2—H2119.6C20—C21—H21A109.1
C3—C2—H2119.6C22—C21—H21B109.1
C4—C3—C2119.0 (2)C20—C21—H21B109.1
C4—C3—H3120.5H21A—C21—H21B107.9
C2—C3—H3120.5O2B—C22—C21130.1 (5)
C5—C4—C3120.2 (2)O2A—C22—C21112.5 (2)
C5—C4—H4119.9O2B—C22—C23114.0 (5)
C3—C4—H4119.9O2A—C22—C23110.5 (2)
C4—C5—C6121.4 (2)C21—C22—C23114.86 (18)
C4—C5—H5119.3O2A—C22—H22A106.1
C6—C5—H5119.3C21—C22—H22A106.1
C1—C6—C5118.0 (2)C23—C22—H22A106.1
C1—C6—C7120.9 (2)O2B—C22—H22B93.4
C5—C6—C7121.1 (2)C21—C22—H22B93.4
O1—C7—C6106.17 (18)C23—C22—H22B93.4
O1—C7—C8110.37 (18)C24—C23—C28118.0 (2)
C6—C7—C8110.42 (18)C24—C23—C22120.5 (2)
O1—C7—C14109.16 (17)C28—C23—C22121.5 (2)
C6—C7—C14109.48 (18)C23—C24—C25121.1 (2)
C8—C7—C14111.11 (18)C23—C24—H24119.5
C9—C8—C13117.6 (2)C25—C24—H24119.5
C9—C8—C7120.2 (2)C26—C25—C24121.2 (2)
C13—C8—C7122.1 (2)C26—C25—H25119.4
C8—C9—C10121.0 (2)C24—C25—H25119.4
C8—C9—H9119.5C25—C26—C27117.6 (2)
C10—C9—H9119.5C25—C26—C29121.1 (2)
C11—C10—C9120.3 (2)C27—C26—C29121.12 (19)
C11—C10—H10119.9C28—C27—C26121.2 (2)
C9—C10—H10119.9C28—C27—H27119.4
C10—C11—C12119.7 (2)C26—C27—H27119.4
C10—C11—H11120.1C27—C28—C23120.9 (2)
C12—C11—H11120.1C27—C28—H28119.6
C11—C12—C13120.3 (2)C23—C28—H28119.6
C11—C12—H12119.9C26—C29—C30112.49 (18)
C13—C12—H12119.9C26—C29—C31107.94 (18)
C12—C13—C8121.1 (2)C30—C29—C31108.8 (2)
C12—C13—H13119.5C26—C29—C32108.22 (18)
C8—C13—H13119.5C30—C29—C32108.76 (18)
C15—C14—C18107.78 (18)C31—C29—C32110.70 (18)
C15—C14—C7113.36 (18)C29—C30—H30A109.5
C18—C14—C7112.06 (18)C29—C30—H30B109.5
C15—C14—H14107.8H30A—C30—H30B109.5
C18—C14—H14107.8C29—C30—H30C109.5
C7—C14—H14107.8H30A—C30—H30C109.5
C16—C15—C14111.48 (18)H30B—C30—H30C109.5
C16—C15—H15A109.3C29—C31—H31A109.5
C14—C15—H15A109.3C29—C31—H31B109.5
C16—C15—H15B109.3H31A—C31—H31B109.5
C14—C15—H15B109.3C29—C31—H31C109.5
H15A—C15—H15B108.0H31A—C31—H31C109.5
N1—C16—C15112.04 (17)H31B—C31—H31C109.5
N1—C16—H16A109.2O3—C32—O4124.5 (2)
C15—C16—H16A109.2O3—C32—C29118.79 (19)
N1—C16—H16B109.2O4—C32—C29116.7 (2)
C15—C16—H16B109.2C33—O5—H5O108 (2)
H16A—C16—H16B107.9O5—C33—H33A109.5
N1—C17—C18112.39 (18)O5—C33—H33B109.5
N1—C17—H17A109.1H33A—C33—H33B109.5
C18—C17—H17A109.1O5—C33—H33C109.5
N1—C17—H17B109.1H33A—C33—H33C109.5
C18—C17—H17B109.1H33B—C33—H33C109.5
H17A—C17—H17B107.9C34—O6—H6O114 (2)
C17—C18—C14111.53 (18)O6—C34—H34A109.5
C17—C18—H18A109.3O6—C34—H34B109.5
C14—C18—H18A109.3H34A—C34—H34B109.5
C17—C18—H18B109.3O6—C34—H34C109.5
C14—C18—H18B109.3H34A—C34—H34C109.5
H18A—C18—H18B108.0H34B—C34—H34C109.5
N1—C19—C20114.31 (18)
C6—C1—C2—C30.7 (4)C19—N1—C17—C18175.62 (17)
C1—C2—C3—C40.3 (4)N1—C17—C18—C1456.6 (2)
C2—C3—C4—C50.4 (4)C15—C14—C18—C1757.6 (2)
C3—C4—C5—C60.6 (4)C7—C14—C18—C17177.05 (18)
C2—C1—C6—C50.5 (3)C16—N1—C19—C2063.2 (2)
C2—C1—C6—C7178.8 (2)C17—N1—C19—C20174.76 (17)
C4—C5—C6—C10.1 (3)N1—C19—C20—C2171.4 (2)
C4—C5—C6—C7178.1 (2)C19—C20—C21—C22168.4 (2)
C1—C6—C7—O12.2 (3)C20—C21—C22—O2B5.6 (7)
C5—C6—C7—O1176.0 (2)C20—C21—C22—O2A59.4 (3)
C1—C6—C7—C8117.4 (2)C20—C21—C22—C23173.0 (2)
C5—C6—C7—C864.3 (3)O2B—C22—C23—C2440.4 (6)
C1—C6—C7—C14119.9 (2)O2A—C22—C23—C24102.3 (3)
C5—C6—C7—C1458.3 (3)C21—C22—C23—C24129.1 (2)
O1—C7—C8—C919.5 (3)O2B—C22—C23—C28136.2 (6)
C6—C7—C8—C997.6 (3)O2A—C22—C23—C2874.2 (3)
C14—C7—C8—C9140.7 (2)C21—C22—C23—C2854.4 (3)
O1—C7—C8—C13159.4 (2)C28—C23—C24—C251.4 (3)
C6—C7—C8—C1383.6 (3)C22—C23—C24—C25175.3 (2)
C14—C7—C8—C1338.1 (3)C23—C24—C25—C260.6 (3)
C13—C8—C9—C101.4 (4)C24—C25—C26—C270.8 (3)
C7—C8—C9—C10177.5 (2)C24—C25—C26—C29174.15 (19)
C8—C9—C10—C110.6 (4)C25—C26—C27—C281.3 (3)
C9—C10—C11—C120.9 (4)C29—C26—C27—C28173.6 (2)
C10—C11—C12—C131.5 (4)C26—C27—C28—C230.5 (3)
C11—C12—C13—C80.7 (4)C24—C23—C28—C270.9 (3)
C9—C8—C13—C120.8 (4)C22—C23—C28—C27175.7 (2)
C7—C8—C13—C12178.1 (2)C25—C26—C29—C3034.6 (3)
O1—C7—C14—C1564.3 (2)C27—C26—C29—C30150.6 (2)
C6—C7—C14—C15179.91 (17)C25—C26—C29—C3185.3 (2)
C8—C7—C14—C1557.7 (2)C27—C26—C29—C3189.4 (2)
O1—C7—C14—C1858.0 (2)C25—C26—C29—C32154.8 (2)
C6—C7—C14—C1857.8 (2)C27—C26—C29—C3230.4 (3)
C8—C7—C14—C18179.96 (19)C26—C29—C32—O3104.5 (2)
C18—C14—C15—C1657.9 (2)C30—C29—C32—O3133.1 (2)
C7—C14—C15—C16177.52 (17)C31—C29—C32—O313.6 (3)
C17—N1—C16—C1553.3 (2)C26—C29—C32—O474.6 (2)
C19—N1—C16—C15173.75 (18)C30—C29—C32—O447.9 (3)
C14—C15—C16—N157.3 (2)C31—C29—C32—O4167.3 (2)
C16—N1—C17—C1853.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O50.93 (3)1.86 (3)2.763 (2)163 (3)
O2A—H2OA···O60.921.802.680 (3)162
N1—H1N···O3i0.92 (3)1.88 (3)2.772 (2)163 (2)
O5—H5O···O4i0.88 (3)1.90 (3)2.756 (3)166 (3)
O6—H6O···O4i0.93 (4)1.74 (4)2.666 (3)175 (4)
Symmetry code: (i) x+1, y+1, z+2.
(II) (±)-(4-{1-hydroxy-4-[4-(hydroxydiphenylmethyl)piperidinium-1-yl]- butyl}phenyl)-2-methylpropionate dihydrate top
Crystal data top
C32H39NO4·2H2OF(000) = 1160
Mr = 537.67Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5703 reflections
a = 23.8180 (9) Åθ = 2.2–27.9°
b = 9.8444 (3) ŵ = 0.08 mm1
c = 12.3959 (4) ÅT = 110 K
β = 93.1770 (12)°Chunk, colourless
V = 2902.05 (17) Å30.25 × 0.15 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3243 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 27.9°, θmin = 2.2°
Detector resolution: 56 microns pixels mm-1h = 3131
0.4° ϕ scansk = 1212
19430 measured reflectionsl = 1516
6860 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0992P)2 + 0.8167P]
where P = (Fo2 + 2Fc2)/3
6860 reflections(Δ/σ)max = 0.004
373 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C32H39NO4·2H2OV = 2902.05 (17) Å3
Mr = 537.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.8180 (9) ŵ = 0.08 mm1
b = 9.8444 (3) ÅT = 110 K
c = 12.3959 (4) Å0.25 × 0.15 × 0.15 mm
β = 93.1770 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3243 reflections with I > 2σ(I)
19430 measured reflectionsRint = 0.082
6860 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.37 e Å3
6860 reflectionsΔρmin = 0.26 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The OH2 group is disordered between two sites with relative occupancies of 57.3 (5)% and 42.7 (5)%.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.65682 (9)0.2288 (2)0.02468 (16)0.0358 (5)
H1O0.6791 (19)0.160 (5)0.032 (4)0.091 (16)*
O2A0.88893 (11)0.2721 (3)0.6076 (2)0.0343 (11)0.573 (5)
H2OA0.87070.35340.61470.041*0.573 (5)
O2B0.91596 (11)0.3884 (3)0.5251 (2)0.0362 (16)0.427 (5)
H2OB0.89150.42240.56380.043*0.427 (5)
O31.16757 (8)0.0061 (2)0.84173 (15)0.0344 (5)
O41.20251 (9)0.1383 (2)0.71789 (18)0.0450 (6)
N10.79394 (10)0.1641 (3)0.3159 (2)0.0318 (6)
H1N0.8050 (13)0.105 (3)0.259 (2)0.042 (9)*
C10.65377 (12)0.5546 (3)0.1509 (3)0.0378 (8)
H10.67600.53940.21580.045*
C20.64212 (14)0.6877 (4)0.1168 (3)0.0492 (9)
H20.65700.76210.15790.059*
C30.60912 (15)0.7114 (4)0.0239 (3)0.0528 (10)
H30.60120.80190.00090.063*
C40.58752 (16)0.6026 (4)0.0358 (3)0.0554 (10)
H40.56440.61860.09950.066*
C50.59940 (14)0.4710 (3)0.0034 (2)0.0428 (8)
H50.58450.39740.04540.051*
C60.63311 (12)0.4444 (3)0.0907 (2)0.0330 (7)
C70.64265 (12)0.2945 (3)0.1219 (2)0.0314 (7)
C80.58692 (12)0.2385 (3)0.1602 (2)0.0317 (7)
C90.56465 (12)0.2871 (3)0.2546 (2)0.0374 (7)
H90.58390.35690.29460.045*
C100.51540 (13)0.2356 (3)0.2910 (3)0.0412 (8)
H100.50130.26940.35600.049*
C110.48643 (14)0.1352 (4)0.2336 (3)0.0466 (9)
H110.45250.09930.25870.056*
C120.50754 (14)0.0877 (3)0.1392 (3)0.0468 (9)
H120.48760.01960.09840.056*
C130.55758 (13)0.1383 (3)0.1031 (2)0.0391 (8)
H130.57180.10370.03840.047*
C140.68940 (12)0.2750 (3)0.2127 (2)0.0308 (7)
H140.68090.33780.27310.037*
C150.69294 (12)0.1314 (3)0.2592 (2)0.0314 (7)
H15A0.65590.10500.28490.038*
H15B0.70260.06690.20180.038*
C160.73690 (11)0.1232 (3)0.3519 (2)0.0324 (7)
H16A0.72610.18380.41100.039*
H16B0.73870.02910.38020.039*
C170.79194 (12)0.3052 (3)0.2688 (2)0.0323 (7)
H17A0.78280.37130.32540.039*
H17B0.82920.32910.24280.039*
C180.74792 (11)0.3125 (3)0.1759 (2)0.0306 (7)
H18A0.75830.24960.11790.037*
H18B0.74690.40570.14580.037*
C190.83689 (12)0.1528 (3)0.4088 (2)0.0354 (7)
H19A0.83430.06140.44140.042*
H19B0.82810.22040.46460.042*
C200.89674 (12)0.1756 (3)0.3759 (2)0.0390 (8)
H20A0.89950.26760.34440.047*
H20B0.90520.10910.31920.047*
C210.94075 (12)0.1620 (3)0.4697 (2)0.0369 (7)
H21A0.93690.07110.50270.044*
H21B0.97860.16680.44070.044*
C220.93695 (13)0.2682 (3)0.5570 (3)0.0396 (8)
H22A0.93840.35700.51810.048*0.573 (5)
H22B0.90710.23120.60240.048*0.427 (5)
C230.98852 (12)0.2681 (3)0.6337 (2)0.0337 (7)
C240.99955 (12)0.1579 (3)0.7028 (2)0.0361 (7)
H240.97340.08500.70360.043*
C251.04759 (12)0.1533 (3)0.7696 (2)0.0359 (7)
H251.05350.07810.81700.043*
C261.08800 (12)0.2566 (3)0.7695 (2)0.0296 (7)
C271.07671 (12)0.3661 (3)0.7012 (2)0.0340 (7)
H271.10290.43880.69990.041*
C281.02776 (12)0.3714 (3)0.6346 (2)0.0352 (7)
H281.02120.44770.58880.042*
C291.14214 (12)0.2461 (3)0.8419 (2)0.0311 (7)
C301.17967 (13)0.3709 (3)0.8371 (3)0.0385 (8)
H30A1.19040.38470.76270.058*
H30B1.21350.35750.88450.058*
H30C1.15920.45080.86100.058*
C311.12794 (13)0.2225 (3)0.9597 (2)0.0380 (8)
H31A1.10540.29870.98430.057*
H31B1.16280.21591.00520.057*
H31C1.10650.13800.96490.057*
C321.17373 (12)0.1222 (3)0.7971 (2)0.0319 (7)
O50.74115 (10)0.4684 (2)0.50036 (18)0.0526 (7)
H5AO0.77370.49810.54950.111 (17)*
H5BO0.73130.55020.46050.079 (13)*
O60.72081 (11)0.7041 (3)0.3815 (2)0.0588 (7)
H6AO0.69150.77080.40180.050 (10)*
H6BO0.74890.75080.34470.082 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0350 (12)0.0400 (13)0.0329 (11)0.0044 (10)0.0049 (9)0.0045 (10)
O2A0.029 (2)0.037 (2)0.037 (2)0.0024 (15)0.0073 (16)0.0017 (17)
O2B0.036 (3)0.027 (3)0.045 (3)0.008 (2)0.005 (2)0.006 (2)
O30.0379 (12)0.0283 (12)0.0369 (11)0.0006 (9)0.0014 (9)0.0034 (10)
O40.0487 (14)0.0385 (13)0.0496 (13)0.0044 (10)0.0203 (11)0.0018 (11)
N10.0295 (14)0.0326 (15)0.0334 (14)0.0025 (11)0.0034 (11)0.0019 (12)
C10.0303 (17)0.0354 (19)0.0477 (19)0.0018 (13)0.0030 (14)0.0037 (16)
C20.045 (2)0.038 (2)0.065 (2)0.0011 (16)0.0044 (18)0.0001 (18)
C30.054 (2)0.035 (2)0.070 (3)0.0099 (17)0.009 (2)0.0139 (19)
C40.059 (2)0.055 (2)0.052 (2)0.0065 (19)0.0026 (18)0.0117 (19)
C50.047 (2)0.042 (2)0.0395 (18)0.0032 (15)0.0010 (16)0.0060 (16)
C60.0296 (16)0.0326 (18)0.0376 (17)0.0018 (13)0.0085 (13)0.0020 (14)
C70.0301 (16)0.0324 (17)0.0323 (16)0.0011 (12)0.0050 (13)0.0002 (14)
C80.0294 (16)0.0293 (17)0.0363 (16)0.0025 (12)0.0019 (13)0.0032 (14)
C90.0308 (17)0.0346 (18)0.0469 (19)0.0048 (13)0.0045 (14)0.0040 (15)
C100.0377 (18)0.044 (2)0.0425 (18)0.0020 (15)0.0088 (15)0.0032 (16)
C110.0351 (19)0.048 (2)0.057 (2)0.0090 (16)0.0107 (16)0.0048 (18)
C120.047 (2)0.048 (2)0.045 (2)0.0181 (16)0.0026 (16)0.0000 (17)
C130.0355 (18)0.045 (2)0.0374 (17)0.0043 (15)0.0036 (14)0.0014 (15)
C140.0269 (15)0.0330 (17)0.0328 (15)0.0005 (12)0.0048 (12)0.0015 (14)
C150.0300 (16)0.0341 (17)0.0306 (15)0.0007 (13)0.0051 (12)0.0012 (14)
C160.0285 (16)0.0356 (17)0.0333 (16)0.0006 (13)0.0042 (13)0.0032 (14)
C170.0289 (16)0.0279 (17)0.0401 (17)0.0011 (12)0.0038 (13)0.0000 (14)
C180.0303 (16)0.0284 (16)0.0335 (16)0.0007 (12)0.0045 (13)0.0023 (13)
C190.0346 (17)0.0407 (19)0.0307 (16)0.0004 (14)0.0007 (13)0.0000 (14)
C200.0333 (17)0.049 (2)0.0342 (17)0.0056 (14)0.0009 (14)0.0103 (15)
C210.0289 (16)0.0418 (19)0.0398 (17)0.0057 (13)0.0012 (13)0.0040 (15)
C220.0405 (19)0.0389 (19)0.0387 (17)0.0122 (15)0.0040 (15)0.0045 (15)
C230.0334 (17)0.0364 (18)0.0311 (16)0.0097 (14)0.0013 (13)0.0054 (14)
C240.0316 (17)0.0364 (19)0.0401 (17)0.0023 (13)0.0001 (14)0.0001 (15)
C250.0343 (17)0.0352 (18)0.0381 (17)0.0011 (14)0.0014 (14)0.0040 (14)
C260.0285 (16)0.0300 (17)0.0307 (15)0.0029 (12)0.0045 (12)0.0013 (13)
C270.0373 (17)0.0300 (17)0.0349 (17)0.0004 (13)0.0044 (14)0.0020 (14)
C280.0399 (18)0.0298 (17)0.0360 (17)0.0073 (14)0.0029 (14)0.0005 (14)
C290.0318 (16)0.0294 (17)0.0320 (16)0.0018 (12)0.0019 (13)0.0007 (13)
C300.0391 (18)0.0292 (17)0.0471 (19)0.0027 (14)0.0005 (15)0.0015 (15)
C310.0391 (18)0.0398 (19)0.0350 (17)0.0028 (14)0.0015 (14)0.0015 (15)
C320.0294 (16)0.0300 (17)0.0362 (17)0.0028 (13)0.0005 (13)0.0019 (15)
O50.0608 (16)0.0490 (16)0.0475 (14)0.0143 (12)0.0026 (12)0.0065 (12)
O60.0543 (16)0.0555 (16)0.0679 (16)0.0027 (13)0.0143 (13)0.0132 (14)
Geometric parameters (Å, º) top
O1—C71.425 (3)C16—H16A0.9900
O1—H1O0.86 (5)C16—H16B0.9900
O2A—C221.335 (4)C17—C181.516 (4)
O2A—H2OA0.9167C17—H17A0.9900
O2B—C221.335 (4)C17—H17B0.9900
O2B—H2OB0.8445C18—H18A0.9900
O3—C321.282 (3)C18—H18B0.9900
O4—C321.239 (3)C19—C201.521 (4)
N1—C161.508 (4)C19—H19A0.9900
N1—C191.501 (4)C19—H19B0.9900
N1—C171.506 (4)C20—C211.528 (4)
N1—H1N0.96 (3)C20—H20A0.9900
C1—C61.391 (4)C20—H20B0.9900
C1—C21.400 (4)C21—C221.511 (4)
C1—H10.9500C21—H21A0.9900
C2—C31.378 (5)C21—H21B0.9900
C2—H20.9500C22—C231.511 (4)
C3—C41.385 (5)C22—H22A1.0000
C3—H30.9500C22—H22B1.0000
C4—C51.381 (5)C23—C281.381 (4)
C4—H40.9500C23—C241.398 (4)
C5—C61.404 (4)C24—C251.376 (4)
C5—H50.9500C24—H240.9500
C6—C71.539 (4)C25—C261.401 (4)
C7—C81.536 (4)C25—H250.9500
C7—C141.550 (4)C26—C271.387 (4)
C8—C131.382 (4)C26—C291.533 (4)
C8—C91.396 (4)C27—C281.392 (4)
C9—C101.376 (4)C27—H270.9500
C9—H90.9500C28—H280.9500
C10—C111.381 (5)C29—C301.523 (4)
C10—H100.9500C29—C311.535 (4)
C11—C121.381 (5)C29—C321.552 (4)
C11—H110.9500C30—H30A0.9800
C12—C131.389 (4)C30—H30B0.9800
C12—H120.9500C30—H30C0.9800
C13—H130.9500C31—H31A0.9800
C14—C151.527 (4)C31—H31B0.9800
C14—C181.536 (4)C31—H31C0.9800
C14—H141.0000O5—H5AO1.0021
C15—C161.514 (4)O5—H5BO0.9672
C15—H15A0.9900O6—H6AO1.0011
C15—H15B0.9900O6—H6BO0.9502
C7—O1—H1O117 (3)C17—C18—H18A109.4
C22—O2A—H2OA119.5C14—C18—H18A109.4
C22—O2B—H2OB116.2C17—C18—H18B109.4
C16—N1—C19109.9 (2)C14—C18—H18B109.4
C16—N1—C17110.6 (2)H18A—C18—H18B108.0
C19—N1—C17111.8 (2)N1—C19—C20113.1 (2)
C16—N1—H1N110.1 (18)N1—C19—H19A109.0
C19—N1—H1N108.4 (18)C20—C19—H19A109.0
C17—N1—H1N106.1 (18)N1—C19—H19B109.0
C6—C1—C2120.7 (3)C20—C19—H19B109.0
C6—C1—H1119.7H19A—C19—H19B107.8
C2—C1—H1119.7C19—C20—C21113.4 (2)
C3—C2—C1120.4 (3)C19—C20—H20A108.9
C3—C2—H2119.8C21—C20—H20A108.9
C1—C2—H2119.8C19—C20—H20B108.9
C2—C3—C4119.6 (3)C21—C20—H20B108.9
C2—C3—H3120.2H20A—C20—H20B107.7
C4—C3—H3120.2C22—C21—C20114.7 (3)
C5—C4—C3120.4 (3)C22—C21—H21A108.6
C5—C4—H4119.8C20—C21—H21A108.6
C3—C4—H4119.8C22—C21—H21B108.6
C4—C5—C6121.0 (3)C20—C21—H21B108.6
C4—C5—H5119.5H21A—C21—H21B107.6
C6—C5—H5119.5O2A—C22—C21116.3 (3)
C1—C6—C5118.0 (3)O2B—C22—C21115.9 (3)
C1—C6—C7124.7 (3)O2A—C22—C23113.1 (3)
C5—C6—C7117.2 (3)O2B—C22—C23117.7 (3)
O1—C7—C6105.1 (2)C21—C22—C23111.8 (2)
O1—C7—C8110.4 (2)O2A—C22—H22A104.8
C6—C7—C8107.7 (2)C21—C22—H22A104.8
O1—C7—C14111.3 (2)C23—C22—H22A104.8
C6—C7—C14113.0 (2)O2B—C22—H22B102.9
C8—C7—C14109.2 (2)C21—C22—H22B102.9
C13—C8—C9118.0 (3)C23—C22—H22B102.9
C13—C8—C7121.3 (3)C28—C23—C24117.5 (3)
C9—C8—C7120.7 (3)C28—C23—C22122.0 (3)
C10—C9—C8121.3 (3)C24—C23—C22120.3 (3)
C10—C9—H9119.4C25—C24—C23121.1 (3)
C8—C9—H9119.4C25—C24—H24119.5
C9—C10—C11120.4 (3)C23—C24—H24119.5
C9—C10—H10119.8C24—C25—C26121.6 (3)
C11—C10—H10119.8C24—C25—H25119.2
C10—C11—C12119.0 (3)C26—C25—H25119.2
C10—C11—H11120.5C27—C26—C25117.1 (3)
C12—C11—H11120.5C27—C26—C29122.6 (3)
C11—C12—C13120.7 (3)C25—C26—C29120.4 (3)
C11—C12—H12119.6C26—C27—C28121.2 (3)
C13—C12—H12119.6C26—C27—H27119.4
C12—C13—C8120.6 (3)C28—C27—H27119.4
C12—C13—H13119.7C23—C28—C27121.4 (3)
C8—C13—H13119.7C23—C28—H28119.3
C15—C14—C18107.6 (2)C27—C28—H28119.3
C15—C14—C7114.2 (2)C30—C29—C26113.5 (2)
C18—C14—C7112.4 (2)C30—C29—C31108.7 (2)
C15—C14—H14107.4C26—C29—C31110.2 (2)
C18—C14—H14107.4C30—C29—C32108.8 (2)
C7—C14—H14107.4C26—C29—C32104.6 (2)
C16—C15—C14110.9 (2)C31—C29—C32111.0 (2)
C16—C15—H15A109.5C29—C30—H30A109.5
C14—C15—H15A109.5C29—C30—H30B109.5
C16—C15—H15B109.5H30A—C30—H30B109.5
C14—C15—H15B109.5C29—C30—H30C109.5
H15A—C15—H15B108.0H30A—C30—H30C109.5
N1—C16—C15111.0 (2)H30B—C30—H30C109.5
N1—C16—H16A109.4C29—C31—H31A109.5
C15—C16—H16A109.4C29—C31—H31B109.5
N1—C16—H16B109.4H31A—C31—H31B109.5
C15—C16—H16B109.4C29—C31—H31C109.5
H16A—C16—H16B108.0H31A—C31—H31C109.5
C18—C17—N1110.1 (2)H31B—C31—H31C109.5
C18—C17—H17A109.6O4—C32—O3122.6 (3)
N1—C17—H17A109.6O4—C32—C29118.9 (3)
C18—C17—H17B109.6O3—C32—C29118.5 (2)
N1—C17—H17B109.6H5AO—O5—H5BO103.0
H17A—C17—H17B108.1H6AO—O6—H6BO108.8
C17—C18—C14111.3 (2)
C6—C1—C2—C31.1 (5)C19—N1—C17—C18179.7 (2)
C1—C2—C3—C40.0 (5)N1—C17—C18—C1458.8 (3)
C2—C3—C4—C50.7 (5)C15—C14—C18—C1758.6 (3)
C3—C4—C5—C60.5 (5)C7—C14—C18—C17174.7 (2)
C2—C1—C6—C51.4 (4)C16—N1—C19—C20173.0 (2)
C2—C1—C6—C7179.0 (3)C17—N1—C19—C2063.9 (3)
C4—C5—C6—C10.6 (5)N1—C19—C20—C21179.0 (3)
C4—C5—C6—C7178.4 (3)C19—C20—C21—C2265.2 (4)
C1—C6—C7—O1135.5 (3)C20—C21—C22—O2A60.6 (4)
C5—C6—C7—O146.9 (3)C20—C21—C22—O2B28.8 (4)
C1—C6—C7—C8106.9 (3)C20—C21—C22—C23167.5 (3)
C5—C6—C7—C870.7 (3)O2A—C22—C23—C28117.8 (3)
C1—C6—C7—C1413.9 (4)O2B—C22—C23—C2829.3 (4)
C5—C6—C7—C14168.5 (3)C21—C22—C23—C28108.6 (3)
O1—C7—C8—C130.0 (4)O2A—C22—C23—C2465.7 (4)
C6—C7—C8—C13114.3 (3)O2B—C22—C23—C24154.3 (3)
C14—C7—C8—C13122.7 (3)C21—C22—C23—C2467.8 (4)
O1—C7—C8—C9179.6 (3)C28—C23—C24—C250.4 (4)
C6—C7—C8—C966.2 (3)C22—C23—C24—C25177.0 (3)
C14—C7—C8—C956.9 (4)C23—C24—C25—C261.5 (5)
C13—C8—C9—C101.0 (5)C24—C25—C26—C271.8 (4)
C7—C8—C9—C10178.6 (3)C24—C25—C26—C29177.7 (3)
C8—C9—C10—C110.8 (5)C25—C26—C27—C281.0 (4)
C9—C10—C11—C120.2 (5)C29—C26—C27—C28178.5 (3)
C10—C11—C12—C131.0 (5)C24—C23—C28—C270.4 (4)
C11—C12—C13—C80.8 (5)C22—C23—C28—C27176.1 (3)
C9—C8—C13—C120.2 (5)C26—C27—C28—C230.0 (4)
C7—C8—C13—C12179.4 (3)C27—C26—C29—C304.1 (4)
O1—C7—C14—C1572.1 (3)C25—C26—C29—C30176.4 (3)
C6—C7—C14—C15169.9 (2)C27—C26—C29—C31126.2 (3)
C8—C7—C14—C1550.0 (3)C25—C26—C29—C3154.3 (3)
O1—C7—C14—C1850.9 (3)C27—C26—C29—C32114.4 (3)
C6—C7—C14—C1867.1 (3)C25—C26—C29—C3265.1 (3)
C8—C7—C14—C18173.1 (2)C30—C29—C32—O439.1 (4)
C18—C14—C15—C1658.1 (3)C26—C29—C32—O482.5 (3)
C7—C14—C15—C16176.3 (2)C31—C29—C32—O4158.7 (3)
C19—N1—C16—C15179.1 (2)C30—C29—C32—O3143.0 (3)
C17—N1—C16—C1557.1 (3)C26—C29—C32—O395.4 (3)
C14—C15—C16—N158.6 (3)C31—C29—C32—O323.4 (4)
C16—N1—C17—C1856.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O5i0.86 (5)2.00 (5)2.822 (3)160 (4)
O2A—H2OA···O3ii0.921.852.758 (3)168
O2B—H2OB···O3ii0.842.052.897 (3)180
N1—H1N···O3iii0.96 (3)1.81 (3)2.768 (3)174 (3)
O5—H5AO···O3ii1.001.892.868 (3)164
O5—H5BO···O60.971.812.776 (3)174
O6—H6BO···O4iv0.951.802.741 (3)172
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y, z+1; (iv) x+2, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC32H39NO4·2CH4OC32H39NO4·2H2O
Mr565.73537.67
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)110110
a, b, c (Å)20.8661 (3), 9.6138 (2), 16.0702 (5)23.8180 (9), 9.8444 (3), 12.3959 (4)
β (°) 107.8870 (8) 93.1770 (12)
V3)3067.90 (12)2902.05 (17)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.30 × 0.25 × 0.250.25 × 0.15 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22588, 7172, 4405 19430, 6860, 3243
Rint0.0720.082
(sin θ/λ)max1)0.6580.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.168, 1.00 0.073, 0.214, 0.99
No. of reflections71726860
No. of parameters396373
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.410.37, 0.26

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), DENZO, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Bruno et al., 2002), SHELXL97.

Selected torsion angles (º) for (I) top
O1—C7—C14—C1564.3 (2)C20—C21—C22—O2A59.4 (3)
O1—C7—C14—C1858.0 (2)C20—C21—C22—C23173.0 (2)
N1—C19—C20—C2171.4 (2)C25—C26—C29—C32154.8 (2)
C19—C20—C21—C22168.4 (2)C27—C26—C29—C3230.4 (3)
C20—C21—C22—O2B5.6 (7)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O50.93 (3)1.86 (3)2.763 (2)163 (3)
O2A—H2OA···O60.921.802.680 (3)162
N1—H1N···O3i0.92 (3)1.88 (3)2.772 (2)163 (2)
O5—H5O···O4i0.88 (3)1.90 (3)2.756 (3)166 (3)
O6—H6O···O4i0.93 (4)1.74 (4)2.666 (3)175 (4)
Symmetry code: (i) x+1, y+1, z+2.
Selected torsion angles (º) for (II) top
O1—C7—C14—C1572.1 (3)C20—C21—C22—O2B28.8 (4)
O1—C7—C14—C1850.9 (3)C20—C21—C22—C23167.5 (3)
N1—C19—C20—C21179.0 (3)C27—C26—C29—C32114.4 (3)
C19—C20—C21—C2265.2 (4)C25—C26—C29—C3265.1 (3)
C20—C21—C22—O2A60.6 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O5i0.86 (5)2.00 (5)2.822 (3)160 (4)
O2A—H2OA···O3ii0.921.852.758 (3)168
O2B—H2OB···O3ii0.842.052.897 (3)180
N1—H1N···O3iii0.96 (3)1.81 (3)2.768 (3)174 (3)
O5—H5AO···O3ii1.001.892.868 (3)164
O5—H5BO···O60.971.812.776 (3)174
O6—H6BO···O4iv0.951.802.741 (3)172
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y, z+1; (iv) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds