organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di-n-tetra­decyl­pyromellitic di­imide

aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and bDepartment of Chemistry, Mount Holyoake College, South Hadley, Massachussets 01075, USA
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 9 February 2004; accepted 15 March 2004; online 24 March 2004)

The structure of the title compound, C38H60N2O4, has been determined and is similar to other compounds of this type, being essentially rod-shaped with the packing dominated by the lamellar arrangement of the mol­ecules. The mol­ecule lies on an inversion centre; thus only one alkyl chain, one imide ring and one of the non-bridgehead C atoms in the benzene ring are unique. The di­imide moieties are arranged in a classic herring-bone structure, with two close non-hydrogen-atom contacts of 2.874 (5) and 2.946 (5) Å.

Comment

In a previous publication, we investigated the thin-film characteristics of neutral pseudorotaxanes consisting of 1:1 and 1:2 mixtures of bis(1,5-naphtho)-38-crown-10 with N-alkyl derivatives of both pyromellitic di­imide and 1,4,5,8-naphthalene­tetra­carboxyl­ic di­imide (Lynch et al., 1999[Lynch, D. E., Hamilton, D. G., Calos, N. J., Wood, B. & Sanders, J. K. M. (1999). Langmuir, 15, 5600-5605.]). The Langmuir spreading solutions used in this study were subsequently refrigerated for storage while the paper was being refereed and published. These solutions, over a period of several months, eventually evaporated to dryness, yielding crystals of varying quality. From the solution containing a 1:1 molar mixture of the crown and N,N′-di-n-tetra­decyl­pyromellitic di­imide, two distinct crystal forms were identified, separated and characterized using single-crystal X-ray techniques. One of those structures was that of (I[link]), reported here, while the other form was that of a second polymorph of the crown (Lynch & Hamilton, 2004a[Lynch, D. E. & Hamilton, D. G. (2004a). Unpublished results.]). From the solution containing a 1:1 molar mixture of the crown and the naphthalene di­imide analogue, crystals were obtained which gave the structure of the di­imide; however, the poor quality of the crystals led to poor data and hence a poor structure refinement (Lynch & Hamilton, 2004b[Lynch, D. E. & Hamilton, D. G. (2004b). Private communication to the Cambridge Structural Database. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.]).[link]

[Scheme 1]

The structure of (I[link]) is similar to other compounds of this type, being essentially rod-shaped (Fig. 1[link]) with the packing dominated by the lamellar arrangement of the mol­ecules. The di­imide moieties arrange in a classic herring-bone structure with two close non-hydrogen-atom contacts: C6⋯O21(−x, −½ + y, ½ − z) = 2.874 (5) Å and C2⋯O61(x, ½ − y, −½ + z) = 2.946 (5) Å. The chains are inclined at an angle of ca 40° to the plane of the di­imide ring. The naphthalene di­imide analogue similarly resides on an inversion centre, the mol­ecules also pack in layers and the chains in this compound are also inclined at an angle of ca 40° to the plane of the ring system, but this structure differs from (I[link]) in that the naphthalene moieties are parallel to each other, displaying interplanar distaces of ca 3.3–3.4 Å in the overlap regions.

[Figure 1]
Figure 1
The molecular configuration and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level. For clarity, only the first and last C atoms of the alkyl chain have been labelled. [Symmetry code (i): −x, 1 − y, 1 − z.]

Experimental

Crystals of the title compound were obtained following the total evaporation of an equimolar mixture of bis(1,5-naphtho)-38-crown-10 and (I[link]) in 10 ml chloro­form (0.1 mg cm−3) at 277 K.

Crystal data
  • C38H60N2O4

  • Mr = 608.88

  • Monoclinic, P21/c

  • a = 38.939 (3) Å

  • b = 4.9902 (3) Å

  • c = 8.9040 (5) Å

  • β = 95.896 (2)°

  • V = 1721.01 (19) Å3

  • Z = 2

  • Dx = 1.175 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6262 reflections

  • θ = 1.0–27.5°

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • Plate, colourless

  • 0.30 × 0.25 × 0.01 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.]) Tmin = 0.992, Tmax = 0.999

  • 6743 measured reflections

  • 2896 independent reflections

  • 1366 reflections with I > 2σ(I)

  • Rint = 0.093

  • θmax = 25.0°

  • h = −45 → 46

  • k = −5 → 5

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.203

  • S = 0.97

  • 2896 reflections

  • 200 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0882P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.95 (aromatic H atoms), 0.99 (CH2 H atoms) and 0.98 Å (CH3 H atoms). The isotropic displacement parameters were set equal to 1.25Ueq of the carrier atom. The high Rint value was the result of weak high-angle data.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON97 (Spek, 1997[Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

N,N'-di-n-tetradecylpyromellitic diimide top
Crystal data top
C38H60N2O4F(000) = 668
Mr = 608.88Dx = 1.175 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6262 reflections
a = 38.939 (3) Åθ = 1.0–27.5°
b = 4.9902 (3) ŵ = 0.08 mm1
c = 8.9040 (5) ÅT = 150 K
β = 95.896 (2)°Plate, colourless
V = 1721.01 (19) Å30.30 × 0.25 × 0.01 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2896 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 1.1°
φ and ω scansh = 4546
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 55
Tmin = 0.992, Tmax = 0.999l = 1010
6743 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0882P)2]
where P = (Fo2 + 2Fc2)/3
2896 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08654 (7)0.5189 (6)0.5668 (3)0.0239 (8)
C20.06735 (10)0.6964 (8)0.4715 (4)0.0263 (10)
O210.07873 (6)0.8812 (5)0.4046 (3)0.0302 (7)
C30.03053 (9)0.6150 (7)0.4746 (4)0.0226 (9)
C40.00077 (9)0.7297 (7)0.4040 (4)0.0239 (10)
H40.00130.88260.34070.030*
C50.02980 (9)0.3927 (7)0.5685 (4)0.0222 (9)
C60.06626 (10)0.3262 (8)0.6263 (4)0.0267 (10)
O610.07640 (6)0.1404 (5)0.7067 (3)0.0306 (7)
C110.12372 (9)0.5474 (7)0.6005 (4)0.0274 (10)
H1110.13110.45280.69610.034*
H1120.12940.73960.61530.034*
C120.14350 (9)0.4365 (8)0.4766 (4)0.0303 (10)
H1210.14420.23870.48470.038*
H1220.13100.48270.37760.038*
C130.18006 (9)0.5406 (7)0.4817 (4)0.0284 (10)
H1310.19280.49050.57950.035*
H1320.17950.73870.47570.035*
C140.19926 (9)0.4317 (7)0.3539 (4)0.0300 (10)
H1410.20170.23520.36610.038*
H1420.18510.46540.25690.038*
C150.23474 (9)0.5511 (8)0.3456 (4)0.0320 (10)
H1510.24910.51570.44180.040*
H1520.23250.74770.33360.040*
C160.25292 (9)0.4385 (8)0.2156 (4)0.0318 (11)
H1610.25540.24220.22880.040*
H1620.23820.47070.11990.040*
C170.28833 (9)0.5584 (8)0.2031 (4)0.0314 (10)
H1710.30300.52780.29910.039*
H1720.28590.75440.18860.039*
C180.30640 (9)0.4416 (7)0.0735 (4)0.0322 (10)
H1810.30890.24570.08850.040*
H1820.29160.47120.02230.040*
C190.34161 (9)0.5604 (8)0.0592 (4)0.0323 (11)
H1910.35640.53180.15510.040*
H1920.33910.75610.04340.040*
C200.35951 (9)0.4418 (8)0.0694 (4)0.0311 (10)
H2010.36180.24590.05410.039*
H2020.34480.47160.16540.039*
C210.39494 (9)0.5594 (8)0.0830 (4)0.0326 (10)
H2110.40970.52810.01270.041*
H2120.39260.75560.09730.041*
C220.41288 (9)0.4422 (8)0.2132 (4)0.0341 (11)
H2210.41500.24590.19940.043*
H2220.39820.47490.30900.043*
C230.44843 (10)0.5581 (8)0.2261 (5)0.0392 (11)
H2310.46330.52170.13130.049*
H2320.44640.75490.23790.049*
C240.46567 (10)0.4442 (9)0.3582 (5)0.0474 (13)
H2410.46900.25070.34440.059*
H2420.48810.53060.36260.059*
H2430.45100.47790.45250.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (18)0.0257 (19)0.0217 (18)0.0017 (16)0.0020 (15)0.0002 (15)
C20.040 (3)0.025 (3)0.014 (2)0.003 (2)0.0037 (18)0.001 (2)
O210.0390 (17)0.0257 (17)0.0263 (16)0.0053 (14)0.0055 (13)0.0019 (14)
C30.031 (2)0.020 (2)0.018 (2)0.0004 (19)0.0040 (17)0.0051 (18)
C40.036 (2)0.020 (2)0.015 (2)0.000 (2)0.0035 (18)0.0022 (18)
C50.032 (2)0.018 (2)0.017 (2)0.0004 (19)0.0037 (17)0.0047 (18)
C60.033 (2)0.027 (3)0.021 (2)0.002 (2)0.0024 (18)0.008 (2)
O610.0390 (17)0.0273 (17)0.0249 (16)0.0039 (14)0.0004 (12)0.0017 (14)
C110.027 (2)0.029 (2)0.026 (2)0.0013 (19)0.0013 (18)0.001 (2)
C120.031 (2)0.031 (3)0.029 (2)0.0023 (19)0.0027 (18)0.003 (2)
C130.028 (2)0.030 (2)0.028 (2)0.0021 (19)0.0040 (18)0.0026 (19)
C140.028 (2)0.035 (3)0.027 (2)0.0014 (19)0.0035 (18)0.000 (2)
C150.032 (2)0.035 (3)0.029 (2)0.001 (2)0.0033 (19)0.000 (2)
C160.030 (2)0.038 (3)0.026 (2)0.002 (2)0.0027 (18)0.001 (2)
C170.030 (2)0.038 (3)0.027 (2)0.006 (2)0.0043 (18)0.001 (2)
C180.035 (2)0.033 (3)0.029 (2)0.003 (2)0.0040 (19)0.001 (2)
C190.031 (2)0.039 (3)0.027 (2)0.002 (2)0.0059 (18)0.003 (2)
C200.033 (2)0.032 (3)0.028 (2)0.001 (2)0.0042 (18)0.000 (2)
C210.032 (2)0.036 (3)0.030 (2)0.001 (2)0.0055 (18)0.000 (2)
C220.032 (2)0.037 (3)0.033 (3)0.002 (2)0.0049 (19)0.000 (2)
C230.033 (3)0.048 (3)0.037 (3)0.002 (2)0.007 (2)0.001 (2)
C240.036 (3)0.069 (4)0.039 (3)0.002 (2)0.012 (2)0.004 (3)
Geometric parameters (Å, º) top
N1—C61.384 (5)C16—C171.518 (5)
N1—C21.390 (4)C16—H1610.99
N1—C111.455 (4)C16—H1620.99
C2—O211.207 (4)C17—C181.527 (5)
C2—C31.493 (5)C17—H1710.99
C3—C41.384 (4)C17—H1720.99
C3—C51.391 (5)C18—C191.511 (5)
C4—C5i1.382 (5)C18—H1810.99
C4—H40.95C18—H1820.99
C5—C4i1.382 (5)C19—C201.520 (5)
C5—C61.497 (5)C19—H1910.99
C6—O611.213 (4)C19—H1920.99
C11—C121.514 (5)C20—C211.516 (5)
C11—H1110.99C20—H2010.99
C11—H1120.99C20—H2020.99
C12—C131.512 (5)C21—C221.530 (5)
C12—H1210.99C21—H2110.99
C12—H1220.99C21—H2120.99
C13—C141.525 (5)C22—C231.515 (5)
C13—H1310.99C22—H2210.99
C13—H1320.99C22—H2220.99
C14—C151.513 (4)C23—C241.523 (5)
C14—H1410.99C23—H2310.99
C14—H1420.99C23—H2320.99
C15—C161.524 (5)C24—H2410.98
C15—H1510.99C24—H2420.98
C15—H1520.99C24—H2430.98
C6—N1—C2112.6 (3)C17—C16—H162108.8
C6—N1—C11125.7 (3)C15—C16—H162108.8
C2—N1—C11121.7 (3)H161—C16—H162107.6
O21—C2—N1125.9 (4)C16—C17—C18113.4 (3)
O21—C2—C3128.2 (3)C16—C17—H171108.9
N1—C2—C3105.8 (3)C18—C17—H171108.9
C4—C3—C5122.3 (3)C16—C17—H172108.9
C4—C3—C2129.8 (3)C18—C17—H172108.9
C5—C3—C2107.9 (3)H171—C17—H172107.7
C5i—C4—C3115.6 (3)C19—C18—C17114.0 (3)
C5i—C4—H4122.2C19—C18—H181108.8
C3—C4—H4122.2C17—C18—H181108.8
C4i—C5—C3122.0 (3)C19—C18—H182108.8
C4i—C5—C6130.2 (3)C17—C18—H182108.8
C3—C5—C6107.8 (3)H181—C18—H182107.6
O61—C6—N1126.4 (4)C18—C19—C20113.6 (3)
O61—C6—C5127.8 (4)C18—C19—H191108.8
N1—C6—C5105.8 (3)C20—C19—H191108.8
N1—C11—C12112.6 (3)C18—C19—H192108.8
N1—C11—H111109.1C20—C19—H192108.8
C12—C11—H111109.1H191—C19—H192107.7
N1—C11—H112109.1C21—C20—C19113.6 (3)
C12—C11—H112109.1C21—C20—H201108.8
H111—C11—H112107.8C19—C20—H201108.8
C13—C12—C11113.6 (3)C21—C20—H202108.8
C13—C12—H121108.8C19—C20—H202108.8
C11—C12—H121108.8H201—C20—H202107.7
C13—C12—H122108.8C20—C21—C22113.8 (3)
C11—C12—H122108.8C20—C21—H211108.8
H121—C12—H122107.7C22—C21—H211108.8
C12—C13—C14112.8 (3)C20—C21—H212108.8
C12—C13—H131109.0C22—C21—H212108.8
C14—C13—H131109.0H211—C21—H212107.7
C12—C13—H132109.0C23—C22—C21113.8 (3)
C14—C13—H132109.0C23—C22—H221108.8
H131—C13—H132107.8C21—C22—H221108.8
C15—C14—C13114.6 (3)C23—C22—H222108.8
C15—C14—H141108.6C21—C22—H222108.8
C13—C14—H141108.6H221—C22—H222107.7
C15—C14—H142108.6C22—C23—C24113.2 (3)
C13—C14—H142108.6C22—C23—H231108.9
H141—C14—H142107.6C24—C23—H231108.9
C14—C15—C16112.9 (3)C22—C23—H232108.9
C14—C15—H151109.0C24—C23—H232108.9
C16—C15—H151109.0H231—C23—H232107.7
C14—C15—H152109.0C23—C24—H241109.5
C16—C15—H152109.0C23—C24—H242109.5
H151—C15—H152107.8H241—C24—H242109.5
C17—C16—C15114.0 (3)C23—C24—H243109.5
C17—C16—H161108.8H241—C24—H243109.5
C15—C16—H161108.8H242—C24—H243109.5
C6—N1—C2—O21179.5 (3)C4i—C5—C6—O612.9 (6)
C11—N1—C2—O212.5 (5)C3—C5—C6—O61177.1 (3)
C6—N1—C2—C32.3 (4)C4i—C5—C6—N1178.1 (3)
C11—N1—C2—C3175.7 (3)C3—C5—C6—N11.9 (4)
O21—C2—C3—C40.6 (6)C6—N1—C11—C12101.9 (4)
N1—C2—C3—C4177.6 (3)C2—N1—C11—C1280.4 (4)
O21—C2—C3—C5179.2 (4)N1—C11—C12—C13161.0 (3)
N1—C2—C3—C51.0 (4)C11—C12—C13—C14178.7 (3)
C5—C3—C4—C5i0.7 (5)C12—C13—C14—C15174.4 (3)
C2—C3—C4—C5i179.1 (3)C13—C14—C15—C16179.5 (3)
C4—C3—C5—C4i0.7 (6)C14—C15—C16—C17179.0 (3)
C2—C3—C5—C4i179.4 (3)C15—C16—C17—C18179.4 (3)
C4—C3—C5—C6179.2 (3)C16—C17—C18—C19179.7 (3)
C2—C3—C5—C60.5 (4)C17—C18—C19—C20179.6 (3)
C2—N1—C6—O61176.4 (3)C18—C19—C20—C21179.6 (3)
C11—N1—C6—O615.6 (6)C19—C20—C21—C22179.5 (3)
C2—N1—C6—C52.6 (4)C20—C21—C22—C23179.5 (3)
C11—N1—C6—C5175.3 (3)C21—C22—C23—C24178.8 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLynch, D. E., Hamilton, D. G., Calos, N. J., Wood, B. & Sanders, J. K. M. (1999). Langmuir, 15, 5600–5605.  Web of Science CrossRef CAS Google Scholar
First citationLynch, D. E. & Hamilton, D. G. (2004a). Unpublished results.  Google Scholar
First citationLynch, D. E. & Hamilton, D. G. (2004b). Private communication to the Cambridge Structural Database. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds