metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(C8H26N4)0.5[(UO2)2(SO4)3(H2O)]·2H2O, an organically templated uranyl sulfate with a novel layer type

aInorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England, and bDepartment of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
*Correspondence e-mail: dermot.ohare@chem.ox.ac.uk

(Received 18 May 2004; accepted 18 June 2004; online 26 June 2004)

The title compound, hemi­[3,3′-(ethyl­enediiminio)­diprop­anaminium] aqua­tetraoxotri-μ-sulfato-diuranate(VI) dihydrate, (C8H26N4)0.5[(UO2)2(SO4)3(H2O)]·2H2O, contains infinite anionic [(UO2)2(H2O)(SO4)3]2− layers with [C8H26N4]4+ cations balancing charge and participating in extensive hydrogen bonding, along with uncoordinated water mol­ecules. Each UVI centre is seven-coordinate with a pentagonal bipyramidal geometry, and each sulfate tetrahed­ron bridges three adjacent uranium centres.

Comment

The chemistry of open-framework metal phosphates is well known (Cheetham et al., 1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3269-3292.]). Despite the depth of this investigation, little effort has been expended upon the analogous sulfate systems. Reports of organically templated metal sulfates have only appeared in the literature in recent years. Compounds incorporating Sc (Bull et al., 2002[Bull, I., Wheatley, P. S., Lightfoot, P., Morris, R. E., Sastre, E. & Wright, P. A. (2002). Chem. Commun. pp. 1180-1181.]), V (Paul, Choudhury, Nagarajan & Rao, 2003[Paul, G., Choudhury, A., Nagarajan, R. & Rao, C. N. R. (2003). Inorg. Chem. 42, 2004-2013.]; Khan et al., 1999[Khan, M. I., Cevik, S. & Doedens, R. J. (1999). Inorg. Chim. Acta, 292, 112-116.]), Cd (Paul et al., 2002b[Paul, G., Choudhury, A. & Rao, C. N. R. (2002b). J. Chem. Soc. Dalton Trans. 3859-3867.]; Choudhury et al., 2001[Choudhury, A., Krishnamoorthy, J. & Rao, C. N. R. (2001). Chem. Commun. pp. 2610-2611.]), Fe (Paul et al., 2002a[Paul, G., Choudhury, A. & Rao, C. N. R. (2002a). Chem. Commun. pp. 1904-1905.]; Paul et al., 2002[Paul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 4297-4300.]; Paul, Choudhury & Rao, 2003[Paul, G., Choudhury, A. & Rao, C. N. R. (2003). Chem. Mater. 15, 1174-1180.]), Zn (Morimoto & Lingafelter, 1970[Morimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335-341.]), Ce (Wang et al., 2002[Wang, D., Yu, R., Xu, Y., Feng, S., Xu, R., Kumada, N., Kinomura, N., Matumura, Y. & Takano, M. (2002). Chem. Lett. pp. 1120-1121.]), La (Bataille & Louer, 2002[Bataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487-3493.]; Xing, Shi et al., 2003[Xing, Y., Shi, Z., Li, G., Pang, W. (2003). Dalton Trans. pp. 940-943.]; Xing, Liu et al., 2003[Xing, Y., Liu, Y., Shi, Z., Meng, H. & Pang, W. (2003). J. Solid State Chem. 174, 381-385.]) and U (Doran et al., 2002[Doran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946-2947.], 2003a[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003a). Inorg. Chem. 42, 6989-6995.],b[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003b). Acta Cryst. E59, m373-m375.],c[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003c). Acta Cryst. E59, m762-m764.],d;[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003d). Acta Cryst. E59, m765-m767.] Norquist et al., 2002[Norquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179-5184.], 2003a[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003a). J. Chem. Soc. Dalton Trans. pp. 1168-1175.],b[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003b). Inorg. Chem. 42, 5949-5953.]; Norquist, Doran & O'Hare, 2003[Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). Solid State Sci. 5, 1149-1158.]; Thomas et al., 2003[Thomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88-92.]; Stuart et al., 2003[Stuart, C. L., Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m446-m448.]) are known. These compounds exhibit great structural diversity, with structures ranging from mol­ec­ular anions to three-dimensional microporous materials. This report contains the synthesis and structure of an organ­ically templated uranium(VI) sulfate, USO-25 (uranium sulfate from Oxford), (C8H26N4)0.5[(UO2)2(SO4)3(H2O)]·2H2O, (I[link]).[link]

[Scheme 1]

Two independent U atoms are present in (I[link]). Both U1 and U2 are seven-coordinate, in pentagonal bipyramidal geometries. Two short `uranyl' bonds to axial O atoms are observed for each uranium environment, with distances that range from 1.751 (5) to 1.764 (5) Å, close to the average reported value of 1.758 (3) Å (Burns et al., 1997[Burns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551-1570.]). The O1—U1—O2 and O8—U2—O9 angles are close to 180°, with values of 177.8 (2) and 178.1 (2)°, respectively. Four of the five equatorial coordination sites around U1 are occupied by O atoms of sulfate groups, with U—O distances ranging between 2.359 (5) and 2.446 (5) Å. The last coordination site is occupied by a bound water mol­ecule (O3); the U1—O3 distance is 2.421 (5) Å. The assignment of the bound water mol­ecule was based upon hydrogen-bonding interactions. All five equatorial coordin­ation sites around U2 are occupied by O atoms of sulfate groups, with U—O distances ranging from 2.332 (4) to 2.477 (5) Å. Three distinct sulfur sites are observed in (I): S1, S2 and S3 are all at the centre of [SO4] tetrahedra. Each sulfate group bridges three urananium centres and has one terminal O atom. The S—Ob (b = bridging) distances are 1.472 (5) and 1.504 (5) Å, while the S—Ot (t = terminal) distance are shorter, from 1.448 (5) to 1.456 (5) Å.

Layers are formed because each [SO4] tetrahedron bridges between three uranium centres (see Fig. 1[link]). This layer topology was previously unknown in uranium chemistry, to the best of our knowledge. These layers propagate in the (101) plane and are separated by the template cations and water mol­ecules (Fig. 2[link]). The inter-layer species are involved in hydrogen bonding with the layer (Table 1[link]).

[Figure 1]
Figure 1
Inorganic layers in (I[link]). Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4] groups, respectively, with the water mol­ecules represented in ball-and-stick form.
[Figure 2]
Figure 2
Three-dimensional packing of (I[link]). Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4], respectively. Template and occluded water H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Displacement ellipsoid plot of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atom O11# is at symmetry position (2 − x, −1 − y, 2 − z) and O14# is at (1 − x, −1 − y, 2 − z).

Experimental

0.6356 g (1.50 × 10−3 mol) of UO2(CH3CO2)2·2H2O, 0.3403 g (3.47 × 10−3 mol) of H2SO4, 0.0863 g (4.95 × 10−4 mol) of N,N′-bis(3-amino­propyl)­ethyl­enedi­amine and 1.009 g (5.60 × 10−2 mol) of water were placed into a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, after which it was slowly cooled to 297 K over an additional 24 h. The autoclave was opened in air and the products recovered by filtration.

Crystal data
  • (C8H26N4)0.5[U2O4(SO4)3(H2O)]·2H2O

  • Mr = 971.45

  • Monoclinic, P21/n

  • a = 11.8400 (2) Å

  • b = 10.3190 (2) Å

  • c = 16.5919 (4) Å

  • β = 107.7718 (9)°

  • V = 1930.41 (7) Å3

  • Z = 4

  • Dx = 3.342 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3786 reflections

  • θ = 5–27°

  • μ = 17.18 mm−1

  • T = 150 K

  • Block, yellow

  • 0.16 × 0.10 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.14, Tmax = 0.36

  • 7982 measured reflections

  • 4381 independent reflections

  • 3523 reflections with I > 3σ(I)

  • Rint = 0.02

  • θmax = 27.5°

  • h = −15 → 15

  • k = −11 → 13

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.055

  • S = 0.98

  • 3523 reflections

  • 272 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + 4.55p] where p = 0.333max(Fo2,0) + 0.667Fc2

  • (Δ/σ)max = 0.003

  • Δρmax = 1.17 e Å−3

  • Δρmin = −1.42 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.])

  • Extinction coefficient: 36.0 (19)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O19 1.00 1.72 2.722 (7) 180
O3—H2⋯O17i 1.00 1.78 2.766 (7) 168
O18—H17⋯O16ii 1.00 1.98 2.977 (7) 173
O19—H18⋯O16iii 1.00 1.93 2.826 (7) 148
O19—H19⋯O18iii 1.00 1.77 2.757 (7) 171
N1—H12⋯O11 1.00 1.99 2.963 (7) 165
N1—H13⋯O19 1.00 1.85 2.827 (8) 167
N2—H3⋯O15iv 1.00 1.86 2.795 (7) 154
N2—H4⋯O17v 1.00 1.94 2.910 (8) 164
N2—H5⋯O16v 1.00 1.90 2.894 (7) 175
Symmetry codes: (i) 2-x,-1-y,2-z; (ii) [{\script{5\over 2}}-x,{\script{1\over 2}}+y,{\script{5\over 2}}-z]; (iii) [x-{\script{1\over 2}},-{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (iv) x,y-1,z; (v) [x-{\script{1\over 2}},-{\script{3\over 2}}-y,z-{\script{1\over 2}}].

The CH and NH H atoms were positioned in idealized locations and refined by riding on their carrier atoms. The water H atoms were positioned geometrically to make plausible H⋯O hydrogen bonds, whilst maintaining the H—O—H bond angle of 109.5°. Atom H16, attached to O18, does not appear to form a hydrogen bond. Additionally, it makes close contacts (1.90 and 2.05 Å) with two CH H atoms, thus its location should be regarded as less certain. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases. The highest peak is at (0.7819, 0.7278, 0.0223) and the deepest hole is at (0.1111, 0.2500, 0.0000).

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Watkin et al., 2003[Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. & Cooper R. I. (2003). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The chemistry of open-framework metal phosphates is well known (Cheetham et al., 1999). Despite the depth of this investigation, little effort has been expended upon the analogous sulfate systems. Reports of organically templated metal sulfates have only appeared in the literature in recent years. Compounds incorporating Sc (Bull et al., 2002), V (Paul, Choudhury, Nagarajan & Rao, 2003; Khan et al., 1999), Cd (Paul et al., 2002b; Choudhury et al., 2001), Fe (Paul et al., 2002a; Paul, Choudhury, Sampathkumaran & Rao, 2002; Paul, Choudhury & Rao, 2003), Zn (Morimoto et al., 1970), Ce (Wang et al., 2002), La (Bataille & Louer, 2002; Xing, Shi et al., 2003; Xing, Liu et al., 2003) and U (Doran et al., 2002, 2003a,b,c,d; Norquist et al., 2002, 2003a,b; Norquist, Doran & O'Hare, 2003; Thomas et al., 2003; Stuart et al., 2003) are known. These compounds exhibit great structural diversity, with structures ranging from molecular anions to three-dimensional microporous materials. This report contains the synthesis and structure of an organically templated uranium(VI) sulfate, USO-25 (uranium sulfate from Oxford), (C8H26N4)0.5[(UO2)2(SO4)3(H2O)]·2H2O, (I).

Two unique U atoms are present in (I). Both U1 and U2 are seven-coordinate, in pentagonal bipyramidal geometries. Two short `uranyl' bonds to axial oxide ligands are observed for each uranium environment, through distances that range from 1.751 (5) to 1.764 (5) Å, which are close to the average reported value of 1.758 (3) Å (Burns et al., 1997). The O1—U1—O2 and O8—U2—O9 angles are close to 180 °, with values of 177.8 (2) and 178.1 (2)°, respectively. Four of the five equatorial coordination sites around U1 are occupied by oxide ligands that bridge to adjacent sulfur centres, through U—O distances ranging between 2.359 (5) and 2.446 (5) Å. The last coordination site is occupied by a bound water molecule (O3); the U1—O3 distance is 2.421 (5) Å. The assignment of the bound water molecule was based upon hydrogen-bonding interactions. All five equatorial coordination sites around U2 are occupied by oxide ligands that bridge to adjacent sulfur centres, through U—O distances ranging from 2.332 (4) to 2.477 (5) Å. Three distinct sulfur sites are observed in (I): S1, S2 and S3 are all at the centre of [SO4] tetrahedra. Each sulfur is bound to three oxide ligands that bridge to neighbouring uranium centres, and one terminal oxide. The S—Ob (b = bridging) distances range between 1.472 (5) and 1.504 (5) Å, while the S—Ot (t = terminal) distance are shorter, from 1.448 (5) to 1.456 (5) Å.

Layers are formed because each [SO4] tetrahedron bridges between three U6+ centres (see Fig. 2). This layer topology was previously unknown in uranium chemistry, to the best of our knowledge. These layers propagate in the (101) plane and are separated by the template cations and water molecules (see Fig. 3). The inter-layer species are involved in hydrogen bonding with the layer (Table 2).

Experimental top

0.6356 g (1.50 × 10−3 mol) of UO2(CH3CO2)2·2H2O, 0.3403 g (3.47 × 10−3 mol) of H2SO4, 0.0863 g (4.95 × 10−4 mol) of N,N'-bis(3-aminopropyl)ethylenediamine and 1.009 g (5.60 × 10−2 mol) of water were placed into a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, at which point the autoclave was slow cooled to 297 K over an additional 24 h. The autoclave was opened in air and the products recovered by filtration. Structural analysis was conducted at 150 K.

Refinement top

The CH and NH H atoms were positioned in idealized locations and refined by riding on their carrier atoms. The water H atoms were positioned geometrically to make plausible H···O hydrogen bonds, whilst maintaining the H—O—H bond angle of 109.5°. Atom H16, attached to O18, does not appear to form a hydrogen bond. Additionally, it makes close contacts (1.90 and 2.05 Å) with two CH H atoms, thus its location should be regarded as less certain. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Inorganic layers in (I). Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4] groups, respectively, with the water molecules represented in ball-and-stick form.
[Figure 2] Fig. 2. Three-dimensional packing of (I). Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4], respectively. Template and occluded water H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Displacement ellipsoid plot of the title compound, with the atomic numbering scheme. Ellipsoids are drawn at the 50% probability level. Atom O11# is at symmetry position (2 − x, −1 − y, 2 − z) and O14# is at (1 − x, −1 − y, 2 − z).
(I) top
Crystal data top
(C8H26N4)0.5[U2O4(SO4)3(H2O)]·2H2OF(000) = 1764
Mr = 971.45Dx = 3.342 Mg m3
Monoclinic, P21/nMelting point: not measured K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.8400 (2) ÅCell parameters from 3786 reflections
b = 10.3190 (2) Åθ = 5–27°
c = 16.5919 (4) ŵ = 17.18 mm1
β = 107.7718 (9)°T = 150 K
V = 1930.41 (7) Å3Block, yellow
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3523 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.02
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
h = 1515
Tmin = 0.14, Tmax = 0.36k = 1113
7982 measured reflectionsl = 2121
4381 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(F*) + 4.55p]
where p = 0.333max(Fo2,0) + 0.667Fc2
wR(F2) = 0.055(Δ/σ)max = 0.003
S = 0.98Δρmax = 1.17 e Å3
3523 reflectionsΔρmin = 1.42 e Å3
272 parametersExtinction correction: Larson (1970)
0 restraintsExtinction coefficient: 36.0 (19)
Primary atom site location: structure-invariant direct methods
Crystal data top
(C8H26N4)0.5[U2O4(SO4)3(H2O)]·2H2OV = 1930.41 (7) Å3
Mr = 971.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8400 (2) ŵ = 17.18 mm1
b = 10.3190 (2) ÅT = 150 K
c = 16.5919 (4) Å0.16 × 0.10 × 0.06 mm
β = 107.7718 (9)°
Data collection top
Nonius KappaCCD
diffractometer
4381 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
3523 reflections with I > 3σ(I)
Tmin = 0.14, Tmax = 0.36Rint = 0.02
7982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.98Δρmax = 1.17 e Å3
3523 reflectionsΔρmin = 1.42 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.899965 (19)0.25305 (2)1.046162 (14)0.0063
U21.208537 (19)0.12659 (2)0.791265 (14)0.0053
S10.97402 (14)0.05996 (15)0.8797 (1)0.0087
S20.94243 (13)0.17531 (15)1.2753 (1)0.0062
S30.86413 (14)0.54654 (15)1.1577 (1)0.0067
O10.7487 (4)0.2166 (5)0.9979 (3)0.0139
O21.0487 (4)0.2955 (5)1.0934 (3)0.0144
O30.8856 (4)0.4190 (5)0.9403 (3)0.0153
O40.9485 (6)0.1694 (5)0.9286 (3)0.0222
O50.9365 (4)0.0267 (4)1.0639 (3)0.0109
O60.8927 (4)0.2072 (5)1.1849 (3)0.0124
O70.8197 (4)0.4523 (4)1.0870 (3)0.0103
O81.2726 (4)0.0391 (4)0.8851 (3)0.0100
O91.1486 (4)0.2178 (4)0.6983 (3)0.0097
O101.0251 (4)0.1179 (5)0.8160 (3)0.0106
O110.7982 (4)0.6714 (5)1.1297 (3)0.0104
O120.8966 (4)0.2701 (4)1.3254 (3)0.0083
O130.8387 (4)0.4984 (5)1.2343 (3)0.0099
O140.9031 (4)0.0444 (5)1.2921 (3)0.0120
O150.8668 (4)0.0109 (5)0.8371 (4)0.0193
O161.0709 (4)0.1814 (5)1.3029 (3)0.0125
O170.9912 (4)0.5679 (5)1.1768 (3)0.0121
O181.2258 (5)0.2512 (6)1.2593 (4)0.0233
O190.6861 (4)0.5560 (5)0.8608 (3)0.0137
N10.5820 (5)0.6485 (5)0.9821 (4)0.0105
N20.6353 (5)1.0486 (5)0.8344 (4)0.0107
C10.4812 (5)0.5708 (6)0.9918 (4)0.0099
C20.5497 (6)0.7894 (6)0.9652 (4)0.0094
C30.6199 (6)0.8499 (7)0.9126 (5)0.0150
C40.5886 (6)0.9918 (6)0.8998 (4)0.0109
H10.81210.46890.91100.0177*
H20.93880.41670.90370.0177*
H30.72361.03940.85230.0146*
H40.60011.00210.77950.0146*
H50.61361.14240.82700.0146*
H60.62381.03890.95440.0147*
H70.50041.00150.88160.0147*
H80.70660.84050.94260.0211*
H90.60000.80570.85640.0211*
H100.56730.83661.02030.0127*
H110.46310.79640.93400.0127*
H120.65000.64171.03540.0146*
H130.60620.61290.93370.0146*
H140.41270.57710.93880.0130*
H150.45710.60511.04050.0130*
H161.21180.32291.29570.0295*
H171.28950.27741.23450.0295*
H180.63690.49080.82060.0151*
H190.69980.63310.82850.0151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00751 (12)0.00534 (12)0.00694 (12)0.00040 (8)0.00337 (8)0.00045 (8)
U20.00600 (11)0.00502 (11)0.00544 (11)0.00053 (8)0.00241 (8)0.00018 (8)
S10.0117 (7)0.0060 (7)0.0111 (7)0.0021 (6)0.0076 (6)0.0013 (6)
S20.0060 (6)0.0054 (7)0.0081 (7)0.0005 (5)0.0033 (5)0.0000 (5)
S30.0086 (7)0.0049 (7)0.0083 (7)0.0016 (5)0.0052 (5)0.0002 (5)
O10.016 (2)0.015 (2)0.012 (2)0.0003 (19)0.0065 (19)0.0007 (19)
O20.014 (2)0.012 (2)0.020 (3)0.0034 (19)0.008 (2)0.003 (2)
O30.016 (2)0.017 (3)0.017 (2)0.006 (2)0.012 (2)0.006 (2)
O40.044 (3)0.013 (2)0.020 (3)0.007 (2)0.026 (3)0.004 (2)
O50.019 (2)0.006 (2)0.012 (2)0.0053 (18)0.0122 (19)0.0038 (17)
O60.019 (2)0.010 (2)0.010 (2)0.0019 (19)0.0071 (19)0.0033 (18)
O70.014 (2)0.006 (2)0.011 (2)0.0009 (17)0.0035 (18)0.0029 (17)
O80.012 (2)0.009 (2)0.011 (2)0.0027 (17)0.0060 (18)0.0005 (17)
O90.013 (2)0.006 (2)0.011 (2)0.0003 (17)0.0040 (18)0.0001 (17)
O100.009 (2)0.015 (2)0.008 (2)0.0005 (19)0.0031 (17)0.0027 (19)
O110.014 (2)0.008 (2)0.009 (2)0.0020 (18)0.0028 (18)0.0012 (17)
O120.009 (2)0.010 (2)0.0040 (19)0.0008 (17)0.0009 (16)0.0002 (17)
O130.013 (2)0.008 (2)0.011 (2)0.0002 (19)0.0070 (17)0.0014 (18)
O140.015 (2)0.013 (2)0.009 (2)0.0026 (19)0.0065 (18)0.0041 (18)
O150.011 (2)0.015 (3)0.033 (3)0.006 (2)0.008 (2)0.000 (2)
O160.009 (2)0.009 (2)0.019 (2)0.0008 (18)0.0040 (19)0.0005 (19)
O170.009 (2)0.018 (2)0.011 (2)0.0006 (19)0.0044 (18)0.0033 (19)
O180.021 (3)0.028 (3)0.021 (3)0.008 (2)0.008 (2)0.002 (2)
O190.013 (2)0.008 (2)0.018 (2)0.0034 (19)0.0020 (19)0.0007 (19)
N10.013 (3)0.006 (3)0.013 (3)0.001 (2)0.004 (2)0.001 (2)
N20.010 (3)0.008 (2)0.015 (3)0.007 (2)0.003 (2)0.004 (2)
C10.008 (3)0.010 (3)0.010 (3)0.001 (2)0.001 (2)0.004 (2)
C20.012 (3)0.005 (3)0.011 (3)0.003 (2)0.003 (2)0.000 (2)
C30.015 (3)0.015 (3)0.019 (3)0.005 (3)0.011 (3)0.002 (3)
C40.009 (3)0.005 (3)0.018 (3)0.000 (2)0.003 (2)0.001 (3)
Geometric parameters (Å, º) top
U1—O11.764 (5)N1—C11.487 (8)
U1—O21.751 (5)N1—C21.508 (8)
U1—O32.421 (5)N2—C41.482 (9)
U1—O42.359 (5)C1—C1iv1.528 (13)
U1—O52.377 (4)C2—C31.513 (9)
U1—O62.377 (5)C3—C41.509 (9)
U1—O72.446 (5)H1—O31.000
U2—O81.759 (5)H2—O31.000
U2—O91.761 (5)H3—N21.000
U2—O102.332 (4)H4—N21.000
U2—O11i2.477 (5)H5—N21.000
U2—O12ii2.376 (4)H6—C41.000
U2—O13ii2.413 (5)H7—C41.000
U2—O14iii2.379 (5)H8—C31.000
S1—O41.475 (5)H9—C31.000
S1—O5iii1.481 (5)H10—C21.000
S1—O101.492 (5)H11—C21.000
S1—O151.448 (5)H12—N11.000
S2—O61.472 (5)H13—N11.000
S2—O121.489 (5)H14—C11.000
S2—O141.482 (5)H15—C11.000
S2—O161.450 (5)H16—O181.000
S3—O71.490 (5)H17—O181.000
S3—O111.504 (5)H18—O191.000
S3—O131.478 (5)H19—O191.000
S3—O171.456 (5)
O1—U1—O2177.8 (2)O12ii—U2—O13ii70.65 (16)
O1—U1—O389.1 (2)O12ii—U2—O14iii141.77 (16)
O1—U1—O490.9 (2)O13ii—U2—O14iii71.59 (16)
O1—U1—O588.2 (2)O4—S1—O5iii110.0 (3)
O1—U1—O693.8 (2)O4—S1—O10106.2 (3)
O1—U1—O783.0 (2)O4—S1—O15111.0 (3)
O2—U1—O389.2 (2)O5iii—S1—O10108.8 (3)
O2—U1—O489.8 (2)O5iii—S1—O15110.8 (3)
O2—U1—O594.0 (2)O10—S1—O15110.0 (3)
O2—U1—O686.8 (2)O6—S2—O12108.7 (3)
O2—U1—O795.1 (2)O6—S2—O14110.1 (3)
O3—U1—O468.89 (18)O6—S2—O16111.5 (3)
O3—U1—O5138.98 (16)O12—S2—O14107.8 (3)
O3—U1—O6145.88 (17)O12—S2—O16108.7 (3)
O3—U1—O770.09 (16)O14—S2—O16109.8 (3)
O4—U1—O570.25 (17)O7—S3—O11106.9 (3)
O4—U1—O6144.87 (18)O7—S3—O13110.0 (3)
O4—U1—O7138.60 (17)O7—S3—O17111.2 (3)
O5—U1—O675.13 (16)O11—S3—O13109.4 (3)
O5—U1—O7149.63 (15)O11—S3—O17110.0 (3)
O6—U1—O776.52 (16)O13—S3—O17109.4 (3)
O8—U2—O9178.1 (2)U1—O4—S1151.4 (3)
O8—U2—O1089.85 (18)U1—O5—S1iii137.7 (3)
O8—U2—O11i92.19 (18)U1—O6—S2155.5 (3)
O8—U2—O12ii84.25 (18)U1—O7—S3133.9 (3)
O8—U2—O13ii85.29 (19)U2—O10—S1137.8 (3)
O8—U2—O14iii98.43 (19)U2i—O11—S3130.9 (3)
O9—U2—O1091.54 (19)U2v—O12—S2129.5 (2)
O9—U2—O11i86.82 (18)U2v—O13—S3147.0 (3)
O9—U2—O12ii93.85 (18)U2iii—O14—S2135.9 (3)
O9—U2—O13ii94.44 (19)C1—N1—C2111.9 (5)
O9—U2—O14iii83.30 (19)N1—C1—C1iv109.6 (6)
O10—U2—O11i75.94 (16)N1—C2—C3110.6 (5)
O10—U2—O12ii146.19 (16)C2—C3—C4109.1 (6)
O10—U2—O13ii142.10 (17)N2—C4—C3110.8 (5)
O10—U2—O14iii72.02 (16)H1—O3—H2109.467
O11i—U2—O12ii71.08 (16)H16—O18—H17109.467
O11i—U2—O13ii141.71 (16)H18—O19—H19109.467
O11i—U2—O14iii146.10 (16)
Symmetry codes: (i) x+2, y1, z+2; (ii) x+1/2, y1/2, z1/2; (iii) x+2, y, z+2; (iv) x+1, y1, z+2; (v) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O191.001.722.722 (7)180
O3—H2···O17i1.001.782.766 (7)168
O18—H17···O16vi1.001.982.977 (7)173
O19—H18···O16vii1.001.932.826 (7)148
O19—H19···O18vii1.001.772.757 (7)171
N1—H12···O111.001.992.963 (7)165
N1—H13···O191.001.852.827 (8)167
N2—H3···O15viii1.001.862.795 (7)154
N2—H4···O17ix1.001.942.910 (8)164
N2—H5···O16ix1.001.902.894 (7)175
Symmetry codes: (i) x+2, y1, z+2; (vi) x+5/2, y+1/2, z+5/2; (vii) x1/2, y1/2, z1/2; (viii) x, y1, z; (ix) x1/2, y3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C8H26N4)0.5[U2O4(SO4)3(H2O)]·2H2O
Mr971.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.8400 (2), 10.3190 (2), 16.5919 (4)
β (°) 107.7718 (9)
V3)1930.41 (7)
Z4
Radiation typeMo Kα
µ (mm1)17.18
Crystal size (mm)0.16 × 0.10 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
Tmin, Tmax0.14, 0.36
No. of measured, independent and
observed [I > 3σ(I)] reflections
7982, 4381, 3523
Rint0.02
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 0.98
No. of reflections3523
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 1.42

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1996), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2003), ATOMS (Dowty, 2000), CRYSTALS.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O191.001.722.722 (7)180
O3—H2···O17i1.001.782.766 (7)168
O18—H17···O16ii1.001.982.977 (7)173
O19—H18···O16iii1.001.932.826 (7)148
O19—H19···O18iii1.001.772.757 (7)171
N1—H12···O111.001.992.963 (7)165
N1—H13···O191.001.852.827 (8)167
N2—H3···O15iv1.001.862.795 (7)154
N2—H4···O17v1.001.942.910 (8)164
N2—H5···O16v1.001.902.894 (7)175
Symmetry codes: (i) x+2, y1, z+2; (ii) x+5/2, y+1/2, z+5/2; (iii) x1/2, y1/2, z1/2; (iv) x, y1, z; (v) x1/2, y3/2, z1/2.
 

Acknowledgements

The authors thank the EPSRC for support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals
First citationBataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487–3493. Web of Science CSD CrossRef CAS
First citationBull, I., Wheatley, P. S., Lightfoot, P., Morris, R. E., Sastre, E. & Wright, P. A. (2002). Chem. Commun. pp. 1180–1181. Web of Science CSD CrossRef
First citationBurns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551–1570. CAS
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3269–3292. Web of Science CrossRef
First citationChoudhury, A., Krishnamoorthy, J. & Rao, C. N. R. (2001). Chem. Commun. pp. 2610–2611. Web of Science CSD CrossRef
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947. Web of Science CSD CrossRef
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003a). Inorg. Chem. 42, 6989–6995. Web of Science CSD CrossRef PubMed CAS
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003b). Acta Cryst. E59, m373–m375. Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003c). Acta Cryst. E59, m762–m764. Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003d). Acta Cryst. E59, m765–m767. Web of Science CSD CrossRef IUCr Journals
First citationDowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
First citationKhan, M. I., Cevik, S. & Doedens, R. J. (1999). Inorg. Chim. Acta, 292, 112–116. Web of Science CrossRef CAS
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
First citationMorimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335–341. CSD CrossRef IUCr Journals Web of Science
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
First citationNorquist, A. J., Doran, M. B. & O'Hare, D. (2003). Solid State Sci. 5, 1149–1158. Web of Science CSD CrossRef CAS
First citationNorquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003a). J. Chem. Soc. Dalton Trans. pp. 1168–1175. CrossRef
First citationNorquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003b). Inorg. Chem. 42, 5949–5953. Web of Science CSD CrossRef PubMed CAS
First citationNorquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179–5184. Web of Science CSD CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationPaul, G., Choudhury, A., Nagarajan, R. & Rao, C. N. R. (2003). Inorg. Chem. 42, 2004–2013. Web of Science CSD CrossRef PubMed CAS
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002a). Chem. Commun. pp. 1904–1905. Web of Science CSD CrossRef
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002b). J. Chem. Soc. Dalton Trans. 3859–3867.
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2003). Chem. Mater. 15, 1174–1180. Web of Science CSD CrossRef CAS
First citationPaul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 4297–4300. Web of Science CrossRef CAS
First citationStuart, C. L., Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m446–m448. Web of Science CSD CrossRef IUCr Journals
First citationThomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88–92. Web of Science CSD CrossRef CAS
First citationWang, D., Yu, R., Xu, Y., Feng, S., Xu, R., Kumada, N., Kinomura, N., Matumura, Y. & Takano, M. (2002). Chem. Lett. pp. 1120–1121. Web of Science CSD CrossRef
First citationWatkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. & Cooper R. I. (2003). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
First citationXing, Y., Liu, Y., Shi, Z., Meng, H. & Pang, W. (2003). J. Solid State Chem. 174, 381–385. Web of Science CSD CrossRef CAS
First citationXing, Y., Shi, Z., Li, G., Pang, W. (2003). Dalton Trans. pp. 940–943. Web of Science CSD CrossRef

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds