metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(C7H20N2)[(UO2)2(SO4)3(H2O)]: an organically templated uranium sulfate with a novel layer topology

aDepartment of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA, and bChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: dermot.ohare@chem.ox.ac.uk

(Received 3 March 2005; accepted 29 March 2005; online 9 April 2005)

The title compound, poly[N,N,N′,N′-tetra­methyl­propane-1,3-diaminium [aqua­tetra­oxotri-μ3-sulfatodiuranate(VI)]], (C7H20N2)[(UO2)2(SO4)3(H2O)]n, contains two-dimensional [(UO2)2(SO4)3(H2O)]2− layers that are unprecedented in uranium chemistry. The layers in this compound are separated by C7H20N22+ cations, forming the basis of an extensive hydrogen-bonding network. An independent intra­layer hydrogen-bonding network is also observed, involving water mol­ecules bound directly to a uranium centre.

Comment

Hydro­thermal actinide chemistry has been the focus of intense inter­est in recent years. Great structural diversity is observed in actinide sulfates (Doran et al., 2002[Doran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946-2947.]; Norquist et al., 2002[Norquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179-5184.]; Thomas et al., 2003[Thomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88-92.]), phosphates (Doran, Stuart et al., 2004[Doran, M. B., Stuart, C. L., Norquist, A. J. & O'Hare, D. (2004). Chem. Mater. 16, 565-566.]; Burns et al., 2004[Burns, P. C., Alexopoulos, C. M., Hotchkiss, P. J. & Locock, A. J. (2004). Inorg. Chem. 43, 1816-1818.]), iodates (Bean et al., 2004[Bean, A. C., Scott, B. L., Albrecht-Schmitt, T. E. & Runde, W. (2004). J. Solid State Chem. 117, 1346-1354.]), selenites (Almond et al., 2004[Almond, P. M., Sykora, R. E., Skanthakumar, S., Soderholm, L. & Albrecht-Schmitt, T. E. (2004). Inorg. Chem. 43, 958-963. Final page number?]), carbonates (Kubatko & Burns, 2004[Kubatko, K-A. H. & Burns, P. C. (2004). Can. Mineral. 42, 997-1003.]), molybdates (Krivovichev et al., 2005[Krivovichev, S. V., Cahill, C. L., Nazarchuk, E. V., Burns, P. C., Armbruster, T. & Depmeier, W. (2005). Microporous Mesoporous Mater. 78, 209-215.]) and chromates (Sykora et al., 2004[Sykora, R. E., McDaniel, S. M. & Albrecht-Schmitt, T. E. (2004). J. Solid State Chem. 177, 1431-1436.]). These studies have led to the formation of a host of novel inorganic structures. Several strategies are employed for the formation of new structure types, including the use of alternate coordination polyhedra (Kubatko & Burns, 2004[Kubatko, K-A. H. & Burns, P. C. (2004). Can. Mineral. 42, 997-1003.]; Sykora et al., 2004[Sykora, R. E., McDaniel, S. M. & Albrecht-Schmitt, T. E. (2004). J. Solid State Chem. 177, 1431-1436.]), inclusion of organic components into the framework (Kim et al., 2003[Kim, J. Y., Norquist, A. J. & O'Hare, D. (2003). J. Am. Chem. Soc. 125, 12688-12689.]), systematic exploration of reaction conditions (Norquist et al., 2003[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003). Inorg. Chem. 42, 5949-5953.]) and use of varied organic amines (Doran, Norquist et al., 2004[Doran, M. B., Norquist, A. J., Stuart, C. L. & O'Hare, D. (2004). Acta Cryst. E60, m996-m998.]). The last approach is utilized in this study for the formation of an organically templated uranium sulfate with a novel layer topology. This compound, [C7H20N2][(UO2)2(SO4)3(H2O)], (I)[link], is denoted USO-30 (uranium sulfate from Oxford).

[Scheme 1]

Two unique uranium centres are present in USO-30. Both U1 and U2 are seven-coordinate (Fig. 1[link]), in a penta­gonal bipyramidal geometry (Table 1[link]). Two short `uran­yl' bonds to axial oxide ligands are observed for each uranium environment, with distances that range from 1.754 (5) to 1.770 (5) Å, which are close to the average reported value of 1.758 (3) Å (Burns et al., 1997[Burns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551-1570.]). The O1—U1—O2 and O8—U2—O9 bond angles are close to 180°, with values of 179.4 (2) and 178.5 (2)°. Each of the five equatorial coordination sites around U1 is occupied by O atoms that are bonded to sulfur centres. Three of these O atoms, O5, O6 and O7, bridge to different [SO4] tetra­hedra, while O3 and O4 bridge to the same sulfur centre, creating a shared edge between the [SO4] and [UO7] polyhedra. The result of this shared edge is an elongation of the U1—O3 and U1—O4 bond lengths [2.470 (5) and 2.441 (5) Å] with respect to the U1—O5, U1—O6 and U1—O7 lengths [2.333 (5)–2.373 (5) Å]. A contraction of the O3—U1—O4 bond angle, with respect to the other equatorial bond angles, is also observed. The O3—U1—O4 angle is 57.28 (16)°, while the other four Oeq—U1—Oeq bond angles range between 72.00 (16) and 78.96 (17)°. The equatorial coordination sites of the second unique uranium environment, U2, are occupied by four bridging O atoms, with distances ranging between 2.337 (5) and 2.367 (5) Å, and a bound water mol­ecule, which exhibits a U—Owater distance of 2.522 (5) Å. The assignment of the bound water mol­ecule was based on hydrogen-bonding inter­actions. Three distinct sulfur environments are observed in USO-30, each of which is at the centre of an [SO4] tetra­hedron. Each sulfur centre is bound to one terminal O atom and three O atoms that bridge to uranium centres. The S—Obridging distances range between 1.461 (5) and 1.509 (5) Å, while the S—Oterminal distances range from 1.437 (6) to 1.440 (5) Å.

The presence of numerous shared O atoms, between [UO7] and [SO4] polyhedra, results in the formation of an inorganic structure that extends in two dimensions (Fig. 2[link]). This layer topology is, to the best of our knowledge, unprecendented in uranium chemistry. Two distinct one-dimensional chains are observed, both of which contain a [UO2(SO4)3/ 3] backbone. This chain structure is well known in uranium chemistry (Brandeburg & Loopstra, 1973[Brandeburg, N. P. & Loopstra, B. O. (1973). Cryst. Struct. Commun. 2, 243-246.]; Zalkin et al., 1978[Zalkin, A., Rube, H. & Templeton, D. H. (1978). Inorg. Chem. 17, 3701-3702.]; Serezhkin et al., 1981[Serezhkin, V. N., Soldatkina, M. A. & Efremov, V. A. (1981). J. Struct. Chem. 22, 451-454.]; Doran et al., 2003[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m373-m375.]). In each chain, three of the five equatorial coordination sites surrounding both U1 and U2 participate in chain construction. The other two equatorial sites contain O atoms that are not involved in chain propagation. The two non-backbone sites in the chain containing U1 are occupied by a single [SO4] tetra­hedron, containing S1, which shares a common edge with the U1 [UO7] penta­gonal bipyramid. The same coordination sites on the chain that contains U2 are occupied by one bound water mol­ecule and one O atom that is part of the aforementioned S1 sulfate tetra­hedron; the result is the formation of the layers shown in Fig. 2[link].

The bound water mol­ecule on U2 acts as a hydrogen-bond donor in USO-30. The acceptors are O3 and O4, resulting in intra­layer hydrogen bonding. The orientations of successive bound water mol­ecules adopt an `up–down–up' motif. The inter­layer spacing is occupied by the protonated amines, which also act as hydrogen-bond donors. The orientation of these cations is shown in Fig. 3[link]. Hydrogen bonding details are listed in Table 2[link].

[Figure 1]
Figure 1
View of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) x − 1, y, z; (iii) 1 − x, 1 − y, 2 − z.]
[Figure 2]
Figure 2
Layer structure in USO-30. Green penta­gonal bipyramids and blue tetra­hedra represent [UO7] and [SO4], respectively.
[Figure 3]
Figure 3
Three-dimensional packing of USO-30. Green penta­gonal bipyramids and blue tetra­hedra represent [UO7] and [SO4], respectively. Template H atoms have been omitted for clarity.

Experimental

UO2(CH3CO2)2·2H2O (0.2767 g, 0.653 × 10−3 mol), H2SO4 (0.3394 g, 3.46 × 10−3 mol), N,N,NN′-tetra­meth­yl-1,3-propane­diamine (0.1317 g, 1.01× 10−3 mol) and water (1.0557g, 58.7 × 10−3 mol) were placed in a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, and then slowly cooled to 297 K over an additional period of 24 h. The autoclave was opened in air and the products recovered by filtration. A yield of 87%, based on uranium, was observed. USO-30 was characterized using several techniques. Through the use of IR spectroscopy, bands from both the organic and the inorganic components of USO-30 were observed. A broad band centred at 3400 cm−1, corresponding to the symmetric stretch of the bound water, was present. Bands at 3154 and 1620 cm−1 correspond to the N—H stretching and bending modes, while C—H bands were observed at 1464 and 1482 cm−1. C—N stretching modes were observed around 1230 cm−1, while S—O and uran­yl bands were observed at 1100, and 930 and 942 cm−1, respectively. Analysis found: N 2.87, C 8.69, H 2.15, S 9.87, U 48.13%; calculated: N 2.86, C 8.59, H 2.25, S 9.82, U 48.67%. The thermal stability of USO-30 was probed using thermogravimetric analysis. A 1.0% weight loss was observed between 443 and 503 K, which corresponds to loss of the bound water mol­ecules (calculated 1.8%). Template decomposition begins at 573 K, and is soon followed by the breakdown of the inorganic layers. The material calcines to UO2 by 1273 K, as determined using powder X-ray diffraction, with a total weight loss of 43.4% (calculated 44.8%). Structural analysis was conducted at 150 K.

Crystal data
  • (C7H20N2)[U2O4(SO4)3(H2O)]

  • Mr = 978.51

  • Triclinic, [P \overline 1]

  • a = 6.7861 (1) Å

  • b = 8.5143 (1) Å

  • c = 19.0442 (3) Å

  • α = 88.6230 (9)°

  • β = 81.6364 (8)°

  • γ = 84.8577 (6)°

  • V = 1084.20 (3) Å3

  • Z = 2

  • Dx = 2.997 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4635 reflections

  • θ = 5–27°

  • μ = 15.29 mm−1

  • T = 150 K

  • Block, yellow

  • 0.35 × 0.18 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.053, Tmax = 0.064

  • 9107 measured reflections

  • 4907 independent reflections

  • 4422 reflections with I > 3σ(I)

  • Rint = 0.03

  • θmax = 27.5°

  • h = −8 → 8

  • k = −11 → 11

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 0.91

  • 4422 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Chebychev polynomial (Watkin, 1994[Watkin D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]) with five parameters 61.5, 99.0, 63.5, 27.7, 8.43

  • (Δ/σ)max = 0.002

  • Δρmax = 3.72 e Å−3

  • Δρmin = −3.36 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]), equation 22

  • Extinction coefficient: 70 (3)

Table 1
Selected geometric parameters (Å, °)[link]

U1—O1 1.758 (5)
U1—O2 1.754 (5)
U1—O3 2.470 (5)
U1—O4 2.441 (5)
U1—O5 2.333 (5)
U1—O6 2.360 (5)
U1—O7 2.373 (5)
U2—O8 1.765 (5)
U2—O9 1.770 (5)
U2—O10 2.522 (5)
U2—O11 2.361 (5)
U2—O12 2.342 (5)
U2—O13 2.367 (5)
U2—O14 2.337 (5)
S1—O3 1.496 (5)
S1—O4 1.509 (5)
S1—O11 1.461 (5)
S1—O15 1.437 (6)
S2—O5 1.469 (5)
S2—O6i 1.497 (5)
S2—O7ii 1.487 (5)
S2—O16 1.438 (5)
S3—O12ii 1.482 (5)
S3—O13iii 1.480 (5)
S3—O14 1.492 (5)
S3—O17 1.440 (5)
N1—C1 1.512 (10)
N1—C4 1.501 (10)
N1—C5 1.485 (10)
N2—C3 1.507 (9)
N2—C6 1.507 (10)
N2—C7 1.484 (10)
C1—C2 1.515 (9)
C2—C3 1.541 (10)
O1—U1—O2 179.4 (2)
O1—U1—O3 92.8 (2)
O2—U1—O3 87.4 (2)
O1—U1—O4 88.92 (19)
O2—U1—O4 90.76 (19)
O3—U1—O4 57.28 (16)
O1—U1—O5 89.3 (2)
O2—U1—O5 90.2 (2)
O3—U1—O5 129.16 (17)
O4—U1—O5 72.00 (16)
O1—U1—O6 87.57 (19)
O2—U1—O6 92.5 (2)
O3—U1—O6 151.87 (16)
O4—U1—O6 150.78 (16)
O5—U1—O6 78.96 (17)
O1—U1—O7 90.7 (2)
O2—U1—O7 89.9 (2)
O3—U1—O7 73.82 (17)
O4—U1—O7 131.00 (16)
O5—U1—O7 156.99 (17)
O6—U1—O7 78.05 (17)
O8—U2—O9 178.5 (2)
O8—U2—O10 92.3 (2)
O9—U2—O10 87.5 (2)
O8—U2—O11 90.5 (2)
O9—U2—O11 90.7 (2)
O10—U2—O11 68.36 (18)
O8—U2—O12 88.8 (2)
O9—U2—O12 92.3 (2)
O10—U2—O12 140.21 (17)
O11—U2—O12 71.85 (17)
O8—U2—O13 92.8 (2)
O9—U2—O13 86.6 (2)
O10—U2—O13 145.43 (17)
O11—U2—O13 145.69 (17)
O12—U2—O13 74.09 (16)
O8—U2—O14 88.6 (2)
O9—U2—O14 90.0 (2)
O10—U2—O14 70.02 (18)
O11—U2—O14 138.30 (18)
O12—U2—O14 149.75 (17)
O13—U2—O14 75.94 (17)
O3—S1—O4 103.1 (3)
O3—S1—O11 108.2 (3)
O4—S1—O11 107.9 (3)
O3—S1—O15 112.4 (3)
O4—S1—O15 112.2 (3)
O11—S1—O15 112.5 (4)
O5—S2—O6i 108.2 (3)
O5—S2—O7ii 107.4 (3)
O6i—S2—O7ii 106.3 (3)
O5—S2—O16 110.8 (3)
O6i—S2—O16 111.9 (3)
O7ii—S2—O16 112.0 (3)
O12ii—S3—O13iii 108.6 (3)
O12ii—S3—O14 104.6 (3)
O13iii—S3—O14 108.5 (3)
O12ii—S3—O17 113.1 (3)
O13iii—S3—O17 110.3 (3)
O14—S3—O17 111.5 (3)
U1—O3—S1 98.8 (2)
U1—O4—S1 99.7 (2)
U1—O5—S2 155.4 (3)
U1—O6—S2i 134.6 (3)
U1—O7—S2iv 133.7 (3)
U2—O11—S1 155.0 (3)
U2—O12—S3iv 144.1 (3)
U2—O13—S3iii 143.7 (3)
U2—O14—S3 131.3 (3)
C1—N1—C4 111.5 (6)
C1—N1—C5 114.8 (6)
C4—N1—C5 110.0 (7)
C3—N2—C6 110.0 (6)
C3—N2—C7 112.9 (6)
C6—N2—C7 110.7 (6)
N1—C1—C2 113.0 (6)
C1—C2—C3 107.7 (6)
N2—C3—C2 110.2 (6)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2; (iv) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O3ii 1.00 2.01 2.877 (7) 143
O10—H2⋯O4 1.00 1.84 2.788 (7) 158
N1—H21⋯O16v 1.00 2.12 2.850 (8) 128
N2—H22⋯O15vi 1.00 2.34 2.935 (8) 117
N2—H22⋯O17vii 1.00 2.21 2.889 (8) 123
Symmetry codes: (ii) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) x-1, y-1, z; (vii) x, y-1, z.

The C- and N-bound H atoms were positioned in idealized locations. The water H atoms were positioned geometrically to make plausible H⋯O hydrogen bonds. All H atoms were refined as riding on their carrier atoms [C—H, N—H and O—H = 1.00 Å and Uiso(H) = 1.2Ueq (carrier atom)]. The highest peak is 1.30 Å from U1 and the deepest hole is 0.99 Å from U1.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985[Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsprot, TN 37663, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Hydrothermal actinide chemistry has been the focus of intense interest in recent years. Great structural diversity is observed in actinide sulfates (Doran et al., 2002; Norquist et al., 2002; Thomas et al., 2003), phosphates (Doran, Stuart et al., 2004; Burns et al., 2004), iodates (Bean et al., 2004), selenites (Almond et al., 2004), carbonates (Kubatko & Burns, 2004), molybdates (Krivovichev et al., 2005) and chromates (Sykora et al., 2004). These studies have led to the formation of a host of novel inorganic structures. Several strategies are employed for the formation of new structure types, including the use of alternate coordination polyhedra (Kubatko & Burns, 2004; Sykora et al., 2004), inclusion of organic components into the framework (Kim et al., 2003), systematic exploration of reaction conditions (Norquist et al., 2003) and use of varied organic amines (Doran, Norquist et al., 2004). The last approach is utilized in this study for the formation of an organically templated uranium sulfate with a novel layer topology. This compound, [C7H20N2][(UO2)2(SO4)3], (I), is denoted USO-30 (uranium sulfate from Oxford).

Two unique uranium centres are present in USO-30. Both U1 and U2 are seven-coordinate (Fig. 1), in a pentagonal bipyramidal geometry (Table 1). Two short `uranyl' bonds to axial oxide ligands are observed for each uranium environment, through distances that range from 1.754 (5) to 1.770 (5) Å, which are close to the average reported value of 1.758 (3) Å (Burns et al., 1997). The O1—U1—O2 and O8—U2—O9 bond angles are close to 180°, with values of 179.4 (2) and 178.5 (2)°. Each of the five equatorial coordination sites around U1 is occupied by oxide ligands that bridge to sulfur centres. Three of these oxides, O5, O6 and O7, bridge to different [SO4] tetrahedra, while O3 and O4 bridge to the same sulfur center, creating a shared edge between the [SO4] and [UO7] polyhedra. The result of this shared edge is an elongation of the U1—O3 and U1—O4 bond lengths [2.470 (5) and 2.441 (5) Å] with respect to the U1—O5, U1—O6 and U1—O7 lengths [2.333 (5)–2.373 (5) Å]. A contraction of the O3—U1—O4 bond angle, with respect to the other equatorial bond angles, is also observed. The O3—U1—O4 angle is 57.28 (16)°, while the other four Oeq—U1—Oeq bond angles range between 72.00 (16) and 78.96 (17)°. The equatorial coordination sites on the second unique uranium environment, U2, are occupied by four bridging oxides, through distances ranging between 2.337 (5) and 2.367 (5) Å, and a bound water molecule, which exhibits a U—Owater distance of 2.522 (5) Å. The assignment of the bound water molecule was based on hydrogen-bonding interactions. Three distinct sulfur environments are observed in USO-30, each of which is at the center of an [SO4] tetrahedron. Each sulfur centre is bound to one terminal oxide and three oxide ligands that bridge to uranium centers. The S—Obridging distances range between 1.461 (5) and 1.509 (5) Å, while the S—Oterminal distances range from 1.437 (6) to 1.440 (5) Å.

The presence of numerous shared oxide ligands, between [UO7] and [SO4] polyhedra, results in the formation of an inorganic structure that extends in two dimensions (Fig. 2). This layer topology is, to the best of our knowledge, unprecendented in uranium chemistry. Two distinct one-dimensional chains are observed, both of which contain a [UO2(SO4)3/3] backbone. This chain structure is well known in uranium chemistry (Brandeburg & Loopstra, 1973; Zalkin et al., 1978; Serezhkin et al., 1981; Doran et al., 2003). In each chain, three of the five equatorial coordination sites surrounding both U1 and U2 participate in chain construction. The other two equatorial sites contain oxides that are not involved in chain propagation. The two non-backbone sites in the chain containing U1 are occupied by a single [SO4] tetrahedron, containing S1, that shares a common edge with the U1 [UO7] pentagonal bipyramid. The same coordination sites on the chain that contains U2 are occupied by one bound water molecule and on oxide ligand that is part of the aforementioned S1 sulfate tetrahedron; the result is the formation of the layers shown in Fig. 2.

The bound water molecule on U2 acts as a hydrogen-bond donor in USO-30. The acceptors are O3 and O4, resulting in intralayer hydrogen bonding. The orientations of successive bound water molecules adopt an `up–down-u-p' motif. The interlayer spacing is occupied by the protonated amines, which also act as hydrogen-bond donors. The orientation of these cations is shown in Fig. 3. Hydrogen bonding details are listed in Table 2.

Experimental top

UO2(CH3CO2)2.2H2O (0.2767 g, 0.653 × 10 −3 mol), H2SO4 (0.3394 g, 3.46 × 10 −3 mol), N,N,N'N'-tetramethyl-1,3-propanediamine (0.1317 g, 1.01× 10 −3 mol) and water (1.0557 g, 58.7 × 10 −3 mol) were placed into a 23 ml teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, at which point the autoclave was slow cooled to 297 K over an additional period of 24 h. The autoclave was opened in air and the products recovered by filtration. A yield of 87%, based on uranium, was observed. USO-30 was characterized using several techinques. Through the use of IR spectroscopy, bands from both the organic and the inorganic components of USO-30 were observed. A broad band centered at 3400 cm−1, corresponding to the symmetric stretch of the bound water, was present. Bands at 3154 and 1620 cm−1 correspond to the N—H stretching and bending modes, while C—H bands were observed at 1464 and 1482 cm−1. C—N stretching modes were observed around 1230 cm−1, while S—O and uranyl bands are observed at 1100, and 930 and 942 cm−1, respectively. Analysis found: N 2.87, C 8.69, H 2.15, S 9.87, U 48.13%; calculated: N 2.86, C 8.59, H 2.25, S 9.82, U 48.67%. The thermal stability of USO-30 was probed using thermogravimetric analysis. A 1.0% weight loss is observed between 443 and 503 K, which corresponds to loss of the bound water molecules (calculated 1.8%). Template decomposition begins at 573 K, and is soon followed by the breakdown of the inorganic layers. The material calcines to UO2 by 1273 K, as determined using powder X-ray diffraction, with a total weight loss of 43.4% (calculated 44.8%). Structural analysis was conducted at 150 K.

Refinement top

The C– and N-bound H atoms were positioned in idealized locations. The water H atoms were positioned geometrically to make plausible H···O hydrogen bonds. All H atoms were refined as riding on their carrier atoms [C—H, N—H and O—H = 1.00 Å and Uiso(H) = 1.2Ueq (carrier atom)]. The highest peak is at (0.9600, 0.2096, 0.3958), 1.30 Å from U1, and the deepest hole is at (0.7000, 0.3929, 0.4000), 0.99 Å from U1.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. View of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) x − 1, y, z; (iii) 1 − x, 1 − y, 2 − z.]
[Figure 2] Fig. 2. Layer structure in USO-30. Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4], respectively.
[Figure 3] Fig. 3. Three-dimensional packing of USO-30. Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4], respectively. Template H atoms have been removed for clarity.
Poly[N,N,N',N'-tetramethylpropane-1,3-diaminium [aquatetraoxotri-µ3-sulfato-diuranate(VI)]] top
Crystal data top
(C7H20N2)[U2O4(SO4)3(H2O)]Z = 2
Mr = 978.51F(000) = 892
Triclinic, P1Dx = 2.997 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 6.7861 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5143 (1) ÅCell parameters from 4635 reflections
c = 19.0442 (3) Åθ = 5–27°
α = 88.6230 (9)°µ = 15.29 mm1
β = 81.6364 (8)°T = 150 K
γ = 84.8577 (6)°Block, yellow
V = 1084.20 (3) Å30.35 × 0.18 × 0.18 mm
Data collection top
Nonius Kappa CCD
diffractometer
4422 reflections with I > 3u(I)
Graphite monochromatorRint = 0.03
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.053, Tmax = 0.064k = 1111
9107 measured reflectionsl = 2424
4907 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 Chebychev polynomial (Watkin, 1994, Prince, 1982) with five parameters 61.5, 99.0, 63.5, 27.7, 8.43
wR(F2) = 0.097(Δ/σ)max = 0.002
S = 0.91Δρmax = 3.72 e Å3
4422 reflectionsΔρmin = 3.36 e Å3
281 parametersExtinction correction: Larson 1970 Crystallographic Computing eq 22
0 restraintsExtinction coefficient: 70 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
(C7H20N2)[U2O4(SO4)3(H2O)]γ = 84.8577 (6)°
Mr = 978.51V = 1084.20 (3) Å3
Triclinic, P1Z = 2
a = 6.7861 (1) ÅMo Kα radiation
b = 8.5143 (1) ŵ = 15.29 mm1
c = 19.0442 (3) ÅT = 150 K
α = 88.6230 (9)°0.35 × 0.18 × 0.18 mm
β = 81.6364 (8)°
Data collection top
Nonius Kappa CCD
diffractometer
4907 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4422 reflections with I > 3u(I)
Tmin = 0.053, Tmax = 0.064Rint = 0.03
9107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.91Δρmax = 3.72 e Å3
4422 reflectionsΔρmin = 3.36 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U11.16861 (3)0.66755 (3)0.601618 (11)0.0075
U20.77237 (3)0.56677 (3)0.884025 (11)0.0086
S11.0637 (2)0.81558 (19)0.74968 (8)0.0110
S20.6892 (2)0.61770 (18)0.53520 (8)0.0086
S30.2551 (2)0.61767 (18)0.93931 (8)0.0083
O11.2072 (7)0.8486 (6)0.5577 (3)0.0138
O21.1276 (7)0.4873 (6)0.6454 (3)0.0140
O31.2667 (7)0.7596 (6)0.7125 (3)0.0154
O40.9322 (7)0.8080 (6)0.6927 (2)0.0112
O50.8521 (8)0.6785 (6)0.5667 (3)0.0152
O61.2441 (7)0.5466 (5)0.4896 (2)0.0120
O71.5188 (7)0.6041 (6)0.5931 (3)0.0151
O80.7119 (7)0.7377 (6)0.9362 (3)0.0150
O90.8266 (8)0.3941 (6)0.8324 (3)0.0163
O100.6138 (8)0.6932 (8)0.7824 (3)0.0286
O111.0037 (8)0.7000 (7)0.8048 (3)0.0226
O121.0821 (7)0.5345 (6)0.9255 (3)0.0123
O130.7285 (7)0.3965 (6)0.9841 (3)0.0132
O140.4323 (7)0.5273 (6)0.8989 (3)0.0140
O151.0571 (9)0.9719 (7)0.7773 (3)0.0256
O160.6347 (8)0.7192 (6)0.4784 (3)0.0156
O170.2416 (8)0.7810 (6)0.9177 (3)0.0184
N10.6377 (10)0.1872 (7)0.6186 (3)0.0153
N20.3177 (10)0.0966 (7)0.8688 (3)0.0153
C10.4853 (12)0.2416 (9)0.6811 (4)0.0184
C20.5008 (12)0.1413 (9)0.7472 (4)0.0186
C30.3397 (12)0.2099 (8)0.8067 (4)0.0174
C40.6097 (13)0.0232 (9)0.5970 (4)0.0222
C50.8490 (13)0.1985 (12)0.6284 (5)0.0301
C60.1330 (13)0.1472 (9)0.9198 (4)0.0228
C70.4965 (12)0.0786 (10)0.9058 (4)0.0212
H10.47600.67850.77230.0352*
H20.70960.76090.75370.0352*
H30.34740.23820.66800.0212*
H40.50500.35330.69210.0212*
H50.47660.02940.73780.0223*
H60.63620.14320.76140.0223*
H70.20880.22900.78810.0215*
H80.37980.31200.82260.0215*
H90.46650.01620.59050.0269*
H100.69810.00460.55170.0269*
H110.64350.05380.63520.0269*
H120.88500.12360.66670.0381*
H130.93960.17280.58320.0381*
H140.86620.30910.64250.0381*
H150.01220.14890.89500.0262*
H160.11840.07170.96100.0262*
H170.14390.25540.93760.0262*
H180.47470.00190.94630.0264*
H190.61640.03840.87190.0264*
H200.52040.18310.92440.0264*
H210.61230.26210.57880.0183*
H220.30470.01010.84960.0183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00769 (15)0.00765 (15)0.00742 (15)0.00129 (9)0.00130 (9)0.00145 (9)
U20.00748 (15)0.01087 (16)0.00785 (15)0.00169 (9)0.00139 (9)0.00041 (9)
S10.0126 (7)0.0139 (8)0.0071 (7)0.0034 (6)0.0019 (5)0.0009 (5)
S20.0080 (7)0.0100 (7)0.0084 (7)0.0009 (5)0.0021 (5)0.0036 (5)
S30.0079 (7)0.0080 (7)0.0094 (7)0.0023 (5)0.0016 (5)0.0021 (5)
O10.015 (2)0.013 (2)0.013 (2)0.0009 (18)0.0012 (18)0.0000 (18)
O20.017 (2)0.009 (2)0.016 (2)0.0013 (18)0.0018 (19)0.0005 (17)
O30.012 (2)0.022 (3)0.013 (2)0.0031 (19)0.0032 (18)0.0012 (19)
O40.011 (2)0.016 (2)0.007 (2)0.0000 (17)0.0021 (16)0.0011 (17)
O50.014 (2)0.017 (2)0.016 (2)0.0009 (19)0.0063 (19)0.0076 (19)
O60.016 (2)0.007 (2)0.013 (2)0.0008 (17)0.0008 (18)0.0040 (17)
O70.010 (2)0.021 (3)0.014 (2)0.0032 (19)0.0002 (18)0.0008 (19)
O80.016 (2)0.010 (2)0.019 (2)0.0016 (18)0.0041 (19)0.0096 (18)
O90.017 (2)0.017 (2)0.014 (2)0.0063 (19)0.0000 (18)0.0118 (19)
O100.018 (3)0.047 (4)0.023 (3)0.011 (3)0.010 (2)0.020 (3)
O110.017 (3)0.038 (3)0.014 (2)0.011 (2)0.004 (2)0.015 (2)
O120.009 (2)0.015 (2)0.014 (2)0.0035 (17)0.0039 (18)0.0022 (18)
O130.016 (2)0.014 (2)0.011 (2)0.0037 (18)0.0029 (18)0.0007 (17)
O140.010 (2)0.016 (2)0.016 (2)0.0003 (18)0.0014 (18)0.0045 (19)
O150.036 (3)0.019 (3)0.023 (3)0.001 (2)0.010 (2)0.011 (2)
O160.017 (2)0.016 (2)0.013 (2)0.0001 (19)0.0029 (19)0.0012 (18)
O170.025 (3)0.009 (2)0.023 (3)0.0035 (19)0.009 (2)0.0064 (19)
N10.018 (3)0.015 (3)0.013 (3)0.001 (2)0.004 (2)0.002 (2)
N20.024 (3)0.011 (3)0.011 (3)0.002 (2)0.004 (2)0.002 (2)
C10.027 (4)0.017 (4)0.009 (3)0.005 (3)0.002 (3)0.004 (3)
C20.025 (4)0.015 (3)0.014 (3)0.003 (3)0.001 (3)0.004 (3)
C30.027 (4)0.009 (3)0.018 (3)0.001 (3)0.008 (3)0.003 (2)
C40.035 (4)0.016 (4)0.016 (3)0.001 (3)0.004 (3)0.003 (3)
C50.024 (4)0.036 (5)0.034 (5)0.012 (4)0.011 (3)0.015 (4)
C60.029 (4)0.016 (4)0.020 (4)0.001 (3)0.004 (3)0.004 (3)
C70.025 (4)0.020 (4)0.020 (4)0.004 (3)0.008 (3)0.001 (3)
Geometric parameters (Å, º) top
U1—O11.758 (5)N1—C11.512 (10)
U1—O21.754 (5)N1—C41.501 (10)
U1—O32.470 (5)N1—C51.485 (10)
U1—O42.441 (5)N1—H211.001
U1—O52.333 (5)N2—C31.507 (9)
U1—O62.360 (5)N2—C61.507 (10)
U1—O72.373 (5)N2—C71.484 (10)
U2—O81.765 (5)N2—H221.003
U2—O91.770 (5)C1—C21.515 (9)
U2—O102.522 (5)C1—H31.006
U2—O112.361 (5)C1—H41.003
U2—O122.342 (5)C2—C31.541 (10)
U2—O132.367 (5)C2—H51.006
U2—O142.337 (5)C2—H60.997
S1—O31.496 (5)C3—H71.001
S1—O41.509 (5)C3—H81.000
S1—O111.461 (5)C4—H91.004
S1—O151.437 (6)C4—H100.997
S2—O51.469 (5)C4—H111.005
S2—O6i1.497 (5)C5—H121.000
S2—O7ii1.487 (5)C5—H130.999
S2—O161.438 (5)C5—H141.006
S3—O12ii1.482 (5)C6—H151.002
S3—O13iii1.480 (5)C6—H161.001
S3—O141.492 (5)C6—H171.001
S3—O171.440 (5)C7—H181.002
O10—H11.001C7—H191.002
O10—H21.001C7—H201.000
O1—U1—O2179.4 (2)U1—O6—S2i134.6 (3)
O1—U1—O392.8 (2)U1—O7—S2iv133.7 (3)
O2—U1—O387.4 (2)U2—O10—H1125.4
O1—U1—O488.92 (19)U2—O10—H2109.6
O2—U1—O490.76 (19)H1—O10—H2125.0
O3—U1—O457.28 (16)U2—O11—S1155.0 (3)
O1—U1—O589.3 (2)U2—O12—S3iv144.1 (3)
O2—U1—O590.2 (2)U2—O13—S3iii143.7 (3)
O3—U1—O5129.16 (17)U2—O14—S3131.3 (3)
O4—U1—O572.00 (16)C1—N1—C4111.5 (6)
O1—U1—O687.57 (19)C1—N1—C5114.8 (6)
O2—U1—O692.5 (2)C4—N1—C5110.0 (7)
O3—U1—O6151.87 (16)C1—N1—H21105.3
O4—U1—O6150.78 (16)C4—N1—H21108.9
O5—U1—O678.96 (17)C5—N1—H21105.9
O1—U1—O790.7 (2)C3—N2—C6110.0 (6)
O2—U1—O789.9 (2)C3—N2—C7112.9 (6)
O3—U1—O773.82 (17)C6—N2—C7110.7 (6)
O4—U1—O7131.00 (16)C3—N2—H22107.4
O5—U1—O7156.99 (17)C6—N2—H22109.7
O6—U1—O778.05 (17)C7—N2—H22106.1
O8—U2—O9178.5 (2)N1—C1—C2113.0 (6)
O8—U2—O1092.3 (2)N1—C1—H3108.8
O9—U2—O1087.5 (2)C2—C1—H3108.7
O8—U2—O1190.5 (2)N1—C1—H4108.8
O9—U2—O1190.7 (2)C2—C1—H4108.6
O10—U2—O1168.36 (18)H3—C1—H4108.8
O8—U2—O1288.8 (2)C1—C2—C3107.7 (6)
O9—U2—O1292.3 (2)C1—C2—H5109.8
O10—U2—O12140.21 (17)C3—C2—H5109.7
O11—U2—O1271.85 (17)C1—C2—H6110.1
O8—U2—O1392.8 (2)C3—C2—H6110.2
O9—U2—O1386.6 (2)H5—C2—H6109.3
O10—U2—O13145.43 (17)N2—C3—C2110.2 (6)
O11—U2—O13145.69 (17)N2—C3—H7109.3
O12—U2—O1374.09 (16)C2—C3—H7109.4
O8—U2—O1488.6 (2)N2—C3—H8109.3
O9—U2—O1490.0 (2)C2—C3—H8109.2
O10—U2—O1470.02 (18)H7—C3—H8109.3
O11—U2—O14138.30 (18)N1—C4—H9109.7
O12—U2—O14149.75 (17)N1—C4—H10110.2
O13—U2—O1475.94 (17)H9—C4—H10109.3
O3—S1—O4103.1 (3)N1—C4—H11109.5
O3—S1—O11108.2 (3)H9—C4—H11108.7
O4—S1—O11107.9 (3)H10—C4—H11109.3
O3—S1—O15112.4 (3)N1—C5—H12109.8
O4—S1—O15112.2 (3)N1—C5—H13110.2
O11—S1—O15112.5 (4)H12—C5—H13109.6
O5—S2—O6i108.2 (3)N1—C5—H14109.3
O5—S2—O7ii107.4 (3)H12—C5—H14108.9
O6i—S2—O7ii106.3 (3)H13—C5—H14109.1
O5—S2—O16110.8 (3)N2—C6—H15109.6
O6i—S2—O16111.9 (3)N2—C6—H16109.9
O7ii—S2—O16112.0 (3)H15—C6—H16109.2
O12ii—S3—O13iii108.6 (3)N2—C6—H17109.6
O12ii—S3—O14104.6 (3)H15—C6—H17109.2
O13iii—S3—O14108.5 (3)H16—C6—H17109.3
O12ii—S3—O17113.1 (3)N2—C7—H18109.8
O13iii—S3—O17110.3 (3)N2—C7—H19109.8
O14—S3—O17111.5 (3)H18—C7—H19109.1
U1—O3—S198.8 (2)N2—C7—H20109.6
U1—O4—S199.7 (2)H18—C7—H20109.3
U1—O5—S2155.4 (3)H19—C7—H20109.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O3ii1.002.0112.877 (7)143
O10—H2···O41.001.8362.788 (7)158
N1—H21···O16v1.002.1212.850 (8)128
N2—H22···O15vi1.002.3392.935 (8)117
N2—H22···O17vii1.002.2122.889 (8)123
Symmetry codes: (ii) x1, y, z; (v) x+1, y+1, z+1; (vi) x1, y1, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C7H20N2)[U2O4(SO4)3(H2O)]
Mr978.51
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.7861 (1), 8.5143 (1), 19.0442 (3)
α, β, γ (°)88.6230 (9), 81.6364 (8), 84.8577 (6)
V3)1084.20 (3)
Z2
Radiation typeMo Kα
µ (mm1)15.29
Crystal size (mm)0.35 × 0.18 × 0.18
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.053, 0.064
No. of measured, independent and
observed [I > 3u(I)] reflections
9107, 4907, 4422
Rint0.03
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 0.91
No. of reflections4422
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.72, 3.36

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 1986), CRYSTALS (Betteridge et al., 2003), ATOMS (Dowty, 2000), CRYSTALS.

Selected geometric parameters (Å, º) top
U1—O11.758 (5)S1—O151.437 (6)
U1—O21.754 (5)S2—O51.469 (5)
U1—O32.470 (5)S2—O6i1.497 (5)
U1—O42.441 (5)S2—O7ii1.487 (5)
U1—O52.333 (5)S2—O161.438 (5)
U1—O62.360 (5)S3—O12ii1.482 (5)
U1—O72.373 (5)S3—O13iii1.480 (5)
U2—O81.765 (5)S3—O141.492 (5)
U2—O91.770 (5)S3—O171.440 (5)
U2—O102.522 (5)N1—C11.512 (10)
U2—O112.361 (5)N1—C41.501 (10)
U2—O122.342 (5)N1—C51.485 (10)
U2—O132.367 (5)N2—C31.507 (9)
U2—O142.337 (5)N2—C61.507 (10)
S1—O31.496 (5)N2—C71.484 (10)
S1—O41.509 (5)C1—C21.515 (9)
S1—O111.461 (5)C2—C31.541 (10)
O1—U1—O2179.4 (2)O11—U2—O14138.30 (18)
O1—U1—O392.8 (2)O12—U2—O14149.75 (17)
O2—U1—O387.4 (2)O13—U2—O1475.94 (17)
O1—U1—O488.92 (19)O3—S1—O4103.1 (3)
O2—U1—O490.76 (19)O3—S1—O11108.2 (3)
O3—U1—O457.28 (16)O4—S1—O11107.9 (3)
O1—U1—O589.3 (2)O3—S1—O15112.4 (3)
O2—U1—O590.2 (2)O4—S1—O15112.2 (3)
O3—U1—O5129.16 (17)O11—S1—O15112.5 (4)
O4—U1—O572.00 (16)O5—S2—O6i108.2 (3)
O1—U1—O687.57 (19)O5—S2—O7ii107.4 (3)
O2—U1—O692.5 (2)O6i—S2—O7ii106.3 (3)
O3—U1—O6151.87 (16)O5—S2—O16110.8 (3)
O4—U1—O6150.78 (16)O6i—S2—O16111.9 (3)
O5—U1—O678.96 (17)O7ii—S2—O16112.0 (3)
O1—U1—O790.7 (2)O12ii—S3—O13iii108.6 (3)
O2—U1—O789.9 (2)O12ii—S3—O14104.6 (3)
O3—U1—O773.82 (17)O13iii—S3—O14108.5 (3)
O4—U1—O7131.00 (16)O12ii—S3—O17113.1 (3)
O5—U1—O7156.99 (17)O13iii—S3—O17110.3 (3)
O6—U1—O778.05 (17)O14—S3—O17111.5 (3)
O8—U2—O9178.5 (2)U1—O3—S198.8 (2)
O8—U2—O1092.3 (2)U1—O4—S199.7 (2)
O9—U2—O1087.5 (2)U1—O5—S2155.4 (3)
O8—U2—O1190.5 (2)U1—O6—S2i134.6 (3)
O9—U2—O1190.7 (2)U1—O7—S2iv133.7 (3)
O10—U2—O1168.36 (18)U2—O11—S1155.0 (3)
O8—U2—O1288.8 (2)U2—O12—S3iv144.1 (3)
O9—U2—O1292.3 (2)U2—O13—S3iii143.7 (3)
O10—U2—O12140.21 (17)U2—O14—S3131.3 (3)
O11—U2—O1271.85 (17)C1—N1—C4111.5 (6)
O8—U2—O1392.8 (2)C1—N1—C5114.8 (6)
O9—U2—O1386.6 (2)C4—N1—C5110.0 (7)
O10—U2—O13145.43 (17)C3—N2—C6110.0 (6)
O11—U2—O13145.69 (17)C3—N2—C7112.9 (6)
O12—U2—O1374.09 (16)C6—N2—C7110.7 (6)
O8—U2—O1488.6 (2)N1—C1—C2113.0 (6)
O9—U2—O1490.0 (2)C1—C2—C3107.7 (6)
O10—U2—O1470.02 (18)N2—C3—C2110.2 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O3ii1.002.0112.877 (7)143
O10—H2···O41.001.8362.788 (7)158
N1—H21···O16v1.002.1212.850 (8)128
N2—H22···O15vi1.002.3392.935 (8)117
N2—H22···O17vii1.002.2122.889 (8)123
Symmetry codes: (ii) x1, y, z; (v) x+1, y+1, z+1; (vi) x1, y1, z; (vii) x, y1, z.
 

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC) for funding.

References

First citationAlmond, P. M., Sykora, R. E., Skanthakumar, S., Soderholm, L. & Albrecht-Schmitt, T. E. (2004). Inorg. Chem. 43, 958–963. Final page number?
First citationBean, A. C., Scott, B. L., Albrecht-Schmitt, T. E. & Runde, W. (2004). J. Solid State Chem. 117, 1346–1354.  Web of Science CrossRef
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals
First citationBrandeburg, N. P. & Loopstra, B. O. (1973). Cryst. Struct. Commun. 2, 243–246.
First citationBurns, P. C., Alexopoulos, C. M., Hotchkiss, P. J. & Locock, A. J. (2004). Inorg. Chem. 43, 1816–1818.  Web of Science CrossRef PubMed CAS
First citationBurns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551–1570.  CAS
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947.  Web of Science CSD CrossRef
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m373–m375.  Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Norquist, A. J., Stuart, C. L. & O'Hare, D. (2004). Acta Cryst. E60, m996–m998.  Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Stuart, C. L., Norquist, A. J. & O'Hare, D. (2004). Chem. Mater. 16, 565–566.  Web of Science CSD CrossRef CAS
First citationDowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsprot, TN 37663, USA.
First citationKim, J. Y., Norquist, A. J. & O'Hare, D. (2003). J. Am. Chem. Soc. 125, 12688–12689.  Web of Science CSD CrossRef PubMed CAS
First citationKrivovichev, S. V., Cahill, C. L., Nazarchuk, E. V., Burns, P. C., Armbruster, T. & Depmeier, W. (2005). Microporous Mesoporous Mater. 78, 209–215.  Web of Science CrossRef CAS
First citationKubatko, K-A. H. & Burns, P. C. (2004). Can. Mineral. 42, 997–1003.  CAS
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
First citationNorquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003). Inorg. Chem. 42, 5949–5953.  Web of Science CSD CrossRef PubMed CAS
First citationNorquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179–5184.  Web of Science CSD CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
First citationSerezhkin, V. N., Soldatkina, M. A. & Efremov, V. A. (1981). J. Struct. Chem. 22, 451–454.  CrossRef Web of Science
First citationSheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
First citationSykora, R. E., McDaniel, S. M. & Albrecht-Schmitt, T. E. (2004). J. Solid State Chem. 177, 1431–1436.  Web of Science CrossRef CAS
First citationThomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88–92.  Web of Science CSD CrossRef CAS
First citationWatkin D. J. (1994). Acta Cryst. A50, 411–437.
First citationZalkin, A., Rube, H. & Templeton, D. H. (1978). Inorg. Chem. 17, 3701–3702.  CrossRef CAS Web of Science

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds