metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(C3H12N2)2[UO2(H2O)2(SO4)2]2·2H2O: an organically templated uranium sulfate with a novel dimer type

aChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
*Correspondence e-mail: dermot.ohare@chem.ox.ac.uk

(Received 3 March 2005; accepted 29 March 2005; online 16 April 2005)

The title compound, bis­(propane-1,2-diaminium) tetra­aquadi-μ2-sulfato-disulfatotetra­oxodiuranate(VI) dihydrate, (C3H12N2)2[U2O4(SO4)4(H2O)4]·2H2O, contains discrete centrosymmetric anionic {[UO2(H2O)2(SO4)2]2}4− dimers with C3H12N22+ cations balancing the charge. The dimers form hydrogen-bonded layers. The cations and occluded water mol­ecules participate in an extensive hydrogen-bonding network. Each UVI centre is seven-coordinate with a penta­gonal–bipyramidal geometry. Both pendent and bridging sulfate tetra­hedra are observed, as well as bound and occluded water mol­ecules.

Comment

Hydro­thermal synthesis is a well established method for the formation of inorganic structures templated by organic ions. The majority of these compounds are metal phosphates (Cheetham et al., 1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]), with other examples including metal phosphites (Doran et al., 2001[Doran, M., Walker, S. M. & O'Hare, D. (2001). Chem. Commun. pp. 1988-1989.]; Fernandez et al., 2002[Fernandez, S., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I. & Rojo, T. (2002). Chem. Mater. 14, 2300-2307.]), fluorides (Walker et al., 1999[Walker, S. M., Halasyamani, P. S., Allen, S. & O'Hare, D. (1999). J. Am. Chem. Soc. 121, 10513-10521.]), germanates (Reisner et al., 2001[Reisner, B. A., Tripathi, A. & Parise, J. B. (2001). J. Mater. Chem. 11, 887-890.]; Bu et al., 1998[Bu, X., Feng, P., Gier, T. E., Zhao, D. & Stucky, G. D. (1998). J. Am. Chem. Soc. 120, 13389-13397.]; Conradsson et al., 2000[Conradsson, T., Zou, X. & Dadachov, M. S. (2000). Inorg. Chem. 39, 1716-1720.]), arsenates (Ekambaram & Sevov, 2000[Ekambaram, S. & Sevov, S. C. (2000). Inorg. Chem. 39, 2405-2410.]; Bazan et al., 2000[Bazan, B., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I. & Rojo, T. (2000). Inorg. Chem. 39, 6056-6060.]), oxalates (Vaidhyanathan et al., 2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 4496-4501.]) and selenites (Choudhury et al., 2002[Choudhury, A., Kumar, D. U. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 158-161.]; Harrison et al., 2000[Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2000). Angew. Chem. Int. Ed. 39, 3808-3810.]).

[Scheme 1]

A recently employed strategy for the design of new inorganic architectures involves the use of the sulfate tetra­hedron as a primary substituent. Compounds incorporating U (Doran et al., 2002[Doran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946-2947.], 2003a[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003a). Inorg. Chem. 42, 6989-6995.],b[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003b). Acta Cryst. E59, m373-m375.],c[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003c). Acta Cryst. E59, m762-m764.],d[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003d). Acta Cryst. E59, m765-m767.]; Doran, Norquist et al., 2004[Doran, M. B., Norquist, A. J., Stuart, C. S. & O'Hare, D. (2004). Acta Cryst. E60, m996-m998.]; Doran, Cockbain et al., 2004[Doran, M. B., Cockbain, B. E., Norquist, A. J. & O'Hare, D. (2004). Dalton Trans. pp. 3810-3814.]; Norquist et al., 2002[Norquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179-5184.], 2003a[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003a). Inorg. Chem. 42, 5949-5953.],b[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003b). J. Chem. Soc. Dalton Trans. pp. 1168-1175.]; Norquist et al., 2003[Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). Solid State Sci. 5, 1149-1158.]; Thomas et al., 2003[Thomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88-92.]; Stuart et al., 2003[Stuart, C. L., Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m446-m448.]), Cd (Choudhury et al., 2001[Choudhury, A., Krishnamoorthy, J. & Rao, C. N. R. (2001). Chem. Commun. pp. 2610-2611.]; Paul et al., 2002[Paul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 4297-4300.]b[Paul, G., Choudhury, A. & Rao, C. N. R. (2002b). J. Chem. Soc. pp. 3859-3867.]), La (Bataille & Louer, 2002[Bataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487-3493.]; Xing, Liu et al., 2003[Xing, Y., Liu, Y., Shi, Z., Meng, H. & Pang, W. (2003). J. Solid State Chem. 174, 381-385.]; Xing Shi et al., 2003[Xing, Y., Shi, Z., Li, G. & Pang, W. (2003). J. Chem. Soc. Dalton Trans. pp. 940-943.]), Ce (Wang et al., 2002[Wang, D., Yu, R., Xu, Y., Feng, S., Xu, R., Kumada, N., Kinomura, N., Matumura, Y. & Takano, M. (2002). Chem. Lett. pp. 1120-1121.]), Sc (Bull et al., 2002[Bull, I., Wheatley, P. S., Lightfoot, P., Morris, R. E., Sastre, E. & Wright, P. A. (2002). Chem. Commun. pp. 1180-1181.]), Fe (Paul, Choudhury & Rao, 2002[Paul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 4297-4300.]a[Paul, G., Choudhury, A. & Rao, C. N. R. (2002a). Chem. Commun. pp. 1904-1905.], 2003[Paul, G., Choudhury, A., & Rao, C. N. R. (2003). Chem. Mater. 15, 1174-1180.]; Paul et al., 2002[Paul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 4297-4300.]), V (Paul, Choudhury, Nagarajan & Rao, 2003[Paul, G., Choudhury, A., Nagarajan, R. & Rao, C. N. R. (2003). Inorg. Chem. 42, 2004-2013.]; Khan et al., 1999[Khan, M. I., Cevik, S. & Doedens, R. J. (1999). Inorg. Chim. Acta, 292, 112-116.]), Zn (Morimoto & Lingafelter, 1970[Morimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335-341.]) and Mo (Gutnick et al., 2004[Gutnick, J. R., Muller, E. A., Sarjeant, A. N. & Norquist, A. J. (2004). Inorg. Chem. 43, 6528-6530.]) are known. These compounds exhibit great structural diversity, with structures ranging from mol­ecular anions to three-dimensional frameworks. This report contains the synthesis and structure of an organically templated uranium sulfate, [N2C3H12]2[UO2(H2O)2(SO4)2]2·2H2O, (I)[link], designated USO-31 (uranium sulfate from Oxford).

A single independent U atom is present in USO-31. U1 is seven-coordinate (Fig. 1[link] and Table 1[link]) in a penta­gonal–bipyramidal geometry. Two short `uran­yl' bonds to axial O atoms are observed, with U—O distances of 1.765 (3) Å and 1.772 (4) Å, close to the average reported value of 1.758 (3) Å (Burns et al., 1997[Burns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551-1570.]). The O1—U1—O2 angle is close to 180°, with a value of 178.91 (16)°. Three of the five equatorial coordination sites around U1 are occupied by O atoms of sulfate groups, with U—O distances of 2.335 (3), 2.380 (3) and 2.385 (3) Å. The remaining two equatorial coordination sites are occupied by bound water mol­ecules, with U—O distances of 2.420 (3) and 2.437 (3) Å. The assignment of the bound water mol­ecules was based on the longer U—O bond lengths and hydrogen-bonding inter­actions. Two distinct sulfur sites are observed in USO-31. S1 and S2 are both at the centre of [SO4] tetra­hedra. S1 tetra­hedra link to one U centre and have three terminal O atoms, in contrast with S2 tetra­hedra, which bridge between two U centres and have two terminal O atoms. The S—Obridging distances range between 1.490 (3) and 1.500 (3) Å. The S—Oterminal distances are shorter, ranging between 1.463 (4) and 1.475 (4) Å.

Centrosymmetric dimers are formed as a result of the connectivities between the [UO7] and [SO4] polyhedra. This dimer topology is, to the best of our knowledge, previously unknown in uranium chemistry. It is related to the [(UO2)2(SO4)6]8− dimers in USO-10 (Norquist et al., 2003a[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003a). Inorg. Chem. 42, 5949-5953.]) and USO-12 (Norquist et al., 2003b[Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003b). J. Chem. Soc. Dalton Trans. pp. 1168-1175.]), which contain edge-shared sulfate groups in place of the bound water mol­ecules of USO-31. Hydrogen-bonded layers are formed (see Fig. 2[link]), because the four bound water mol­ecules of each dimer donate hydrogen bonds to the terminal sulfate O atoms of adjacent dimers. These pseudo-layers propagate in the (010) plane and are separated by template cations and occluded water mol­ecules (see Fig. 3[link]). The inter­layer species are involved in hydrogen bonding with the layer (Table 2[link]).

[Figure 1]
Figure 1
View of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2]
Figure 2
The formation of pseudo-layers by the dimers in USO-31. Green penta­gonal bipyramids and blue tetra­hedra represent [UO7] and [SO4], respectively.
[Figure 3]
Figure 3
Three-dimensional packing of USO-31. Green penta­gonal bipyramids and blue tetra­hedra represent [UO7] and [SO4], respectively. H atoms have been omitted for clarity.

Experimental

UO2(CH3CO2)2·2H2O (0.1062 g, 0.249 × 10−3 mol), H2SO4 (0.2623 g, 2.61 × 10−3 mol), 1,2-diamino­propane (0.1544 g, 2.05 × 10−3 mol), HF (0.1302 g, 2.59 × 10−3 mol, 40% aq.) and water (0.7443 g, 41.3 × 10−3 mol) were placed in a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, and then slowly cooled to 297 K over an additional period of 24 h. The autoclave was opened in air and the products recovered by filtration. A yield of 31%, based on uranium, was observed. The yield can be increased with slow evaporation of the post-reaction supernatant solution. Template N—H bending and stretching modes were observed at 1600 and 3100 cm−1 in the IR spectrum of USO-31. The C—H bend was measured at 1472 cm−1. A band centred at 1100 cm−1 corresponds to S—O stretches, with the asymmetric uran­yl stretch at 936 cm−1. Analysis found: N 4.90, C 6.26, H 3.15, S 11.19, U 38.21%; calculated: N 4.73, C 6.08, H 3.06, S 10.83, U 40.18%. The thermal stability of USO-31 was probed using thermogravimetric analysis. Weight losses between 373 and 403 K (2.7%), and 413 and 538 K (6.1%) result from the loss of occluded (calculated 3.0%) and bound water mol­ecules (calculated 6.1%), respectively. A 16.5% weight loss was measured between 583 and 693 K, corresponding to template decomposition and the onset of breakdown of the inorganic moiety. The material calcines to UO2, determined using powder X-ray diffraction, by 1173 K, with a total mass loss of 55.0% (calculated 54.4%). Structural analysis was conducted at 150 K.

Crystal data
  • (C3H12N2)2[U2O4(SO4)4(H2O)4]·2H2O

  • Mr = 1184.73

  • Triclinic, [P \overline 1]

  • a = 7.3983 (2) Å

  • b = 7.6333 (2) Å

  • c = 12.5946 (5) Å

  • α = 95.1761 (12)°

  • β = 94.6412 (13)°

  • γ = 96.578 (2)°

  • V = 700.70 (4) Å3

  • Z = 1

  • Dx = 2.807 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2953 reflections

  • θ = 5–27°

  • μ = 11.95 mm−1

  • T = 150 K

  • Plate, yellow

  • 0.10 × 0.06 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.46, Tmax = 0.89

  • 5870 measured reflections

  • 3154 independent reflections

  • 2820 reflections with I > 3σ(I)

  • Rint = 0.02

  • θmax = 27.4°

  • h = −8 → 9

  • k = −9 → 9

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 0.83

  • 2820 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Modified (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]) Chebychev polynomial with four parameters (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]), 11.1, 14.6, 7.77, 2.08

  • (Δ/σ)max = 0.001

  • Δρmax = 1.22 e Å−3

  • Δρmin = −1.39 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.])

  • Extinction coefficient: 12.0 (11)

Table 1
Selected geometric parameters (Å, °)[link]

U1—O1 1.765 (3)
U1—O2 1.772 (4)
U1—O3 2.335 (3)
U1—O4 2.385 (3)
U1—O5 2.380 (3)
U1—O6 2.437 (3)
U1—O7 2.420 (3)
S1—O3 1.500 (3)
S1—O8 1.475 (3)
S1—O9 1.475 (4)
S1—O10 1.463 (4)
S2—O4 1.493 (4)
S2i—O5 1.490 (3)
S2—O11 1.470 (3)
S2—O12 1.466 (4)
N1—C1 1.498 (6)
N2—C2 1.489 (7)
C1—C2 1.520 (7)
C2—C3 1.530 (7)
O1—U1—O2 178.91 (16)
O1—U1—O3 91.88 (14)
O1—U1—O4 90.74 (14)
O1—U1—O5 92.44 (14)
O1—U1—O6 91.42 (14)
O1—U1—O7 84.59 (15)
O2—U1—O3 88.87 (15)
O2—U1—O4 90.22 (15)
O2—U1—O5 87.36 (15)
O2—U1—O6 87.51 (15)
O2—U1—O7 94.84 (15)
O3—U1—O4 74.72 (12)
O3—U1—O5 147.53 (12)
O3—U1—O6 143.92 (12)
O3—U1—O7 74.91 (12)
O4—U1—O5 73.06 (12)
O4—U1—O6 141.14 (12)
O4—U1—O7 149.08 (12)
O5—U1—O6 68.09 (12)
O5—U1—O7 137.55 (12)
O6—U1—O7 69.66 (12)
O3—S1—O8 109.3 (2)
O3—S1—O9 106.8 (2)
O3—S1—O10 108.9 (2)
O8—S1—O9 109.9 (2)
O8—S1—O10 111.2 (2)
O9—S1—O10 110.7 (2)
O4—S2—O5i 106.9 (2)
O4—S2—O11 107.8 (2)
O4—S2—O12 110.8 (2)
O5i—S2—O11 109.6 (2)
O5i—S2—O12 110.0 (2)
O11—S2—O12 111.7 (2)
U1—O3—S1 138.5 (2)
U1—O4—S2 135.8 (2)
U1—O5—S2i 142.6 (2)
N1—C1—C2 112.2 (4)
N2—C2—C1 106.6 (4)
N2—C2—C3 109.1 (4)
C1—C2—C3 114.6 (4)
Symmetry code: (i) -x, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1⋯O8ii 1.00 1.71 2.705 (5) 180
O6—H2⋯O11ii 1.00 1.76 2.756 (5) 180
O7—H3⋯O9ii 1.00 1.73 2.732 (5) 180
O7—H4⋯O10iii 1.00 1.67 2.665 (5) 180
N1—H5⋯O12iv 1.00 1.82 2.824 (6) 179
N1—H6⋯O11i 1.00 1.90 2.846 (5) 156
N1—H7⋯O12v 1.00 2.18 2.878 (6) 126
N2—H8⋯O13 1.00 1.82 2.812 (6) 170
N2—H9⋯O9iv 1.00 2.01 2.909 (6) 148
N2—H10⋯O8ii 1.00 1.97 2.911 (6) 156
O13—H18⋯O10vi 1.00 1.91 2.909 (5) 180
Symmetry codes: (i) -x, -y+2, -z+2; (ii) x+1, y, z; (iii) -x, -y+2, -z+1; (iv) x+1, y+1, z; (v) -x+1, -y+2, -z+2; (vi) -x+1, -y+2, -z+1.

H atoms were placed geometrically after each cycle in idealized locations at 1.00 Å from the carrier atom, such that plausible hydrogen-bonding inter­actions are made, and refined as riding. The constraint Uiso(H) = 1.2Ueq (carrier atom) was applied in all cases. The highest peak is 0.96 Å from O1, and the deepest hole is 0.85 Å from U1.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]).

Supporting information


Comment top

Hydrothermal synthesis is a well established method for the formation of inorganic structures templated by organic ions. The majority of these compounds are metal phosphates (Cheetham et al., 1999), with other examples including metal phosphites (Doran et al., 2001; Fernandez et al., 2002), fluorides (Walker et al., 1999), germanates (Reisner et al., 2001; Bu et al., 1998; Conradsson et al., 2000), arsenates (Ekambaram & Sevov, 2000; Bazan et al., 2000), oxalates (Vaidhyanathan et al., 2002) and selenites (Choudhury et al., 2002; Harrison et al., 2000).

A recently employed strategy for the design of new inorganic architectures involves the use of the sulfate tetrahedron as a primary substituent. Compounds incorporating U (Doran et al., 2002, 2003a,b,c,d; Doran, Norquist et al., 2004; Doran, Cockbain et al., 2004; Norquist et al., 2002, 2003bbr29a,b; Norquist et al., 2003bbr29; Thomas et al., 2003; Stuart et al., 2003), Cd (Choudhury et al., 2001; Paul et al., 2002b), La (Bataille & Louer, 2002; Xing, Liu et al., 2003; Xing Shi et al., 2003), Ce (Wang et al., 2002), Sc (Bull et al., 2002), Fe (Paul et al., 2002a, 2003; Paul et al., 2002;), V (Paul, Choudhury, Nagarajan & Rao, 2003; Khan et al., 1999), Zn (Morimoto & Lingafelter, 1970) and Mo (Gutnick et al., 2004) are known. These compounds exhibit great structural diversity, with structures ranging from molecular anions to three-dimensional frameworks. This report contains the synthesis and structure of an organically templated uranium sulfate, [N2C3H12]2[UO2(H2O)2(SO4)2]2.2H2O, (I), designated USO-31 (uranium sulfate from Oxford).

A single independent U atom is present in USO-31. U1 is seven coordinate (Fig. 1 and Table 1) in a pentagonal-bipyramidal geometry. Two short `uranyl' bonds to axial O atoms are observed, with U—O distances of 1.765 (3) Å and 1.772 (4) Å, close to the average reported value of 1.758 (3) Å (Burns et al., 1997). The O1—U1—O2 angle is close to 180°, with a value of 178.91 (16)°. Three of the five equatorial coordination sites around U1 are occupied by O atoms of sulfate groups, with U—O distances of 2.335 (3), 2.380 (3) and 2.385 (3) Å. The remaining two equatorial coordination sites are occupied by bound water molecules, with U—O distances of 2.420 (3) and 2.437 (3) Å. The assignment of the bound water molecules was based on the longer U—O bond lengths and hydrogen-bonding interactions. Two distinct sulfur sites are observed in USO-31. S1 and S2 are both at the centre of [SO4] tetrahedra. S1 tetrahedra bridge to one uranium centre and have three terminal oxygen atoms, in contrast to S2 tetrahedra, which bridge between two uranium centres and have two terminal O atoms. The S—Obridging distances range between 1.490 (3) and 1.500 (3) Å. The S—Oterminal distances are shorter, ranging between 1.463 (4) and 1.475 (4) Å.

Dimers are formed as a result of the connectivities between the [UO7] and [SO4] polyhedra. This dimer topology is, to the best of our knowledge, previously unknown in uranium chemistry. It is related to the [(UO2)2(SO4)6]8− dimers in USO-10 (Norquist et al., 2003bbr29a) and USO-12 (Norquist et al., 2003bbr29b), which contain edge-shared sulfate groups in place of the bound water molecules of USO-31. Hydrogen-bonded layers are formed (see Fig. 2) because the four bound water molecules of each dimer donate hydrogen bonds to the terminal sulfate O atoms of adjacent dimers. These pseudo-layers propagate in the (010) plane and are separated by template cations and occluded water molecules (see Fig. 3). The interlayer species are involved in hydrogen bonding with the layer (Table 2).

Experimental top

UO2(CH3CO2)2.2H2O (0.1062 g, 0.249 × 10 −3 mol), H2SO4 (0.2623 g, 2.61 × 10 −3 mol), 1,2-diaminopropane (0.1544 g, 2.05 × 10 −3 mol), HF (0.1302 g, 2.59 × 10 −3 mol, 40% aq.) and water (0.7443 g, 41.3 × 10 −3 mol) were placed in a 23 ml teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, at which point the autoclave was slow cooled to 297 K over an additional period of 24 h. The autoclave was opened in air and the products recovered by filtration. A yield of 31%, based on uranium, was observed. The yield can be increased with slow evaporation of the post reaction supernatent solution. Template N—H bending and stretching modes are observed at 1600 and 3100 cm−1 in the IR spectrum of USO-31. The C—H bend is measured at 1472 cm−1. A band centred at 1100 cm−1 corresponds to S—O stretches, with the asymmetric uranyl stretch at 936 cm−1. Analysis found: N 4.90, C 6.26, H 3.15, S 11.19, U 38.21%; N 4.73, C 6.08, H 3.06, S 10.83, U 40.18%. The thermal stability of USO-31 was probed using thermogravimetric analysis. Weight losses between 373 and 403 K (2.7%), and 413 and 538 K (6.1%) result from the loss of occluded (calculated 3.0%) and bound water molecules (calculated 6.1%), respectively. A 16.5% weight loss is measured between 583 and 693 K, corresponding to template decomposition and the onset of breakdown of the inorganic moiety. The material calcines to UO2, determined using powder X-ray diffraction, by 1173 K, with a total mass loss of 55.0% (calcualted 54.4%). Structural analysis was conducted at 423 K.

Refinement top

H atoms were placed geometrically after each cycle in idealized locations at 1.00 Å from the carrier atom, such that plausible hydrogen-bonding interactions are made, and refined as riding. The constraint Uiso(H) = 1.2Ueq (carrier atom) was applied in all cases. The highest peak is at (0.923, 0.018, 0.303), 0.96 Å from O1, and the deepest hole is at (0.833, 0.167,1/5), 0.85 Å from U1.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound, with the atomic numbering scheme. Displacement ellipsoid are drawn at the 50% probability level.
[Figure 2] Fig. 2. The formation of pseudo-layers by the dimers in USO-31. Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4], respectively.
[Figure 3] Fig. 3. Three-dimensional packing of USO-31. Green pentagonal bipyramids and blue tetrahedra represent [UO7] and [SO4], respectively. H atoms have been omitted for clarity.
Bis(propane-1,2-diaminium) tetraaquadi-µ2-sulfato-disulfatotetraoxodiuranate(VI) dihydrate top
Crystal data top
(C3H12N2)2[U2O4(SO4)4(H2O)4]·2H2OZ = 1
Mr = 1184.73F(000) = 556.000
Triclinic, P1Dx = 2.807 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 7.3983 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6333 (2) ÅCell parameters from 2953 reflections
c = 12.5946 (5) Åθ = 5–27°
α = 95.1761 (12)°µ = 11.95 mm1
β = 94.6412 (13)°T = 150 K
γ = 96.578 (2)°Plate, yellow
V = 700.70 (4) Å30.10 × 0.06 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
2820 reflections with I > 3u(I)
Graphite monochromatorRint = 0.02
ω scansθmax = 27.4°, θmin = 5.4°
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
h = 89
Tmin = 0.46, Tmax = 0.89k = 99
5870 measured reflectionsl = 1616
3154 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 Prince (1982) modified Chebychev polynomial with four parameters (Watkin, 1994), 11.1, 14.6, 7.77, 2.08
wR(F2) = 0.056(Δ/σ)max = 0.001
S = 0.83Δρmax = 1.22 e Å3
2820 reflectionsΔρmin = 1.39 e Å3
191 parametersExtinction correction: Larson (1970)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 12.0 (11)
Crystal data top
(C3H12N2)2[U2O4(SO4)4(H2O)4]·2H2Oγ = 96.578 (2)°
Mr = 1184.73V = 700.70 (4) Å3
Triclinic, P1Z = 1
a = 7.3983 (2) ÅMo Kα radiation
b = 7.6333 (2) ŵ = 11.95 mm1
c = 12.5946 (5) ÅT = 150 K
α = 95.1761 (12)°0.10 × 0.06 × 0.01 mm
β = 94.6412 (13)°
Data collection top
Nonius KappaCCD
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
2820 reflections with I > 3u(I)
Tmin = 0.46, Tmax = 0.89Rint = 0.02
5870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023191 parameters
wR(F2) = 0.056H-atom parameters constrained
S = 0.83Δρmax = 1.22 e Å3
2820 reflectionsΔρmin = 1.39 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.49260.95620.73600.0200*
H20.46880.88380.85730.0200*
H30.32160.77820.58990.0169*
H40.22600.94900.57130.0169*
H50.79461.47610.97020.0158*
H60.62361.31830.96170.0158*
H70.83281.27250.98400.0158*
H80.79501.40030.63410.0211*
H90.58821.44700.60400.0211*
H100.62081.24730.63150.0211*
H110.89551.34620.81260.0138*
H120.72461.18840.80400.0138*
H130.69121.55570.78740.0156*
H140.37721.48210.73990.0245*
H150.39311.27770.76450.0245*
H160.43261.43750.86190.0245*
H171.08861.48920.65540.0311*
H181.10661.31730.56990.0311*
N10.7531 (6)1.3485 (6)0.9457 (3)0.0129
C30.4450 (7)1.4043 (8)0.7844 (5)0.0204
C10.7655 (7)1.3164 (6)0.8276 (4)0.0115
C20.6471 (7)1.4282 (6)0.7642 (4)0.0133
N20.6642 (7)1.3764 (6)0.6490 (4)0.0178
O10.0636 (5)1.0956 (5)0.7338 (3)0.0130
O20.0987 (5)0.6631 (5)0.8066 (3)0.0165
O30.1697 (5)0.7613 (5)0.6487 (3)0.0131
O40.1830 (5)0.8925 (5)0.8680 (3)0.0118
O50.1872 (5)0.9863 (5)0.9501 (3)0.0118
O60.4115 (5)0.9355 (5)0.7946 (3)0.0164
O70.2060 (5)0.8312 (5)0.6002 (3)0.0138
O80.3691 (5)0.9913 (4)0.6361 (3)0.0129
O90.4780 (5)0.6865 (5)0.5722 (3)0.0140
O100.2593 (6)0.8546 (5)0.4764 (3)0.0183
O110.4306 (5)0.7929 (5)0.9675 (3)0.0143
O120.1290 (5)0.7093 (5)1.0132 (3)0.0135
O131.0267 (6)1.4074 (6)0.5942 (3)0.0246
U10.07888 (2)0.87952 (2)0.770225 (14)0.0086
S10.32052 (15)0.82608 (15)0.58177 (9)0.0089
S20.23260 (15)0.84808 (15)0.97579 (9)0.0081
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0119 (19)0.013 (2)0.014 (2)0.0007 (15)0.0033 (15)0.0043 (16)
C30.013 (2)0.023 (3)0.025 (3)0.003 (2)0.001 (2)0.003 (2)
C10.014 (2)0.008 (2)0.012 (2)0.0035 (17)0.0001 (17)0.0002 (17)
C20.016 (2)0.010 (2)0.013 (2)0.0004 (18)0.0015 (18)0.0016 (17)
N20.023 (2)0.016 (2)0.013 (2)0.0009 (17)0.0013 (17)0.0016 (16)
O10.0101 (16)0.0144 (17)0.0154 (17)0.0006 (13)0.0024 (13)0.0059 (13)
O20.0143 (17)0.0122 (17)0.0233 (19)0.0029 (13)0.0001 (14)0.0039 (14)
O30.0085 (16)0.0141 (17)0.0168 (18)0.0037 (13)0.0014 (13)0.0020 (13)
O40.0097 (16)0.0163 (17)0.0100 (16)0.0020 (13)0.0039 (12)0.0017 (13)
O50.0089 (16)0.0126 (16)0.0130 (17)0.0013 (12)0.0003 (12)0.0021 (13)
O60.0082 (16)0.028 (2)0.0132 (17)0.0038 (14)0.0002 (13)0.0038 (15)
O70.0109 (16)0.0180 (17)0.0127 (17)0.0016 (13)0.0041 (13)0.0007 (14)
O80.0110 (16)0.0101 (16)0.0184 (18)0.0042 (13)0.0043 (13)0.0005 (13)
O90.0091 (16)0.0102 (16)0.0216 (19)0.0003 (13)0.0011 (13)0.0005 (14)
O100.028 (2)0.0224 (19)0.0075 (17)0.0103 (16)0.0077 (15)0.0044 (14)
O110.0054 (15)0.0216 (18)0.0149 (17)0.0030 (13)0.0001 (13)0.0039 (14)
O120.0122 (16)0.0115 (16)0.0164 (18)0.0012 (13)0.0021 (13)0.0023 (13)
O130.027 (2)0.025 (2)0.025 (2)0.0145 (17)0.0071 (17)0.0060 (17)
U10.0068 (1)0.0095 (1)0.0095 (1)0.00108 (6)0.00123 (6)0.00091 (6)
S10.0082 (5)0.0090 (5)0.0096 (5)0.0013 (4)0.0013 (4)0.0006 (4)
S20.0063 (5)0.0104 (5)0.0074 (5)0.0002 (4)0.0010 (4)0.0003 (4)
Geometric parameters (Å, º) top
U1—O11.765 (3)O6—H11.000
U1—O21.772 (4)O6—H21.000
U1—O32.335 (3)O7—H31.000
U1—O42.385 (3)O7—H41.000
U1—O52.380 (3)O13—H171.000
U1—O62.437 (3)O13—H181.000
U1—O72.420 (3)N1—H51.000
S1—O31.500 (3)N1—H61.000
S1—O81.475 (3)N1—H71.000
S1—O91.475 (4)N2—H81.000
S1—O101.463 (4)N2—H91.000
S2—O41.493 (4)N2—H101.000
S2i—O51.490 (3)C1—H111.000
S2—O111.470 (3)C1—H121.000
S2—O121.466 (4)C2—H131.000
N1—C11.498 (6)C3—H141.000
N2—C21.489 (7)C3—H151.000
C1—C21.520 (7)C3—H161.000
C2—C31.530 (7)
O1—U1—O2178.91 (16)N2—C2—C1106.6 (4)
O1—U1—O391.88 (14)N2—C2—C3109.1 (4)
O1—U1—O490.74 (14)C1—C2—C3114.6 (4)
O1—U1—O592.44 (14)H1—O6—H2114.895
O1—U1—O691.42 (14)H1—O6—U1125.07
O1—U1—O784.59 (15)H2—O6—U1114.75
O2—U1—O388.87 (15)H3—O7—H4104.304
O2—U1—O490.22 (15)H3—O7—U1124.91
O2—U1—O587.36 (15)H4—O7—U1107.01
O2—U1—O687.51 (15)H17—O13—H18111.243
O2—U1—O794.84 (15)H5—N1—H6109.476
O3—U1—O474.72 (12)H5—N1—H7109.476
O3—U1—O5147.53 (12)H6—N1—H7109.476
O3—U1—O6143.92 (12)H5—N1—C1109.5
O3—U1—O774.91 (12)H6—N1—C1109.4
O4—U1—O573.06 (12)H7—N1—C1109.5
O4—U1—O6141.14 (12)H14—C3—H15109.476
O4—U1—O7149.08 (12)H14—C3—H16109.476
O5—U1—O668.09 (12)H15—C3—H16109.476
O5—U1—O7137.55 (12)H14—C3—C2109.5
O6—U1—O769.66 (12)H15—C3—C2109.4
O3—S1—O8109.3 (2)H16—C3—C2109.5
O3—S1—O9106.8 (2)H11—C1—H12109.467
O3—S1—O10108.9 (2)H11—C1—N1108.8
O8—S1—O9109.9 (2)H12—C1—N1108.8
O8—S1—O10111.2 (2)H11—C1—C2108.8
O9—S1—O10110.7 (2)H12—C1—C2108.8
O4—S2—O5i106.9 (2)H13—C2—C3105.4
O4—S2—O11107.8 (2)H13—C2—C1107.9
O4—S2—O12110.8 (2)H13—C2—N2113.5
O5i—S2—O11109.6 (2)H8—N2—H9109.475
O5i—S2—O12110.0 (2)H8—N2—H10109.476
O11—S2—O12111.7 (2)H9—N2—H10109.476
U1—O3—S1138.5 (2)H8—N2—C2109.5
U1—O4—S2135.8 (2)H9—N2—C2109.4
U1—O5—S2i142.6 (2)H10—N2—C2109.5
N1—C1—C2112.2 (4)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···O8ii1.001.712.705 (5)180
O6—H2···O11ii1.001.762.756 (5)180
O7—H3···O9ii1.001.732.732 (5)180
O7—H4···O10iii1.001.672.665 (5)180
N1—H5···O12iv1.001.822.824 (6)179
N1—H6···O11i1.001.902.846 (5)156
N1—H7···O12v1.002.182.878 (6)126
N2—H8···O131.001.822.812 (6)170
N2—H9···O9iv1.002.012.909 (6)148
N2—H10···O8ii1.001.972.911 (6)156
O13—H18···O10vi1.001.912.909 (5)180
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z+2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C3H12N2)2[U2O4(SO4)4(H2O)4]·2H2O
Mr1184.73
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.3983 (2), 7.6333 (2), 12.5946 (5)
α, β, γ (°)95.1761 (12), 94.6412 (13), 96.578 (2)
V3)700.70 (4)
Z1
Radiation typeMo Kα
µ (mm1)11.95
Crystal size (mm)0.10 × 0.06 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Otwinowski & Minor, 1997)
Tmin, Tmax0.46, 0.89
No. of measured, independent and
observed [I > 3u(I)] reflections
5870, 3154, 2820
Rint0.02
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 0.83
No. of reflections2820
No. of parameters191
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 1.39

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1993), CRYSTALS (Betteridge et al., 2003), ATOMS (Dowty, 2000).

Selected geometric parameters (Å, º) top
U1—O11.765 (3)S1—O101.463 (4)
U1—O21.772 (4)S2—O41.493 (4)
U1—O32.335 (3)S2i—O51.490 (3)
U1—O42.385 (3)S2—O111.470 (3)
U1—O52.380 (3)S2—O121.466 (4)
U1—O62.437 (3)N1—C11.498 (6)
U1—O72.420 (3)N2—C21.489 (7)
S1—O31.500 (3)C1—C21.520 (7)
S1—O81.475 (3)C2—C31.530 (7)
S1—O91.475 (4)
O1—U1—O2178.91 (16)O6—U1—O769.66 (12)
O1—U1—O391.88 (14)O3—S1—O8109.3 (2)
O1—U1—O490.74 (14)O3—S1—O9106.8 (2)
O1—U1—O592.44 (14)O3—S1—O10108.9 (2)
O1—U1—O691.42 (14)O8—S1—O9109.9 (2)
O1—U1—O784.59 (15)O8—S1—O10111.2 (2)
O2—U1—O388.87 (15)O9—S1—O10110.7 (2)
O2—U1—O490.22 (15)O4—S2—O5i106.9 (2)
O2—U1—O587.36 (15)O4—S2—O11107.8 (2)
O2—U1—O687.51 (15)O4—S2—O12110.8 (2)
O2—U1—O794.84 (15)O5i—S2—O11109.6 (2)
O3—U1—O474.72 (12)O5i—S2—O12110.0 (2)
O3—U1—O5147.53 (12)O11—S2—O12111.7 (2)
O3—U1—O6143.92 (12)U1—O3—S1138.5 (2)
O3—U1—O774.91 (12)U1—O4—S2135.8 (2)
O4—U1—O573.06 (12)U1—O5—S2i142.6 (2)
O4—U1—O6141.14 (12)N1—C1—C2112.2 (4)
O4—U1—O7149.08 (12)N2—C2—C1106.6 (4)
O5—U1—O668.09 (12)N2—C2—C3109.1 (4)
O5—U1—O7137.55 (12)C1—C2—C3114.6 (4)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···O8ii1.001.712.705 (5)180
O6—H2···O11ii1.001.762.756 (5)180
O7—H3···O9ii1.001.732.732 (5)180
O7—H4···O10iii1.001.672.665 (5)180
N1—H5···O12iv1.001.822.824 (6)179
N1—H6···O11i1.001.902.846 (5)156
N1—H7···O12v1.002.182.878 (6)126
N2—H8···O131.001.822.812 (6)170
N2—H9···O9iv1.002.012.909 (6)148
N2—H10···O8ii1.001.972.911 (6)156
O13—H18···O10vi1.001.912.909 (5)180
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z+2; (vi) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC) for funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals
First citationBataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487–3493. Web of Science CSD CrossRef CAS
First citationBazan, B., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I. & Rojo, T. (2000). Inorg. Chem. 39, 6056–6060. Web of Science CSD CrossRef PubMed CAS
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals
First citationBu, X., Feng, P., Gier, T. E., Zhao, D. & Stucky, G. D. (1998). J. Am. Chem. Soc. 120, 13389–13397. Web of Science CSD CrossRef CAS
First citationBull, I., Wheatley, P. S., Lightfoot, P., Morris, R. E., Sastre, E. & Wright, P. A. (2002). Chem. Commun. pp. 1180–1181. Web of Science CSD CrossRef
First citationBurns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551–1570. CAS
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292. Web of Science CrossRef CAS
First citationChoudhury, A., Krishnamoorthy, J. & Rao, C. N. R. (2001). Chem. Commun. pp. 2610–2611. Web of Science CSD CrossRef
First citationChoudhury, A., Kumar, D. U. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 158–161. Web of Science CSD CrossRef CAS
First citationConradsson, T., Zou, X. & Dadachov, M. S. (2000). Inorg. Chem. 39, 1716–1720. Web of Science CrossRef PubMed CAS
First citationDoran, M., Walker, S. M. & O'Hare, D. (2001). Chem. Commun. pp. 1988–1989. Web of Science CSD CrossRef
First citationDoran, M. B., Cockbain, B. E., Norquist, A. J. & O'Hare, D. (2004). Dalton Trans. pp. 3810–3814. Web of Science CSD CrossRef
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947. Web of Science CSD CrossRef
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003a). Inorg. Chem. 42, 6989–6995. Web of Science CSD CrossRef PubMed CAS
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003b). Acta Cryst. E59, m373–m375. Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003c). Acta Cryst. E59, m762–m764. Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003d). Acta Cryst. E59, m765–m767. Web of Science CSD CrossRef IUCr Journals
First citationDoran, M. B., Norquist, A. J., Stuart, C. S. & O'Hare, D. (2004). Acta Cryst. E60, m996–m998. Web of Science CSD CrossRef IUCr Journals
First citationDowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
First citationEkambaram, S. & Sevov, S. C. (2000). Inorg. Chem. 39, 2405–2410. Web of Science CSD CrossRef PubMed CAS
First citationFernandez, S., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I. & Rojo, T. (2002). Chem. Mater. 14, 2300–2307. Web of Science CSD CrossRef CAS
First citationGutnick, J. R., Muller, E. A., Sarjeant, A. N. & Norquist, A. J. (2004). Inorg. Chem. 43, 6528–6530. Web of Science CSD CrossRef PubMed CAS
First citationHarrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2000). Angew. Chem. Int. Ed. 39, 3808–3810. Web of Science CrossRef CAS
First citationKhan, M. I., Cevik, S. & Doedens, R. J. (1999). Inorg. Chim. Acta, 292, 112–116. Web of Science CrossRef CAS
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
First citationMorimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335–341. CSD CrossRef IUCr Journals Web of Science
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
First citationNorquist, A. J., Doran, M. B. & O'Hare, D. (2003). Solid State Sci. 5, 1149–1158. Web of Science CSD CrossRef CAS
First citationNorquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003a). Inorg. Chem. 42, 5949–5953. Web of Science CSD CrossRef PubMed CAS
First citationNorquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003b). J. Chem. Soc. Dalton Trans. pp. 1168–1175. CrossRef
First citationNorquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179–5184. Web of Science CSD CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationPaul, G., Choudhury, A., Nagarajan, R. & Rao, C. N. R. (2003). Inorg. Chem. 42, 2004–2013. Web of Science CSD CrossRef PubMed CAS
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002a). Chem. Commun. pp. 1904–1905. Web of Science CSD CrossRef
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002b). J. Chem. Soc. pp. 3859–3867.
First citationPaul, G., Choudhury, A., & Rao, C. N. R. (2003). Chem. Mater. 15, 1174–1180. Web of Science CSD CrossRef CAS
First citationPaul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 4297–4300. Web of Science CrossRef CAS
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
First citationReisner, B. A., Tripathi, A. & Parise, J. B. (2001). J. Mater. Chem. 11, 887–890. Web of Science CrossRef CAS
First citationStuart, C. L., Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m446–m448. Web of Science CSD CrossRef IUCr Journals
First citationThomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88–92. Web of Science CSD CrossRef CAS
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 4496–4501. Web of Science CSD CrossRef PubMed CAS
First citationWalker, S. M., Halasyamani, P. S., Allen, S. & O'Hare, D. (1999). J. Am. Chem. Soc. 121, 10513–10521. Web of Science CSD CrossRef CAS
First citationWang, D., Yu, R., Xu, Y., Feng, S., Xu, R., Kumada, N., Kinomura, N., Matumura, Y. & Takano, M. (2002). Chem. Lett. pp. 1120–1121. Web of Science CSD CrossRef
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals
First citationXing, Y., Liu, Y., Shi, Z., Meng, H. & Pang, W. (2003). J. Solid State Chem. 174, 381–385. Web of Science CSD CrossRef CAS
First citationXing, Y., Shi, Z., Li, G. & Pang, W. (2003). J. Chem. Soc. Dalton Trans. pp. 940–943. CSD CrossRef

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds