organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acet­amido-N-benzyl-1,4-imino-1,2,4-tri­de­oxy-L-arabinitol 0.33-hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk

(Received 5 April 2005; accepted 5 May 2005; online 14 May 2005)

The solid-state conformation of the title compound, C14H20N2O3·0.33H2O, a potent hexosaminidase inhibitor, prepared from D-lyxonolactone, has been established by X-ray crystallography. The asymmetric unit contains three mol­ecules, which have very similar conformations, together with a mol­ecule of water.

Comment

β-N-Acetyl­glucosaminidases (NAGs) have attracted considerable research interest as therapeutic targets for some lysosomal storage diseases (Tropak et al., 2004[Tropak, M. B., Reid, S. P., Guiral, M., Withers, S. G. & Mahuran, D. (2004). J. Biol. Chem. 279, 13478-13487.]), cancer (Woynarowska et al., 1992[Woynarowska, B., Wilkiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J. & Bernacki, R. J. (1992). Anticancer Res. 12, 161-166.]) and osteoarthritis (Liu et al., 2001[Liu, J. J., Shikhman, A. R., Lotz, M. K. & Wong, C. H. (2001). Chem. Biol. 8, 701-711.]), and as antifungal agents (Horsch et al., 1997[Horsch, M., Mayer, C., Sennhauser, U. & Rast, D. M. (1997). Pharmacol. Therapeut. 76, 187-218.]) and catalysts for biomass degradation (Kato, Uno et al., 2005[Kato, M., Uno, T., Hiratake, J. & Sakat, K. (2005). Bioorg. Med. Chem. 13, 1563-1571.]). Monosaccharides in which the ring oxy­gen has been replaced by nitro­gen constitute a general class of glycosidase inhibitors (Watson et al., 2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]; Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]). All potent inhibitors of NAGs in this class have hitherto been pyran­ose analogues of NAG such as the piperidine (1[link]) (Fleet et al., 1986[Fleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. pp. 1051-1054.]) and NAG-thia­zoline (Knapp et al., 1996[Knapp, S., Vocadlo, D., Gao, Z., Kirk, B., Lou, J. & Withers, S. G. (1996). J. Am. Chem. Soc. 118, 6804-6805.]); other heterocyclic compounds containing a pyran­ose ring (Terinek & Vasella, 2005[Terinek, T. & Vasella, A. (2005). Helv. Chim. Acta, 88, 10-22.]; van den Berg et al., 2004[Berg, R. J. B. N. van den, Donker-Koopman, W., van Boom, J. H., Aerts, H. M. F. G. & Noort, D. (2004). Bioorg. Med. Chem. 12, 891-902.]) also show promise as potential chemotherapeutic agents. In contrast few five-ring pyrrolidine analogues, none of which are potent, have been reported (Croucher et al., 1994[Croucher, P. D., Furneaux, R. H. & Lynch, G. P. (1994). Tetrahedron, 50, 13299-13312.]; Liessem et al., 1993[Liessem, B., Giannis, A., Sandhoff, K. & Nieger, M. (1993). Carbohydr. Res. 250, 19-30.]; Liu et al., 2004[Liu, J. J., Numa, M. M. D., Liu, H. T., Huang, S. J., Sears, P., Shikhman, A. R. & Wong, C. H. (2004). J. Org. Chem. 69, 6273-6283.]).[link]

[Scheme 1]

A systematic study of the stereoisomers of a set of pyrrol­idine analogues, (3[link]), as potential NAG inhibitors (Harding et al., 2005[Harding, C. C., Watkin, D. J., Rountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o930-o932.]) is in progress. Both enantiomers of imino sugars are frequently inhibitors of the same enantiospecific enzyme (Kato, Kato et al., 2005[Kato, A., Kato. N., Kano, E., Adachi. I., Ikeda, K., Yu, L., Okamoto, T., Banba, Y., Ouchi, H., Takahata, H. & Asano, N. (2005). J. Med. Chem. 48, 2036-2044.]; Asano et al., 2005[Asano, N., Ikeda, K., Yu, L., Kato, A., Takebayashi, K., Adachi, I., Kato, I., Ouchi, H., Takahata, H. & Fleet, G. W. J. (2005). Tetrahedron Asymmetry, 16, 223-229.]; Yu et al., 2004[Yu, C.-Y., Asano, N., Ikeda, K., Wang, M.-X., Butters, T. D., Wormald, M. R., Dwek, R. A., Winters, A. L., Nash, R. J. & Fleet, G. W. J. (2004). Chem. Commun. pp. 1936-1937.]). Solid-state and solution studies of the conformations of the diastereomers of (3[link]) may yield an understanding of this phenomenon; this paper reports the crystal structure of the title compound, (4[link]), which is a potent inhibitor of a number of hexosaminidases, prepared from D-lyxonolactone (5[link]).

The asymmetric unit of (4[link]) contains three sugar mol­ecules (Figs. 1[link] and 2[link]), together with a solvent water mol­ecule. The water mol­ecule is involved in the hydrogen bonding, and forms part of a hydro­philic layer which is surrounded by the hydro­phobic benzyl groups (Figs. 3[link] and 4[link]). The three independent mol­ecules differ only slightly in conformation from each other, the main difference being that the hydroxyl group of the middle mol­ecule in Fig. 2[link] points almost in the opposite direction from that of its counterparts in the other two mol­ecules.

[Figure 1]
Figure 1
The structure of one mol­ecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The asymmetric unit, containing three mol­ecules of sugar and a solvent water mol­ecule.
[Figure 3]
Figure 3
A view down the b axis, showing the extensive hydrogen bonding as dashed lines.
[Figure 4]
Figure 4
A view down the a axis, showing the extensive hydrogen bonding as dashed lines.

Experimental

A solution of the title compound was dissolved in aceto­nitrile. The vial was placed inside another vial containing cyclo­hexane and closed to the atmosphere. This system was then left to undergo competitive diffusion for two weeks. Small amounts of water also found their way into the system. This yielded small plate-like clear crystals of the hydrated title compound. The full experimental method will be published separately (Rountree et al., 2005[Rountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A., Watkin, D. J., Asano, N., Nash, R. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation.]).

Crystal data
  • C14H20N2O3·H2O

  • Mr = 270.33

  • Orthorhombic, P212121

  • a = 9.2012 (1) Å

  • b = 16.9571 (3) Å

  • c = 26.3555 (4) Å

  • V = 4112.13 (10) Å3

  • Z = 12

  • Dx = 1.310 Mg m−3

  • Cell parameters from 5201 reflections

  • θ = 1–28°

  • μ = 0.09 mm−1

  • T = 190 K

  • Plate, colourless

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.98, Tmax = 1.00

  • 9440 measured reflections

  • 5418 independent reflections

  • 3417 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 27.9°

  • h = −12 → 12

  • k = −22 → 22

  • l = −34 → 34

Refinement
  • Refinement on F2

  • R[F2 >2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 0.81

  • 5394 reflections

  • 523 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.06P)2 + 1.13P] where P = (max(Fo2,0) + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H2⋯N208 0.87 2.07 2.889 (3) 157
O118—H4⋯O103i 0.83 1.86 2.683 (3) 174
N104—H6⋯O219ii 0.85 2.15 2.975 (3) 167
O19—H8⋯O118iii 0.82 1.92 2.652 (3) 149
O219—H3⋯O301 0.83 1.91 2.702 (3) 161
O301—H58⋯N8iii 0.83 2.06 2.887 (3) 174
O301—H67⋯O3iv 0.83 1.96 2.778 (3) 177
O119—H7⋯O18v 0.84 1.96 2.799 (3) 175
O218—H62⋯O203i 0.87 1.99 2.841 (3) 167
N204—H1⋯O19 0.84 2.25 3.049 (3) 157
Symmetry codes: (i) 1+x,y,z; (ii) x,y-1,z; (iii) [2-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (iv) [1-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (v) [2-x,y-{\script{1\over 2}},{\script{1\over 2}}-z].

H atoms were observed in difference electron density maps. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H = 0.93–98 Å, N—H = 0.86–0.89 Å and O—H = 0.82 Å, and with Uiso(H) in the range 1.2–1.5Ueq of the parent atom], after which they were refined with riding constraints. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration is known from the synthesis. Several low-angle reflections were omitted from the refinement because they appeared to be obscured by the beam-stop.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-Acetamido-N-benzyl-1,4-imino-1,2,4-trideoxy-L-arabinitol top
Crystal data top
C14H20N2O3·0.33H2OF(000) = 1744
Mr = 270.33Dx = 1.310 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5201 reflections
a = 9.2012 (1) Åθ = 1–28°
b = 16.9571 (3) ŵ = 0.09 mm1
c = 26.3555 (4) ÅT = 190 K
V = 4112.13 (10) Å3Plate, colourless
Z = 120.20 × 0.20 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.98, Tmax = 1.00k = 2222
9440 measured reflectionsl = 3434
5418 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(F2) + (0.06P)2 + 1.13P]
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.81(Δ/σ)max = 0.000285
5394 reflectionsΔρmax = 0.49 e Å3
523 parametersΔρmin = 0.52 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5149 (3)0.25308 (17)0.29237 (10)0.0329
C20.5615 (3)0.32281 (18)0.32279 (10)0.0289
O30.4747 (2)0.35991 (14)0.34941 (9)0.0519
N40.7027 (2)0.34176 (13)0.32091 (9)0.0309
C50.7647 (3)0.40717 (16)0.34910 (10)0.0282
C60.8564 (3)0.46433 (16)0.31777 (10)0.0281
C70.9565 (3)0.50019 (16)0.35811 (10)0.0273
N80.9979 (2)0.42977 (13)0.38835 (8)0.0244
C90.8629 (3)0.38251 (18)0.39366 (11)0.0358
C101.0585 (4)0.45307 (18)0.43803 (10)0.0403
C111.0792 (3)0.38655 (16)0.47521 (10)0.0285
C121.0064 (3)0.38837 (18)0.52135 (10)0.0353
C131.0276 (4)0.32916 (19)0.55679 (11)0.0401
C141.1226 (4)0.26868 (19)0.54746 (11)0.0394
C151.1986 (4)0.26671 (18)0.50188 (12)0.0396
C161.1767 (4)0.32508 (18)0.46606 (11)0.0375
C171.0872 (3)0.54453 (17)0.33765 (12)0.0341
O181.0444 (3)0.61741 (12)0.31503 (7)0.0409
O190.7650 (2)0.52132 (12)0.29420 (7)0.0386
N2081.0005 (2)0.75180 (13)0.38063 (8)0.0244
C2070.9854 (3)0.81926 (16)0.34541 (10)0.0266
C2060.8675 (3)0.78988 (16)0.30954 (10)0.0259
C2050.7577 (3)0.75339 (16)0.34613 (9)0.0249
C2090.8489 (3)0.73235 (18)0.39399 (10)0.0289
N2040.6755 (2)0.68711 (14)0.32625 (9)0.0299
C2020.5288 (3)0.68422 (18)0.32616 (10)0.0295
O2030.4525 (2)0.73913 (13)0.34197 (8)0.0397
C2010.4618 (3)0.60970 (18)0.30615 (12)0.0405
O2190.8075 (2)0.85363 (11)0.28092 (7)0.0359
C2171.1263 (3)0.84554 (17)0.32032 (12)0.0342
O2181.1927 (2)0.78501 (13)0.29169 (8)0.0432
C2101.0880 (4)0.77459 (18)0.42535 (10)0.0374
C2111.0966 (3)0.71239 (17)0.46650 (10)0.0285
C2161.1992 (3)0.65211 (17)0.46441 (11)0.0337
C2151.2109 (4)0.59832 (18)0.50349 (11)0.0368
C2141.1181 (4)0.60225 (19)0.54500 (11)0.0380
C2131.0179 (4)0.6616 (2)0.54761 (11)0.0411
C2121.0074 (3)0.71696 (19)0.50875 (11)0.0370
N1081.0078 (2)0.07278 (13)0.38870 (8)0.0258
C1071.0040 (3)0.12943 (16)0.34668 (10)0.0270
C1060.8878 (3)0.09510 (19)0.31214 (10)0.0311
C1050.7724 (3)0.06519 (17)0.34883 (10)0.0275
C1090.8567 (3)0.04715 (19)0.39812 (10)0.0325
N1040.6904 (2)0.00024 (14)0.32814 (8)0.0313
C1020.5453 (3)0.00048 (18)0.32319 (11)0.0311
O1030.4687 (2)0.05218 (14)0.34146 (9)0.0495
C1010.4821 (3)0.06877 (17)0.29502 (12)0.0404
O1190.8274 (2)0.15171 (13)0.27873 (8)0.0480
C1171.1487 (3)0.14107 (18)0.32131 (12)0.0369
O1181.2028 (2)0.06854 (13)0.30106 (7)0.0442
C1101.0773 (4)0.10462 (18)0.43404 (10)0.0395
C1111.0865 (3)0.04530 (17)0.47656 (10)0.0302
C1161.1708 (3)0.02244 (18)0.47184 (11)0.0355
C1151.1787 (4)0.07659 (19)0.51094 (11)0.0397
C1141.1003 (4)0.06453 (19)0.55490 (11)0.0381
C1131.0178 (4)0.0021 (2)0.56062 (11)0.0391
C1121.0117 (3)0.05756 (18)0.52194 (11)0.0363
O3010.8143 (2)0.84175 (12)0.17871 (8)0.0435
H10.72270.64800.31560.0426*
H21.05690.65560.33650.0747*
H41.28190.06250.31560.0796*
H50.75620.31460.30210.0451*
H60.73670.03990.31740.0446*
H80.80700.53220.26780.0697*
H110.59900.22950.27760.0595*
H120.47130.21530.31370.0599*
H130.44520.26880.26670.0593*
H510.68160.43620.36270.0403*
H610.91340.43490.29250.0402*
H710.90190.53660.38030.0387*
H910.81150.39570.42600.0516*
H920.88420.32570.39250.0516*
H1011.15640.47760.43160.0583*
H1020.99160.49110.45340.0573*
H1210.94030.43090.52800.0507*
H1310.97800.33070.58770.0572*
H1411.13690.22930.57130.0567*
H1511.26160.22560.49430.0568*
H1611.22670.32370.43510.0535*
H1711.15820.55480.36460.0488*
H1721.13660.51140.31100.0480*
H20710.94720.86470.36520.0382*
H20610.90740.75010.28670.0361*
H20510.68800.79390.35440.0357*
H20910.81940.76340.42340.0406*
H20920.84060.67660.40200.0412*
H21711.19400.86440.34770.0482*
H21721.10520.88990.29710.0482*
H21011.04100.82200.44160.0534*
H21021.18670.78790.41400.0536*
H21611.26200.64880.43570.0478*
H21511.28050.55840.50200.0533*
H21411.12680.56480.57070.0548*
H21310.95610.66530.57560.0590*
H21210.94070.75830.51120.0530*
H10710.97480.18160.36000.0381*
H10610.92940.05090.29160.0443*
H10510.70630.10870.35500.0393*
H10910.81520.07720.42670.0468*
H10920.85150.00910.40640.0468*
H10110.40440.04960.27370.0731*
H10120.44340.10700.31760.0745*
H10130.55400.09370.27460.0739*
H11711.21830.16250.34570.0523*
H11721.13610.17900.29370.0524*
H11011.17810.11860.42420.0564*
H11021.02590.15210.44600.0565*
H11611.22580.03190.44160.0501*
H11511.23720.12130.50770.0562*
H11411.10520.10170.58030.0545*
H11310.96850.01040.59090.0570*
H11210.95650.10420.52670.0514*
H30.82960.84690.25080.0654*
H580.86390.86670.15780.0786*
H670.72950.84800.16930.0784*
H70.86640.14450.25010.0856*
H20110.35980.61200.30300.0739*
H150.49690.59890.27290.0744*
H190.48640.56480.32570.0735*
H621.26310.76490.30920.0791*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (16)0.0326 (15)0.0365 (15)0.0034 (15)0.0011 (14)0.0034 (13)
C20.0233 (15)0.0400 (17)0.0233 (14)0.0007 (14)0.0025 (13)0.0012 (14)
O30.0264 (12)0.0688 (16)0.0603 (14)0.0083 (12)0.0053 (12)0.0318 (13)
N40.0222 (13)0.0337 (14)0.0369 (13)0.0001 (11)0.0006 (12)0.0104 (12)
C50.0222 (15)0.0329 (15)0.0295 (14)0.0006 (13)0.0001 (13)0.0043 (13)
C60.0247 (15)0.0315 (15)0.0280 (14)0.0034 (13)0.0023 (13)0.0004 (13)
C70.0265 (16)0.0269 (14)0.0284 (13)0.0023 (13)0.0005 (13)0.0024 (13)
N80.0211 (12)0.0256 (11)0.0266 (11)0.0056 (10)0.0050 (10)0.0022 (10)
C90.0328 (18)0.0376 (17)0.0371 (16)0.0100 (15)0.0051 (15)0.0081 (14)
C100.052 (2)0.0366 (17)0.0321 (15)0.0121 (17)0.0131 (16)0.0043 (14)
C110.0265 (16)0.0279 (15)0.0309 (15)0.0037 (13)0.0076 (13)0.0041 (13)
C120.0343 (18)0.0363 (17)0.0353 (15)0.0012 (15)0.0028 (15)0.0008 (14)
C130.0390 (19)0.049 (2)0.0319 (16)0.0034 (18)0.0015 (15)0.0038 (15)
C140.045 (2)0.0359 (18)0.0375 (17)0.0015 (17)0.0102 (16)0.0075 (15)
C150.041 (2)0.0326 (18)0.0448 (17)0.0073 (16)0.0071 (16)0.0041 (16)
C160.0405 (19)0.0434 (18)0.0287 (15)0.0020 (16)0.0040 (15)0.0075 (14)
C170.0318 (16)0.0290 (16)0.0415 (16)0.0058 (14)0.0041 (15)0.0058 (14)
O180.0569 (14)0.0285 (11)0.0373 (11)0.0037 (11)0.0019 (11)0.0040 (10)
O190.0360 (12)0.0448 (13)0.0349 (10)0.0071 (11)0.0025 (10)0.0081 (10)
N2080.0215 (12)0.0256 (11)0.0261 (11)0.0021 (11)0.0037 (10)0.0002 (10)
C2070.0267 (16)0.0226 (13)0.0305 (14)0.0016 (13)0.0010 (13)0.0018 (12)
C2060.0234 (15)0.0269 (14)0.0274 (14)0.0033 (13)0.0030 (12)0.0011 (13)
C2050.0209 (14)0.0270 (14)0.0268 (14)0.0023 (13)0.0045 (12)0.0055 (13)
C2090.0242 (15)0.0363 (17)0.0261 (14)0.0024 (13)0.0010 (12)0.0013 (13)
N2040.0220 (13)0.0307 (13)0.0369 (13)0.0010 (11)0.0026 (12)0.0008 (12)
C2020.0263 (16)0.0364 (16)0.0256 (14)0.0012 (14)0.0072 (14)0.0074 (14)
O2030.0241 (11)0.0481 (13)0.0468 (12)0.0036 (11)0.0008 (10)0.0061 (11)
C2010.0290 (17)0.0357 (18)0.0567 (19)0.0059 (15)0.0143 (16)0.0047 (16)
O2190.0411 (13)0.0340 (11)0.0328 (10)0.0106 (10)0.0008 (10)0.0051 (9)
C2170.0321 (16)0.0335 (16)0.0371 (16)0.0010 (14)0.0007 (15)0.0013 (15)
O2180.0337 (13)0.0512 (13)0.0447 (12)0.0003 (11)0.0045 (11)0.0075 (11)
C2100.0388 (18)0.0368 (17)0.0366 (16)0.0084 (16)0.0126 (15)0.0034 (14)
C2110.0249 (15)0.0313 (15)0.0294 (14)0.0027 (14)0.0080 (13)0.0005 (13)
C2160.0290 (16)0.0427 (18)0.0293 (15)0.0016 (15)0.0040 (14)0.0079 (14)
C2150.0416 (19)0.0318 (16)0.0369 (17)0.0042 (16)0.0102 (16)0.0040 (14)
C2140.0398 (19)0.0429 (18)0.0313 (16)0.0037 (17)0.0121 (15)0.0035 (15)
C2130.0312 (18)0.061 (2)0.0305 (15)0.0033 (18)0.0027 (15)0.0012 (16)
C2120.0305 (17)0.0433 (17)0.0373 (16)0.0095 (16)0.0093 (15)0.0046 (15)
N1080.0212 (12)0.0284 (12)0.0278 (11)0.0041 (11)0.0051 (11)0.0012 (10)
C1070.0255 (16)0.0255 (14)0.0300 (14)0.0007 (13)0.0035 (13)0.0001 (13)
C1060.0206 (15)0.0456 (18)0.0270 (14)0.0077 (14)0.0022 (13)0.0057 (14)
C1050.0189 (14)0.0345 (15)0.0291 (14)0.0016 (13)0.0017 (12)0.0013 (13)
C1090.0262 (16)0.0454 (18)0.0259 (14)0.0046 (15)0.0004 (13)0.0024 (14)
N1040.0241 (13)0.0320 (13)0.0377 (13)0.0008 (11)0.0028 (11)0.0047 (12)
C1020.0192 (15)0.0392 (17)0.0348 (15)0.0019 (14)0.0046 (13)0.0028 (15)
O1030.0235 (11)0.0550 (14)0.0699 (15)0.0083 (11)0.0075 (11)0.0238 (13)
C1010.0325 (17)0.0360 (17)0.0526 (19)0.0030 (16)0.0099 (16)0.0039 (16)
O1190.0326 (12)0.0733 (16)0.0379 (11)0.0153 (12)0.0012 (10)0.0228 (12)
C1170.0296 (16)0.0410 (18)0.0402 (17)0.0024 (15)0.0004 (15)0.0103 (16)
O1180.0261 (11)0.0673 (16)0.0392 (11)0.0075 (12)0.0021 (10)0.0088 (12)
C1100.045 (2)0.0384 (18)0.0353 (16)0.0112 (16)0.0175 (16)0.0008 (15)
C1110.0321 (16)0.0309 (16)0.0275 (14)0.0084 (14)0.0133 (14)0.0001 (13)
C1160.0394 (18)0.0383 (17)0.0288 (15)0.0034 (16)0.0056 (14)0.0036 (14)
C1150.0407 (19)0.0382 (18)0.0400 (17)0.0059 (16)0.0068 (16)0.0024 (15)
C1140.0433 (19)0.0409 (18)0.0301 (15)0.0017 (17)0.0095 (15)0.0071 (15)
C1130.0358 (19)0.0520 (19)0.0294 (14)0.0033 (18)0.0050 (14)0.0014 (16)
C1120.0309 (17)0.0375 (17)0.0404 (17)0.0021 (15)0.0069 (15)0.0058 (15)
O3010.0327 (12)0.0586 (15)0.0392 (12)0.0022 (11)0.0009 (11)0.0154 (11)
Geometric parameters (Å, º) top
C1—C21.491 (4)O219—H30.828
C1—H110.954C217—O2181.413 (3)
C1—H120.941C217—H21711.004
C1—H130.970C217—H21720.988
C2—O31.235 (3)O218—H620.865
C2—N41.339 (4)C210—C2111.515 (4)
N4—C51.452 (3)C210—H21011.009
N4—H50.837C210—H21020.982
C5—C61.527 (4)C211—C2161.393 (4)
C5—C91.539 (4)C211—C2121.386 (4)
C5—H510.977C216—C2151.380 (4)
C6—C71.533 (4)C216—H21610.953
C6—O191.424 (3)C215—C2141.390 (4)
C6—H610.984C215—H21510.932
C7—N81.485 (3)C214—C2131.366 (4)
C7—C171.517 (4)C214—H21410.932
C7—H710.988C213—C2121.393 (4)
N8—C91.485 (3)C213—H21310.933
N8—C101.477 (3)C212—H21210.933
C9—H911.001N108—C1071.466 (3)
C9—H920.983N108—C1091.477 (3)
C10—C111.506 (4)N108—C1101.459 (3)
C10—H1011.006C107—C1061.520 (4)
C10—H1020.980C107—C1171.503 (4)
C11—C121.388 (4)C107—H10710.989
C11—C161.396 (4)C106—C1051.523 (4)
C12—C131.385 (4)C106—O1191.416 (3)
C12—H1210.960C106—H10611.000
C13—C141.370 (4)C105—C1091.544 (4)
C13—H1310.933C105—N1041.448 (4)
C14—C151.390 (5)C105—H10510.970
C14—H1410.927C109—H10910.987
C15—C161.383 (4)C109—H10920.980
C15—H1510.929N104—C1021.342 (4)
C16—H1610.937N104—H60.845
C17—O181.427 (3)C102—O1031.235 (3)
C17—H1710.981C102—C1011.493 (4)
C17—H1721.007C101—H10110.966
O18—H20.866C101—H10120.950
O19—H80.816C101—H10130.952
N208—C2071.480 (3)O119—H70.843
N208—C2091.476 (4)C117—O1181.430 (4)
N208—C2101.479 (3)C117—H11710.977
C207—C2061.523 (4)C117—H11720.979
C207—C2171.522 (4)O118—H40.829
C207—H20710.995C110—C1111.508 (4)
C206—C2051.528 (4)C110—H11010.992
C206—O2191.429 (3)C110—H11020.986
C206—H20610.976C111—C1161.392 (4)
C205—C2091.557 (4)C111—C1121.396 (4)
C205—N2041.453 (3)C116—C1151.382 (4)
C205—H20510.965C116—H11610.958
C209—H20910.975C115—C1141.380 (4)
C209—H20920.971C115—H11510.934
N204—C2021.350 (4)C114—C1131.369 (4)
N204—H10.842C114—H11410.920
C202—O2031.238 (3)C113—C1121.388 (4)
C202—C2011.502 (4)C113—H11310.929
C201—H20110.943C112—H11210.947
C201—H150.951O301—H580.831
C201—H190.946O301—H670.826
C2—C1—H11108.5C202—C201—H19112.8
C2—C1—H12110.0H2011—C201—H19108.6
H11—C1—H12107.7H15—C201—H19105.4
C2—C1—H13110.3C206—O219—H3107.8
H11—C1—H13111.5C207—C217—O218112.8 (2)
H12—C1—H13108.8C207—C217—H2171108.0
C1—C2—O3121.6 (3)O218—C217—H2171110.3
C1—C2—N4116.7 (3)C207—C217—H2172108.9
O3—C2—N4121.7 (3)O218—C217—H2172107.9
C2—N4—C5123.1 (2)H2171—C217—H2172108.9
C2—N4—H5117.4C217—O218—H62109.0
C5—N4—H5119.5N208—C210—C211114.7 (2)
N4—C5—C6115.2 (2)N208—C210—H2101108.3
N4—C5—C9114.4 (2)C211—C210—H2101105.9
C6—C5—C9105.1 (2)N208—C210—H2102108.7
N4—C5—H51105.3C211—C210—H2102109.2
C6—C5—H51108.1H2101—C210—H2102110.0
C9—C5—H51108.5C210—C211—C216121.2 (3)
C5—C6—C7102.1 (2)C210—C211—C212120.4 (3)
C5—C6—O19109.9 (2)C216—C211—C212118.3 (3)
C7—C6—O19112.9 (2)C211—C216—C215120.6 (3)
C5—C6—H61109.8C211—C216—H2161119.1
C7—C6—H61110.5C215—C216—H2161120.3
O19—C6—H61111.3C216—C215—C214120.5 (3)
C6—C7—N8102.0 (2)C216—C215—H2151120.2
C6—C7—C17115.2 (2)C214—C215—H2151119.3
N8—C7—C17112.7 (2)C215—C214—C213119.3 (3)
C6—C7—H71110.6C215—C214—H2141119.1
N8—C7—H71108.4C213—C214—H2141121.5
C17—C7—H71107.7C214—C213—C212120.4 (3)
C7—N8—C9105.7 (2)C214—C213—H2131120.1
C7—N8—C10110.9 (2)C212—C213—H2131119.5
C9—N8—C10112.1 (2)C213—C212—C211120.8 (3)
C5—C9—N8105.8 (2)C213—C212—H2121120.1
C5—C9—H91108.2C211—C212—H2121119.1
N8—C9—H91110.8C107—N108—C109107.3 (2)
C5—C9—H92111.1C107—N108—C110112.7 (2)
N8—C9—H92111.0C109—N108—C110112.6 (2)
H91—C9—H92109.8N108—C107—C106102.6 (2)
N8—C10—C11115.1 (2)N108—C107—C117113.6 (2)
N8—C10—H101107.4C106—C107—C117114.0 (2)
C11—C10—H101107.9N108—C107—H1071109.0
N8—C10—H102107.8C106—C107—H1071111.3
C11—C10—H102107.6C117—C107—H1071106.3
H101—C10—H102111.2C107—C106—C105103.7 (2)
C10—C11—C12119.5 (3)C107—C106—O119112.9 (3)
C10—C11—C16121.8 (3)C105—C106—O119110.3 (2)
C12—C11—C16118.5 (3)C107—C106—H1061110.0
C11—C12—C13120.4 (3)C105—C106—H1061111.2
C11—C12—H121118.8O119—C106—H1061108.7
C13—C12—H121120.7C106—C105—C109104.5 (2)
C12—C13—C14120.8 (3)C106—C105—N104112.3 (2)
C12—C13—H131119.9C109—C105—N104115.3 (2)
C14—C13—H131119.3C106—C105—H1051106.9
C13—C14—C15119.6 (3)C109—C105—H1051108.9
C13—C14—H141120.5N104—C105—H1051108.6
C15—C14—H141119.9C105—C109—N108105.8 (2)
C14—C15—C16120.0 (3)C105—C109—H1091110.3
C14—C15—H151121.1N108—C109—H1091109.9
C16—C15—H151118.9C105—C109—H1092110.8
C11—C16—C15120.7 (3)N108—C109—H1092111.7
C11—C16—H161119.0H1091—C109—H1092108.3
C15—C16—H161120.4C105—N104—C102123.9 (3)
C7—C17—O18111.0 (2)C105—N104—H6118.3
C7—C17—H171110.9C102—N104—H6117.8
O18—C17—H171109.5N104—C102—O103121.8 (3)
C7—C17—H172109.2N104—C102—C101116.0 (3)
O18—C17—H172108.4O103—C102—C101122.2 (3)
H171—C17—H172107.7C102—C101—H1011108.4
C17—O18—H2109.7C102—C101—H1012111.3
C6—O19—H8104.1H1011—C101—H1012108.5
C207—N208—C209103.5 (2)C102—C101—H1013110.8
C207—N208—C210110.4 (2)H1011—C101—H1013109.5
C209—N208—C210112.5 (2)H1012—C101—H1013108.1
N208—C207—C206101.7 (2)C106—O119—H7106.9
N208—C207—C217114.8 (2)C107—C117—O118111.2 (2)
C206—C207—C217115.6 (2)C107—C117—H1171109.7
N208—C207—H2071107.6O118—C117—H1171109.7
C206—C207—H2071109.1C107—C117—H1172108.2
C217—C207—H2071107.6O118—C117—H1172109.2
C207—C206—C205102.2 (2)H1171—C117—H1172108.8
C207—C206—O219110.8 (2)C117—O118—H4103.9
C205—C206—O219112.6 (2)N108—C110—C111112.7 (2)
C207—C206—H2061110.0N108—C110—H1101106.5
C205—C206—H2061111.0C111—C110—H1101107.5
O219—C206—H2061110.0N108—C110—H1102110.7
C206—C205—C209104.3 (2)C111—C110—H1102109.6
C206—C205—N204115.5 (2)H1101—C110—H1102109.7
C209—C205—N204113.3 (2)C110—C111—C116121.0 (3)
C206—C205—H2051107.1C110—C111—C112120.6 (3)
C209—C205—H2051109.8C116—C111—C112118.3 (3)
N204—C205—H2051106.6C111—C116—C115120.7 (3)
C205—C209—N208105.4 (2)C111—C116—H1161120.5
C205—C209—H2091111.7C115—C116—H1161118.8
N208—C209—H2091109.4C116—C115—C114120.0 (3)
C205—C209—H2092110.9C116—C115—H1151120.2
N208—C209—H2092110.1C114—C115—H1151119.8
H2091—C209—H2092109.3C115—C114—C113120.3 (3)
C205—N204—C202123.3 (3)C115—C114—H1141118.9
C205—N204—H1117.4C113—C114—H1141120.8
C202—N204—H1119.2C114—C113—C112120.1 (3)
N204—C202—O203122.6 (3)C114—C113—H1131119.4
N204—C202—C201116.2 (3)C112—C113—H1131120.5
O203—C202—C201121.2 (3)C111—C112—C113120.5 (3)
C202—C201—H2011113.9C111—C112—H1121120.1
C202—C201—H15110.2C113—C112—H1121119.4
H2011—C201—H15105.3H58—O301—H67104.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H2···N2080.872.072.889 (3)157
O118—H4···O103i0.831.862.683 (3)174
N104—H6···O219ii0.852.152.975 (3)167
O19—H8···O118iii0.821.922.652 (3)149
O219—H3···O3010.831.912.702 (3)161
O301—H58···N8iii0.832.062.887 (3)174
O301—H67···O3iv0.831.962.778 (3)177
O119—H7···O18v0.841.962.799 (3)175
O218—H62···O203i0.871.992.841 (3)167
N204—h1···o190.842.253.049 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2.
 

Acknowledgements

An Oxford Gyl­cobiology Institute Scholarship (to JSSR) is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Ikeda, K., Yu, L., Kato, A., Takebayashi, K., Adachi, I., Kato, I., Ouchi, H., Takahata, H. & Fleet, G. W. J. (2005). Tetrahedron Asymmetry, 16, 223–229.  Web of Science CrossRef CAS Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBerg, R. J. B. N. van den, Donker-Koopman, W., van Boom, J. H., Aerts, H. M. F. G. & Noort, D. (2004). Bioorg. Med. Chem. 12, 891–902.  Web of Science CrossRef PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCroucher, P. D., Furneaux, R. H. & Lynch, G. P. (1994). Tetrahedron, 50, 13299–13312.  CrossRef CAS Web of Science Google Scholar
First citationFleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. pp. 1051–1054.  CrossRef Web of Science Google Scholar
First citationHarding, C. C., Watkin, D. J., Rountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o930–o932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHorsch, M., Mayer, C., Sennhauser, U. & Rast, D. M. (1997). Pharmacol. Therapeut. 76, 187–218.  Web of Science CrossRef CAS Google Scholar
First citationKato, A., Kato. N., Kano, E., Adachi. I., Ikeda, K., Yu, L., Okamoto, T., Banba, Y., Ouchi, H., Takahata, H. & Asano, N. (2005). J. Med. Chem. 48, 2036–2044.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKato, M., Uno, T., Hiratake, J. & Sakat, K. (2005). Bioorg. Med. Chem. 13, 1563–1571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnapp, S., Vocadlo, D., Gao, Z., Kirk, B., Lou, J. & Withers, S. G. (1996). J. Am. Chem. Soc. 118, 6804–6805.  CrossRef CAS Web of Science Google Scholar
First citationLiessem, B., Giannis, A., Sandhoff, K. & Nieger, M. (1993). Carbohydr. Res. 250, 19–30.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, J. J., Numa, M. M. D., Liu, H. T., Huang, S. J., Sears, P., Shikhman, A. R. & Wong, C. H. (2004). J. Org. Chem. 69, 6273–6283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J. J., Shikhman, A. R., Lotz, M. K. & Wong, C. H. (2001). Chem. Biol. 8, 701–711.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A., Watkin, D. J., Asano, N., Nash, R. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation.  Google Scholar
First citationTerinek, T. & Vasella, A. (2005). Helv. Chim. Acta, 88, 10–22.  Web of Science CrossRef CAS Google Scholar
First citationTropak, M. B., Reid, S. P., Guiral, M., Withers, S. G. & Mahuran, D. (2004). J. Biol. Chem. 279, 13478–13487.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWoynarowska, B., Wilkiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J. & Bernacki, R. J. (1992). Anticancer Res. 12, 161–166.  PubMed CAS Web of Science Google Scholar
First citationYu, C.-Y., Asano, N., Ikeda, K., Wang, M.-X., Butters, T. D., Wormald, M. R., Dwek, R. A., Winters, A. L., Nash, R. J. & Fleet, G. W. J. (2004). Chem. Commun. pp. 1936–1937.  Web of Science CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds