organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2,2′-Bis(di­phenyl­phosphino)-6,6′-bis­­(trideca­fluoro-n-hex­yl)-1,1′-binaphth­yl

aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, England
*Correspondence e-mail: jxf@leicester.ac.uk

(Received 27 June 2005; accepted 4 July 2005; online 9 July 2005)

The mol­ecule of the title compound, C56H30F26P2, is located on a twofold axis perpendicular to the central C—C bond of the binaphthyl group and the P atoms have the typical pseudo-tetra­hedral geometry found for compounds of this type.

Comment

We have probed the application of perfluoro­alkyl­ated phospho­rus(III) ligands for catalysis in perfluoro­carbon solvents as alternative reaction media to conventional organic solvents (Stuart et al., 2000[Stuart, A. M., Gudmunsen, D., Hope, E. G., Schwartz, G. P., Foster, D. F. & Cole-Hamilton, D. J. (2000). Int. Pat. WO 00/33956.]; Foster, Adams et al., 2002[Foster, D. F., Adams, D. J., Gudmunsen, D., Stuart, A. M., Hope, E. G. & Cole-Hamilton, D. J. (2002). Chem. Commun. pp. 722-723.]; Foster, Gudmunsen et al., 2002[Foster, D. F., Gudmunsen, D., Adams, D. J., Stuart, A. M., Hope, E. G., Cole-Hamilton, D. J., Schwartz, G. P. & Pogorzelec, P. (2002). Tetrahedron, 58, 3901-3910.]), including structural characterizations of a number of perfluoro­alkyl­ated phosphine coordination compounds (Fawcett et al., 1997[Fawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R., Stuart, A. M., Cole-Hamilton, D. J. & Payne, M. J. (1997). J. Chem. Soc. Chem. Commun. pp. 1127-1128.], 1998[Fawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R. & Stuart, A. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3751-3763.], 2001[Fawcett, J., Hope, E. G., Russell, D. R., Stuart, A. M. & Wood, D. R. W. (2001). Polyhedron, 20, 321-326.]). More recently, we turned our attention to asymmetric catalysis, including the synthesis of (R)-2,2′-bis(diphenyl­phosphino)-6,6′-bis­(trideca­fluoro-n-hex­yl)-1,1′-binaphthyl and (R)-2,2′-bis­(diphenyl­phosphino)-6,6′-bis­(1H,1H,2H,2H-trideca­fluoro­octyl)-1,1′-binaphthyl, and their application in ruthenium-catalysed hydrogenation in methanol (Birdsall et al., 2001[Birdsall, D. J., Hope, E. G., Stuart, A. M., Chen, W., Hu, Y. & Xiao, J. (2001). Tetrahedron Lett. 42, 8551-8553.]) and dichloro­methane with ligand recycling using fluorous silica gel (Hope et al., 2004[Hope, E. G., Stuart, A. M. & West, A. J. (2004). Green Chem. 6, 345-350.]). Although we have previously structurally characterized perfluoro­alkyl­ated triphenyl­phosphine oxides (Bhattacharyya et al., 2000[Bhattacharyya, P., Croxtall, B., Fawcett, J., Fawcett, J, Gudmunsen, D., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R., Stuart, A. M. & Wood, D. R. W. (2000). J. Fluorine Chem. 101, 247-255.]; Croxtall et al., 2002[Croxtall, B., Fawcett, J., Hope, E. G., Russell, D. R. & Stuart, A. M. (2002). J. Chem. Soc. Dalton Trans. pp. 491-499.]), there have been no previous single-crystal structure determinations of phosphine ligands with fluorous tails. We present here the crystal structure of the title such ligand, (I)[link].

[Scheme 1]

The mol­ecular structure of (I)[link], viewed down the C2—C2′ pivot (Fig. 1[link]), clearly shows the non-coplanar geometry of the two naphthyl ring systems, in which the perfluoro­alkyl chains adopt conformations in the solid state that minimize their inter­actions with each other. The mol­ecule is located on a twofold axis perpendicular to the C2—C2′ bond of the binaphthyl group and the P atoms have the typical pseudo-tetra­hedral geometry found for other structurally characterized BINAP complexes (Ozawa et al., 1993[Ozawa, F., Kubo, A., Matsumoto, Y., Hayashi, T., Nichioka, E., Yanagi, K. & Moriguchi, K. (1993). Organometallics, 12, 4188-4196.]). The P—C bond distances are very similar to those found for metal-bound BINAP ligands, suggesting that any influence of the perfluoro­alkyl unit does not manifest itself in the P—C(naphth­yl) bond length. However, the C—P—C bond angles are all smaller [104.75 (13), 100.35 (12) and 103.01 (12)°, cf. 106.7 (5), 105.7 (4) and 105.1 (4)°], reflecting the stereochemical activity of the P lone pair.

The perfluoro­alkyl unit is kinked (Fawcett et al., 1998[Fawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R. & Stuart, A. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3751-3763.]), with a single gauche conformation [C11—C12—C13—C14 −60.0 (4)°], as opposed to the more usual trans staggered conformation [C13—C14—C15—C16 167.7 (3)°] found for linear perfluoro­alkyl chains.

Although within each individual mol­ecule the perfluoro­alkyl chains have no inter­actions, the mol­ecular packing of (I)[link] shows that the fluorinated groups and binaphthyl rings are stacked in alternate layers perpendicular to the c axis, to generate fluorous and hydro­carbon domains, characteristic of structural characterizations of fluorous materials (Fawcett et al., 1997[Fawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R., Stuart, A. M., Cole-Hamilton, D. J. & Payne, M. J. (1997). J. Chem. Soc. Chem. Commun. pp. 1127-1128.], 1998[Fawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R. & Stuart, A. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3751-3763.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The mol­ecule is located on a twofold axis; primed atoms are generated by the symmetry operator (1 − x, y, [{1\over 2}]z).

Experimental

The title compound was synthesized by the literature route of Birdsall et al. (2001[Birdsall, D. J., Hope, E. G., Stuart, A. M., Chen, W., Hu, Y. & Xiao, J. (2001). Tetrahedron Lett. 42, 8551-8553.]). Crystals of (I)[link] suitable for structural characterization were grown by slow evaporation of a solution of the compound in a diethyl ether–hexane (1:6) mixture.

Crystal data
  • C56H30F26P2

  • Mr = 1258.74

  • Monoclinic, C 2/c

  • a = 19.456 (3) Å

  • b = 8.2838 (9) Å

  • c = 31.886 (4) Å

  • β = 101.212 (4)°

  • V = 5040.9 (11) Å3

  • Z = 4

  • Dx = 1.659 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5639 reflections

  • θ = 2.3–25.4°

  • μ = 0.22 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.34 × 0.16 × 0.14 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.888, Tmax = 0.982

  • 19219 measured reflections

  • 4947 independent reflections

  • 4108 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 26.0°

  • h = −23 → 23

  • k = −10 → 10

  • l = −39 → 39

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.174

  • S = 1.03

  • 4947 reflections

  • 379 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1018P)2 + 8.8615P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 2.64 e Å−3

  • Δρmin = −0.43 e Å−3

A 2.6 e Å−3 residual electron-density peak located 1.3 Å from the unique P atom may be refined as a 20% occupancy O atom, due to partial oxidation to the phosphine oxide; by comparison, the electron density for a typical C atom is found to be 7.5 e Å−3. For the final refinement, however, the site was assumed to be occupied by a lone pair, and subsequent calculations of formula weight, density and absorption coefficient are based on this model. All H atoms were included in calculated positions as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have probed the application of perfluoroalkylated phosphorus(III) ligands for catalysis in perfluorocarbon solvents as alternative reaction media to conventional organic solvents (Stuart et al., 2000; Foster, Adams et al., 2002; Foster, Gudmunsen et al., 2002), including structural characterizations of a number of perfluoroalkylated phosphine coordination compounds (Fawcett et al., 1997, 1998, 2001). More recently, we turned our attention to asymmetric catalysis, including the synthesis of (R)-6,6'-bis(tridecafluoro-n-hexyl)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl and (R)-6,6'-bis(1H,1H,2H,2H-tridecafluorooctyl)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, and their application in ruthenium-catalysed hydrogenation in methanol (Birdsall et al., 2001) and dichloromethane with ligand recycling using fluorous silica gel (Hope et al., 2004). Although we have previously structurally characterized perfluoroalkylated triphenylphosphine oxides (Bhattacharyya et al., 2000; Croxtall et al., 2002), there have been no previous single-crystal structure determinations of phosphine ligands with fluorous tails. We present here the crystal structure of the title such ligand, (I).

The molecular structure of (I), viewed down the C2–C2' pivot (Fig. 1), clearly shows the non-coplanar geometry of the two naphthyl ring systems, in which the perfluoroalkyl chains adopt conformations in the solid state that minimize their interactions with each other. The molecule is located on a twofold axis perpendicular to the C2–C2' bond of the binaphthyl group and the P atoms have the typical pseudo-tetrahedral geometry found for other structurally characterized BINAP complexes (Ozawa et al., 1993). The P—C bond distances are very similar to those found for metal-bound BINAP ligands, suggesting that any influence of the perfluoroalkyl unit does not manifest itself in the PC(naphthyl) bond length. However, the C—P—C bond angles are all smaller [104.75 (13), 100.35 (12) and 103.01 (12)°, cf. 106.7 (5), 105.7 (4) and 105.1 (4)°], reflecting the stereochemical activity of the P lone pair.

The perfluoroalkyl unit is kinked (Fawcett et al., 1998), with a single gauche conformation [C11—C12—C13—C14 - 60.0 (4)°], as opposed to the more usual trans staggered conformation [C13—C14—C15—C16 167.7 (3)°] found for linear perfluoroalkyl chains.

Although within each individual molecule the perfluoroalkyl chains have no interactions, the molecular packing of (I) shows that the fluorinated groups and binaphthyl rings are stacked in alternate layers perpendicular to the c axis, to generate fluorous and hydrocarbon domains, characteristic of structural characterizations of fluorous materials (Fawcett et al., 1997, 1998).

Experimental top

The title compound was synthesized by the literature route of Birdsall et al. (2000). Crystals of (I) suitable for structural characterization were grown by slow evaporation from a solution of the compound in a diethyl ether–hexane (1:6) mixture.

Refinement top

A 2.6 e Å-3 residual electron-density peak located 1.3 Å from the unique P atom may be refined as a 20% occupancy O atom, due to partial oxidation to the phosphine oxide; by comparison, the electron density for a typical C atom is found to be 7.5 e Å-3. For the final refinement, however, the site was assumed to be occupied by a lone pair, and subsequent calculations of formula weight, density and absorption coefficient are based on this model. All H atoms were included in calculated positions as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The molecule is located on a twofold axis; primed atoms are generated by the symmetry operator (1 - x, y, 1/2 - z).
(R)-2,2'-Bis(diphenylphosphino)-6,6'-bis(tridecafluoro-n-hexyl)-1,1'-binaphthyl top
Crystal data top
C56H30F26P2F(000) = 2520
Mr = 1258.74Dx = 1.659 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.456 (3) ÅCell parameters from 5639 reflections
b = 8.2838 (9) Åθ = 2.3–25.4°
c = 31.886 (4) ŵ = 0.22 mm1
β = 101.212 (4)°T = 150 K
V = 5040.9 (11) Å3Block, colourless
Z = 40.34 × 0.16 × 0.14 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4947 independent reflections
Radiation source: fine-focus sealed tube4108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.888, Tmax = 0.982k = 1010
19219 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1018P)2 + 8.8615P]
where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 2.64 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C56H30F26P2V = 5040.9 (11) Å3
Mr = 1258.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.456 (3) ŵ = 0.22 mm1
b = 8.2838 (9) ÅT = 150 K
c = 31.886 (4) Å0.34 × 0.16 × 0.14 mm
β = 101.212 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4947 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4108 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.982Rint = 0.031
19219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.03Δρmax = 2.64 e Å3
4947 reflectionsΔρmin = 0.43 e Å3
379 parameters
Special details top

Experimental. absorption correction based on 8821 reflections (SADABS); Rint 0.030 and 0.020 before and after correction respectively.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The 2.6 e residual electron density peak at 1.3 Å from the P atom is assigned to a lone pair. The comparative electron density for a typical C atom is found to be 7.5 e. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.45105 (4)0.57171 (9)0.19205 (2)0.0240 (2)
C10.41698 (13)0.7058 (3)0.22869 (8)0.0211 (5)
C20.46233 (13)0.8151 (3)0.25218 (8)0.0192 (5)
C30.43890 (13)0.9215 (3)0.28082 (8)0.0195 (5)
C40.48209 (14)1.0392 (3)0.30439 (9)0.0232 (6)
H40.52941.04810.30110.028*
C50.45802 (14)1.1402 (3)0.33161 (9)0.0260 (6)
H50.48821.21950.34690.031*
C60.38786 (14)1.1279 (3)0.33732 (9)0.0245 (6)
C70.34482 (14)1.0146 (3)0.31547 (9)0.0241 (6)
H70.29801.00560.31980.029*
C80.36832 (13)0.9108 (3)0.28668 (8)0.0211 (5)
C90.32348 (14)0.7968 (3)0.26250 (9)0.0262 (6)
H90.27620.78870.26600.031*
C100.34688 (14)0.6986 (4)0.23435 (9)0.0257 (6)
H100.31560.62350.21810.031*
C110.36189 (15)1.2390 (3)0.36738 (10)0.0280 (6)
C120.37201 (15)1.1767 (3)0.41326 (9)0.0280 (6)
C130.34205 (16)1.2728 (4)0.44720 (10)0.0313 (7)
C140.36787 (15)1.4466 (4)0.45705 (9)0.0291 (6)
C150.35339 (19)1.5150 (4)0.49944 (10)0.0381 (8)
C160.3643 (2)1.6954 (4)0.50526 (11)0.0410 (8)
C170.44434 (15)0.7024 (3)0.14575 (9)0.0256 (6)
C180.50054 (17)0.7039 (4)0.12490 (10)0.0322 (7)
H180.53940.63450.13430.039*
C190.50046 (19)0.8046 (4)0.09083 (11)0.0386 (8)
H190.53930.80510.07680.046*
C200.44476 (18)0.9046 (4)0.07683 (10)0.0387 (8)
H200.44470.97330.05300.046*
C210.38885 (17)0.9051 (4)0.09745 (11)0.0374 (7)
H210.35020.97490.08790.045*
C220.38890 (16)0.8050 (4)0.13172 (10)0.0311 (7)
H220.35030.80650.14590.037*
C230.38094 (14)0.4253 (3)0.17720 (9)0.0231 (6)
C240.37704 (15)0.3049 (4)0.20648 (10)0.0289 (6)
H240.40750.30750.23370.035*
C250.32942 (16)0.1809 (4)0.19674 (10)0.0325 (7)
H250.32730.09820.21710.039*
C260.28513 (16)0.1766 (4)0.15775 (10)0.0326 (7)
H260.25200.09160.15110.039*
C270.28865 (17)0.2951 (4)0.12832 (10)0.0339 (7)
H270.25810.29160.10120.041*
C280.33619 (16)0.4194 (4)0.13784 (9)0.0296 (6)
H280.33820.50140.11730.036*
F10.39364 (11)1.3829 (2)0.36898 (6)0.0424 (5)
F20.29221 (9)1.2669 (2)0.35441 (6)0.0403 (5)
F30.44071 (10)1.1583 (2)0.42805 (6)0.0420 (5)
F40.34198 (11)1.0313 (2)0.41220 (6)0.0440 (5)
F50.35830 (13)1.1881 (2)0.48348 (6)0.0487 (5)
F60.27245 (10)1.2752 (3)0.43570 (6)0.0484 (5)
F70.43593 (9)1.4547 (2)0.45807 (7)0.0445 (5)
F80.33550 (11)1.5416 (2)0.42554 (6)0.0438 (5)
F90.39797 (15)1.4458 (3)0.53160 (7)0.0681 (7)
F100.28870 (13)1.4815 (3)0.50290 (8)0.0609 (7)
F110.42631 (14)1.7400 (3)0.49946 (8)0.0670 (7)
F120.31807 (15)1.7773 (3)0.47828 (8)0.0656 (7)
F130.35669 (16)1.7377 (3)0.54363 (7)0.0662 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0243 (4)0.0231 (4)0.0253 (4)0.0001 (3)0.0061 (3)0.0042 (3)
C10.0197 (13)0.0218 (13)0.0216 (13)0.0019 (10)0.0033 (10)0.0003 (10)
C20.0181 (13)0.0206 (13)0.0193 (12)0.0008 (10)0.0048 (10)0.0042 (10)
C30.0196 (13)0.0194 (13)0.0200 (13)0.0015 (10)0.0046 (10)0.0030 (10)
C40.0197 (13)0.0243 (14)0.0264 (14)0.0018 (10)0.0063 (10)0.0006 (11)
C50.0274 (14)0.0219 (14)0.0287 (15)0.0045 (11)0.0058 (11)0.0037 (11)
C60.0285 (14)0.0228 (14)0.0239 (14)0.0023 (11)0.0093 (11)0.0007 (11)
C70.0199 (13)0.0259 (14)0.0276 (14)0.0010 (11)0.0078 (11)0.0019 (11)
C80.0188 (13)0.0235 (13)0.0212 (13)0.0015 (10)0.0047 (10)0.0021 (10)
C90.0179 (13)0.0304 (15)0.0316 (15)0.0023 (11)0.0081 (11)0.0019 (12)
C100.0208 (13)0.0282 (15)0.0275 (14)0.0044 (11)0.0031 (11)0.0049 (11)
C110.0293 (15)0.0233 (14)0.0326 (16)0.0025 (12)0.0087 (12)0.0029 (12)
C120.0293 (15)0.0244 (14)0.0301 (15)0.0020 (12)0.0055 (12)0.0035 (12)
C130.0331 (16)0.0350 (17)0.0266 (15)0.0009 (13)0.0078 (12)0.0014 (13)
C140.0307 (15)0.0310 (16)0.0267 (15)0.0076 (12)0.0084 (12)0.0010 (12)
C150.056 (2)0.0342 (17)0.0254 (16)0.0073 (15)0.0125 (14)0.0002 (13)
C160.056 (2)0.0376 (18)0.0319 (17)0.0030 (16)0.0152 (15)0.0067 (14)
C170.0281 (14)0.0231 (14)0.0263 (14)0.0054 (11)0.0074 (11)0.0066 (11)
C180.0376 (17)0.0272 (15)0.0350 (16)0.0016 (13)0.0151 (13)0.0074 (12)
C190.049 (2)0.0359 (18)0.0369 (18)0.0100 (15)0.0225 (15)0.0068 (14)
C200.052 (2)0.0325 (17)0.0309 (16)0.0134 (15)0.0062 (14)0.0006 (13)
C210.0366 (17)0.0329 (17)0.0390 (18)0.0048 (13)0.0015 (13)0.0058 (14)
C220.0263 (15)0.0311 (16)0.0354 (16)0.0034 (12)0.0049 (12)0.0004 (13)
C230.0243 (14)0.0210 (13)0.0249 (14)0.0030 (10)0.0071 (11)0.0026 (11)
C240.0263 (15)0.0313 (16)0.0292 (15)0.0048 (12)0.0059 (12)0.0031 (12)
C250.0339 (16)0.0247 (15)0.0412 (18)0.0038 (12)0.0129 (13)0.0087 (13)
C260.0308 (16)0.0243 (15)0.0438 (18)0.0055 (12)0.0102 (13)0.0061 (13)
C270.0387 (17)0.0304 (16)0.0303 (16)0.0052 (13)0.0014 (13)0.0046 (13)
C280.0378 (16)0.0252 (15)0.0250 (14)0.0038 (12)0.0039 (12)0.0011 (11)
F10.0653 (13)0.0219 (9)0.0476 (11)0.0067 (8)0.0301 (10)0.0071 (8)
F20.0365 (10)0.0485 (11)0.0351 (10)0.0199 (9)0.0045 (8)0.0075 (8)
F30.0366 (10)0.0436 (11)0.0420 (11)0.0166 (8)0.0019 (8)0.0116 (9)
F40.0686 (14)0.0271 (10)0.0399 (11)0.0099 (9)0.0193 (10)0.0032 (8)
F50.0847 (16)0.0350 (11)0.0289 (10)0.0026 (10)0.0169 (10)0.0041 (8)
F60.0321 (10)0.0682 (14)0.0490 (12)0.0091 (9)0.0178 (9)0.0215 (10)
F70.0328 (10)0.0432 (11)0.0583 (13)0.0016 (8)0.0112 (9)0.0201 (10)
F80.0659 (13)0.0370 (10)0.0278 (9)0.0176 (9)0.0075 (9)0.0038 (8)
F90.120 (2)0.0472 (13)0.0295 (11)0.0231 (13)0.0036 (12)0.0006 (10)
F100.0740 (15)0.0546 (14)0.0694 (15)0.0159 (12)0.0517 (13)0.0230 (12)
F110.0760 (17)0.0554 (14)0.0760 (17)0.0183 (12)0.0310 (14)0.0301 (13)
F120.0995 (19)0.0396 (12)0.0552 (14)0.0253 (12)0.0087 (13)0.0023 (10)
F130.124 (2)0.0431 (12)0.0404 (12)0.0012 (13)0.0384 (13)0.0145 (10)
Geometric parameters (Å, º) top
P1—C171.815 (3)C14—F81.334 (3)
P1—C231.818 (3)C14—C151.541 (4)
P1—C11.827 (3)C15—F101.314 (4)
C1—C21.379 (4)C15—F91.337 (4)
C1—C101.411 (4)C15—C161.516 (5)
C2—C31.408 (4)C16—F121.307 (4)
C2—C2i1.499 (5)C16—F131.308 (4)
C3—C41.406 (4)C16—F111.309 (4)
C3—C81.424 (4)C17—C221.378 (4)
C4—C51.353 (4)C17—C181.386 (4)
C4—H40.950C18—C191.369 (5)
C5—C61.416 (4)C18—H180.950
C5—H50.950C19—C201.368 (5)
C6—C71.357 (4)C19—H190.950
C6—C111.486 (4)C20—C211.376 (5)
C7—C81.398 (4)C20—H200.950
C7—H70.950C21—C221.372 (4)
C8—C91.409 (4)C21—H210.950
C9—C101.354 (4)C22—H220.950
C9—H90.950C23—C241.378 (4)
C10—H100.950C23—C281.382 (4)
C11—F11.339 (3)C24—C251.378 (4)
C11—F21.358 (3)C24—H240.950
C11—C121.528 (4)C25—C261.368 (5)
C12—F41.336 (3)C25—H250.950
C12—F31.337 (3)C26—C271.369 (4)
C12—C131.546 (4)C26—H260.950
C13—F61.332 (4)C27—C281.378 (4)
C13—F51.337 (4)C27—H270.950
C13—C141.537 (4)C28—H280.950
C14—F71.320 (3)
C17—P1—C23104.75 (13)F8—C14—C13108.1 (2)
C17—P1—C1100.35 (12)F7—C14—C15108.3 (3)
C23—P1—C1103.01 (12)F8—C14—C15107.7 (2)
C2—C1—C10119.4 (2)C13—C14—C15114.5 (3)
C2—C1—P1118.22 (19)F10—C15—F9109.5 (3)
C10—C1—P1122.4 (2)F10—C15—C16108.1 (3)
C1—C2—C3120.6 (2)F9—C15—C16105.9 (3)
C1—C2—C2i118.9 (2)F10—C15—C14109.7 (3)
C3—C2—C2i120.4 (2)F9—C15—C14108.3 (3)
C4—C3—C2123.1 (2)C16—C15—C14115.1 (3)
C4—C3—C8117.7 (2)F12—C16—F13106.7 (3)
C2—C3—C8119.2 (2)F12—C16—F11107.2 (3)
C5—C4—C3121.8 (2)F13—C16—F11109.3 (3)
C5—C4—H4119.1F12—C16—C15111.7 (3)
C3—C4—H4119.1F13—C16—C15109.9 (3)
C4—C5—C6120.0 (3)F11—C16—C15111.8 (3)
C4—C5—H5120.0C22—C17—C18118.7 (3)
C6—C5—H5120.0C22—C17—P1124.1 (2)
C7—C6—C5119.9 (2)C18—C17—P1117.2 (2)
C7—C6—C11120.4 (2)C19—C18—C17120.4 (3)
C5—C6—C11119.7 (3)C19—C18—H18119.8
C6—C7—C8121.0 (2)C17—C18—H18119.8
C6—C7—H7119.5C20—C19—C18120.4 (3)
C8—C7—H7119.5C20—C19—H19119.8
C7—C8—C9121.7 (2)C18—C19—H19119.8
C7—C8—C3119.7 (2)C19—C20—C21119.7 (3)
C9—C8—C3118.7 (2)C19—C20—H20120.1
C10—C9—C8120.9 (2)C21—C20—H20120.1
C10—C9—H9119.6C22—C21—C20120.0 (3)
C8—C9—H9119.6C22—C21—H21120.0
C9—C10—C1121.1 (3)C20—C21—H21120.0
C9—C10—H10119.4C21—C22—C17120.7 (3)
C1—C10—H10119.4C21—C22—H22119.6
F1—C11—F2106.6 (2)C17—C22—H22119.6
F1—C11—C6111.3 (2)C24—C23—C28118.8 (3)
F2—C11—C6110.7 (2)C24—C23—P1116.3 (2)
F1—C11—C12106.9 (2)C28—C23—P1124.6 (2)
F2—C11—C12106.5 (2)C25—C24—C23120.7 (3)
C6—C11—C12114.3 (2)C25—C24—H24119.7
F4—C12—F3108.0 (2)C23—C24—H24119.7
F4—C12—C11107.8 (2)C26—C25—C24120.1 (3)
F3—C12—C11108.1 (2)C26—C25—H25120.0
F4—C12—C13105.0 (2)C24—C25—H25120.0
F3—C12—C13107.4 (2)C25—C26—C27119.8 (3)
C11—C12—C13120.0 (2)C25—C26—H26120.1
F6—C13—F5107.6 (3)C27—C26—H26120.1
F6—C13—C14108.5 (3)C26—C27—C28120.4 (3)
F5—C13—C14107.6 (2)C26—C27—H27119.8
F6—C13—C12108.4 (2)C28—C27—H27119.8
F5—C13—C12106.1 (2)C27—C28—C23120.2 (3)
C14—C13—C12118.2 (3)C27—C28—H28119.9
F7—C14—F8108.2 (3)C23—C28—H28119.9
F7—C14—C13109.8 (2)
C17—P1—C1—C283.5 (2)C11—C12—C13—C1460.0 (4)
C23—P1—C1—C2168.5 (2)F6—C13—C14—F7164.4 (2)
C17—P1—C1—C1097.9 (2)F5—C13—C14—F779.4 (3)
C23—P1—C1—C1010.0 (3)C12—C13—C14—F740.6 (4)
C10—C1—C2—C31.5 (4)F6—C13—C14—F846.5 (3)
P1—C1—C2—C3179.88 (19)F5—C13—C14—F8162.6 (2)
C10—C1—C2—C2i176.4 (2)C12—C13—C14—F877.4 (3)
P1—C1—C2—C2i2.2 (3)F6—C13—C14—C1573.5 (3)
C1—C2—C3—C4177.6 (3)F5—C13—C14—C1542.6 (3)
C2i—C2—C3—C44.5 (4)C12—C13—C14—C15162.6 (3)
C1—C2—C3—C82.6 (4)F7—C14—C15—F10168.4 (3)
C2i—C2—C3—C8175.4 (2)F8—C14—C15—F1074.8 (3)
C2—C3—C4—C5179.8 (3)C13—C14—C15—F1045.5 (4)
C8—C3—C4—C50.3 (4)F7—C14—C15—F948.8 (4)
C3—C4—C5—C60.7 (4)F8—C14—C15—F9165.7 (3)
C4—C5—C6—C70.1 (4)C13—C14—C15—F974.0 (4)
C4—C5—C6—C11179.8 (3)F7—C14—C15—C1669.4 (4)
C5—C6—C7—C81.1 (4)F8—C14—C15—C1647.4 (4)
C11—C6—C7—C8179.1 (2)C13—C14—C15—C16167.7 (3)
C6—C7—C8—C9177.4 (3)F10—C15—C16—F1255.7 (4)
C6—C7—C8—C31.4 (4)F9—C15—C16—F12173.1 (3)
C4—C3—C8—C70.7 (4)C14—C15—C16—F1267.4 (4)
C2—C3—C8—C7179.2 (2)F10—C15—C16—F1362.5 (4)
C4—C3—C8—C9178.2 (2)F9—C15—C16—F1354.8 (4)
C2—C3—C8—C91.9 (4)C14—C15—C16—F13174.4 (3)
C7—C8—C9—C10179.2 (3)F10—C15—C16—F11175.8 (3)
C3—C8—C9—C100.3 (4)F9—C15—C16—F1166.8 (4)
C8—C9—C10—C10.8 (4)C14—C15—C16—F1152.7 (4)
C2—C1—C10—C90.2 (4)C23—P1—C17—C2266.8 (3)
P1—C1—C10—C9178.4 (2)C1—P1—C17—C2239.8 (3)
C7—C6—C11—F1148.6 (3)C23—P1—C17—C18116.7 (2)
C5—C6—C11—F131.6 (4)C1—P1—C17—C18136.8 (2)
C7—C6—C11—F230.2 (4)C22—C17—C18—C190.5 (4)
C5—C6—C11—F2150.1 (3)P1—C17—C18—C19177.2 (2)
C7—C6—C11—C1290.1 (3)C17—C18—C19—C200.3 (5)
C5—C6—C11—C1289.7 (3)C18—C19—C20—C210.7 (5)
F1—C11—C12—F4178.6 (2)C19—C20—C21—C220.4 (5)
F2—C11—C12—F467.6 (3)C20—C21—C22—C170.4 (5)
C6—C11—C12—F454.9 (3)C18—C17—C22—C210.8 (4)
F1—C11—C12—F362.2 (3)P1—C17—C22—C21177.3 (2)
F2—C11—C12—F3175.9 (2)C17—P1—C23—C24176.5 (2)
C6—C11—C12—F361.5 (3)C1—P1—C23—C2478.9 (2)
F1—C11—C12—C1361.4 (3)C17—P1—C23—C282.2 (3)
F2—C11—C12—C1352.4 (3)C1—P1—C23—C28106.8 (3)
C6—C11—C12—C13174.9 (2)C28—C23—C24—C250.0 (4)
F4—C12—C13—F657.6 (3)P1—C23—C24—C25174.7 (2)
F3—C12—C13—F6172.3 (2)C23—C24—C25—C260.3 (4)
C11—C12—C13—F663.8 (4)C24—C25—C26—C270.5 (5)
F4—C12—C13—F557.8 (3)C25—C26—C27—C280.5 (5)
F3—C12—C13—F556.9 (3)C26—C27—C28—C230.2 (5)
C11—C12—C13—F5179.2 (3)C24—C23—C28—C270.0 (4)
F4—C12—C13—C14178.6 (2)P1—C23—C28—C27174.2 (2)
F3—C12—C13—C1463.8 (3)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC56H30F26P2
Mr1258.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)19.456 (3), 8.2838 (9), 31.886 (4)
β (°) 101.212 (4)
V3)5040.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.16 × 0.14
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19219, 4947, 4108
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 1.03
No. of reflections4947
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.64, 0.43

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

 

Acknowledgements

The authors thank the Royal Society (AMS) and the EPSRC (AJW) for financial assistance.

References

First citationBhattacharyya, P., Croxtall, B., Fawcett, J., Fawcett, J, Gudmunsen, D., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R., Stuart, A. M. & Wood, D. R. W. (2000). J. Fluorine Chem. 101, 247–255. Web of Science CrossRef CAS
First citationBirdsall, D. J., Hope, E. G., Stuart, A. M., Chen, W., Hu, Y. & Xiao, J. (2001). Tetrahedron Lett. 42, 8551–8553. Web of Science CrossRef CAS
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCroxtall, B., Fawcett, J., Hope, E. G., Russell, D. R. & Stuart, A. M. (2002). J. Chem. Soc. Dalton Trans. pp. 491–499. CrossRef
First citationFawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R. & Stuart, A. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3751–3763. CrossRef
First citationFawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R., Stuart, A. M., Cole-Hamilton, D. J. & Payne, M. J. (1997). J. Chem. Soc. Chem. Commun. pp. 1127–1128. CrossRef
First citationFawcett, J., Hope, E. G., Russell, D. R., Stuart, A. M. & Wood, D. R. W. (2001). Polyhedron, 20, 321–326. Web of Science CSD CrossRef CAS
First citationFoster, D. F., Adams, D. J., Gudmunsen, D., Stuart, A. M., Hope, E. G. & Cole-Hamilton, D. J. (2002). Chem. Commun. pp. 722–723. CrossRef
First citationFoster, D. F., Gudmunsen, D., Adams, D. J., Stuart, A. M., Hope, E. G., Cole-Hamilton, D. J., Schwartz, G. P. & Pogorzelec, P. (2002). Tetrahedron, 58, 3901–3910. Web of Science CrossRef CAS
First citationHope, E. G., Stuart, A. M. & West, A. J. (2004). Green Chem. 6, 345–350. Web of Science CrossRef CAS
First citationOzawa, F., Kubo, A., Matsumoto, Y., Hayashi, T., Nichioka, E., Yanagi, K. & Moriguchi, K. (1993). Organometallics, 12, 4188-4196.  CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationStuart, A. M., Gudmunsen, D., Hope, E. G., Schwartz, G. P., Foster, D. F. & Cole-Hamilton, D. J. (2000). Int. Pat. WO 00/33956.

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds