metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Co(H2O)6]{[Co(C4H4N2)(H2O)2][V2O2(pmida)2]}·2H2O [H4pmida is N-(phosphono­meth­yl)imino­di­acetic acid]: the first two-dimensional hybrid framework containing [V2O2(pmida)2]4− building blocks

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, bDepartment of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland, and cDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt

(Received 11 July 2005; accepted 21 July 2005; online 27 July 2005)

The crystal structure of the title compound, polymeric hexa­aqua­cobalt(II) diaqua­dioxodi-μ2-pyrazine-bis­[μ3-N-(phos­phono­meth­yl)imino­diacetato]cobalt(II)divanadate(IV) dihydrate, {[Co(H2O)6][CoV2(C3H4O8P)2(C4H4N2)2(H2O)2]·2H2O}n, is the first example of a two-dimensional hybrid framework containing centrosymmetric dimeric [V2O2(pmida)2]4− anionic units [H4pmida is N-(phosphono­meth­yl)imino­diacetic acid]. The structure contains two crystallographically unique cobalt(II) centres, both located at inversion centres and exhibiting Jahn–Teller-distorted octa­hedral coordination geometries. One Co2+ cation establishes physical links between adjacent [V2O2(pmida)2]4− anionic units, forming one-dimensional anionic ribbons which run along the [010] direction, {[Co(H2O)2][V2O2(pmida)2]}n2n. Pyrazine ligands, with their centroids located at inversion centres, bridge the above-mentioned Co2+ centres, forming {[Co(H2O)2][V2O2(pmida)2]}n2n anionic layers which alternate along the [001] direction with [Co(H2O)6]2+ cations and the water mol­ecules of crystallization. An extensive and highly directional hydrogen-bonded network inter­connects the structural components.

Comment

The design of coordination-based materials in which the topology is extended from zero-dimensional (i.e. discrete complexes) into one-, two- or three-dimensional, is a topical and inter­esting field of research. Since the seminal paper by Hoskins & Robson (1990[Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1554.]), where diamondoid-type hybrid frameworks were engineered based upon the simple structures of cadmium and zinc cyanides, the field has expanded rapidly. This was motivated by the unusual architectures and the potential applications of such frameworks (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1461-1494.]; Janiak, 2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]; Mori et al., 2004[Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31-46.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Rowsell & Yaghi, 2004[Rowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3-14.]). In order to control, at least partially, the occurrence of `supramolecular isomerism' (Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]), these hydrid crystalline materials are now being constructed using a typical modular approach: rigid and highly robust coordination-based cores are used as secondary building units (SBUs) for the construction of multidimensional metal–organic frameworks (MOFs) (Yaghi et al., 1998[Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

During the course of our work on crystalline organic–inorganic hybrid materials (Paz et al., 2002[Paz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823-2828.], 2002a[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002a). Acta Cryst. C58, m608-m610.],b[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002b). Acta Cryst. E58, m691-m693.],c[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002c). Acta Cryst. E58, m730-m732.]; Paz & Klinowski, 2003[Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484-1485.], 2004a[Paz, F. A. A. & Klinowski, J. (2004a). J. Solid State Chem. 177, 3423-3432.],b[Paz, F. A. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3882-2893.],c[Paz, F. A. A. & Klinowski, J. (2004c). Inorg. Chem. 43, 3948-3954.]; Paz, Shi et al., 2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]), we came across N-(phosphono­meth­yl)imino­diacetic acid (H4pmida), an organic mol­ecule which, despite possessing several types of chelating functional groups, is relatively unexplored in the construction of MOFs (Fan et al., 2004[Fan, Y., Li, G. H., Shi., Z., Zhang, D., Xu, J. N., Song, T. Y. & Feng, S. H. (2004). J. Solid State Chem. 177, 4346-4350.]; Gutschke et al., 1999[Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088-1090.]; Mao et al., 2002[Mao, J. G., Wang, Z. K. & Clearfield, A. (2002). Inorg. Chem. 41, 6106-6111.]; Pei et al., 2004[Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207-210.]; Song et al., 2004[Song, J. L., Prosvirin, A. V., Zhao, H. H. & Mao, J. G. (2004). Eur. J. Inorg. Chem. pp. 3706-3711.]), as confirmed by a search in the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Allen & Motherwell, 2002[Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.]). This mol­ecule forms with V4+ centres centrosymmetric dimeric [V2O2(pmida)2]4− anionic units, as originally reported by Crans et al. (1998[Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645-6655.]); this anionic dimer is a rather convenient SBU owing, on the one hand, to its predicta­ble self-assembly in aqueous media (particularly when hydro­thermal synthetic approaches are employed) and, on the other, to the several terminal O atoms which can bound to a large variety of metal centres through various coordination modes. We recently reported the first three-dimensional frameworks containing [V2O2(pmida)2]4− anionic units, through their combination with transition metal centres (namely, Cd2+ and Co2+) and the bridging 4,4′-bipyridine organic ligand (Paz, Shi et al., 2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]). We report here the first two-dimensional framework containing these anionic units: [Co(H2O)6]{[Co(pyr)(H2O)2][V2O2(pmida)2]}·2(H2O), (I)[link] (where pyr is pyrazine).

[Scheme 1]

The title compound, (I)[link], crystallizes in the triclinic space group P[\overline{1}], with all its primary building blocks having inversion symmetry: the [V2O2(pmida)2]4− anionic unit has its centroid located at the inversion centre ([{1\over 2}], 0, 0); both Co1 and Co2 are themselves located at inversion centres, with the former positioned in the middle of the ab plane, at ([{1\over 2}], [{1\over 2}], 0), and the latter in the centre of the unit cell, at ([{1\over 2}], [{1\over 2}], [{1\over 2}]); the pyrazine bridging organic ligand, as for the [V2O2(pmida)2]4− anionic unit, is also centrosymmetric, with its centroid located at (0, [1\over2], 0).

The geometry of the [V2O2(pmida)2]4− anionic unit is very similar to that previously reported for related compounds (Crans et al., 1998[Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645-6655.]; Paz, Shi et al., 2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]), with the pmida4− anionic ligands encapsulating the V4+ centres inside three five-membered chelate rings (average bite angle of ca 77°, Table 1[link]). The coordination polyhedron of these metal centres resembles a highly distorted octa­hedron, {VNO5}, with the oxo group [V=O = 1.593 (2) Å] markedly showing its trans influence in the rather long V—N distance [2.354 (2) Å]. The phospho­nate groups establish the physical bridges between adjacent V4+ centres (Fig. 1[link]a), leading to a V1⋯V1v distance of 5.149 (2) Å [symmetry code: (v) 1 − x, −y, 1 − z].

Both cobalt(II) centres adopt Jahn–Teller-distorted octa­hedral cooordination geometries, as depicted in Fig. 1[link] and Table 1[link]. For Co1, the equatorial plane is formed by two water mol­ecules plus two O-donor atoms from phospho­nate groups (Fig. 1[link]a), with an average Co—O distance of ca 2.07 Å; pyr ligands, axially coordinated, complete the coordination, with Co—N bond lengths of 2.218 (2) Å (Table 1[link]). Co2 is coordinated only by water mol­ecules, with O3W and O4W forming the equatorial plane (the average Co—O bond length is 2.06 Å) and O2W located 2.144 (2) Å from the metal centre. The cis octa­hedral angles are within the ranges 88.04 (6)–91.96 (6) and 87.84 (6)–92.16 (6)° for Co1 and Co2, respectively (Table 1[link]).

The centrosymmetric [V2O2(pmida)2]4− anionic unit is bound to two adjacent Co1 metal centres via the trans-uncoordinated P—O bonds, imposing a Co1⋯Co1viii separation of 10.140 (2) Å [symmetry code: (viii) x, −1 + y, z] (Fig. 1[link]a). The repetition of this bridging motif leads to the formation of a one-dimensional anionic ribbon (running along the [010] direction), {[Co(H2O)2][V2O2(pmida)2]}n2n, as depicted in Fig. 2[link](a). Centrosymmetric bridging pyr ligands are axially coordinated to these Co1 centres (Fig. 2[link]b), establishing physical connections between adjacent ribbons and further imposing a Co1⋯Co1vii separation of 7.220 (1) Å [symmetry code: (vii) 1 + x, y, z]. Such an arrangement leads to the formation of a decorated two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n anionic layer with distances between Co1 atoms defined by the a- and b-axis lengths. The charge of this layer is compensated by the presence of hexa­aqua­cobalt(II) cations, [Co(H2O)6]2+ (Fig. 1[link]b), which also act as space-filling groups, located in the available spaces resulting from the parallel packing, along the [001] direction, of individual anionic layers (Fig. 3[link]). Each {[Co(H2O)2][V2O2(pmida)2]}n2n layer is further inter­connected to the [Co(H2O)6]2+ cations via a series of very strong and highly directional hydrogen-bond inter­actions, also involving the water mol­ecules of crystallization (Fig. 4[link] and Table 2[link]).

[Figure 1]
Figure 1
Schematic representation of (a) a portion of the anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n layer and (b) the inter­layer [Co(H2O)6]2+ cations, showing the labelling scheme for selected atoms in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Schematic representation of the construction of the anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n layers, which lie in the ab plane of the unit cell.
[Figure 3]
Figure 3
Alternation along the [001] direction of anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n layers (in green and orange), which are inter­calated by [Co(H2O)6]2+ cations (in grey). H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Perspective view of the crystal packing of the title compound, viewed along the (a) [100] and (b) [010] directions of the unit cell. Hydrogen bonds are represented as green dashed bonds and H atoms have been omitted for clarity.

Experimental

Chemicals were readily available from commercial sources and were used as received without further purification: N-(phosphono­meth­yl)imino­diacetic acid hydrate (H4pmida, 97% Fluka), pyrazine (98% Fluka), vanadium(IV) oxide sulfate penta­hydrate (99% Sigma–Aldrich) and cobalt acetate tetra­hydrate (99.0% Fluka). Syntheses were typically carried out in PTFE-lined stainless steel reaction vessels (ca 40 cm3), under autogenous pressure and static conditions in a preheated oven at 373 K. Reactions took place over a period of 4 d, after which the vessels were removed from the oven and left to cool to ambient temperature before opening. The title compound proved to be air- and light-stable, and insoluble in water and common organic solvents such as methanol, ethanol, acetone, dichloro­methane, toluene, dimethyl sulfoxide and chloro­form. The title compound was synthesized from a mixture containing VOSO4·5H2O (0.40 g), CoC4H6O4·4H2O (0.34 g), H4pmida (0.27 g), pyrazine (0.10 g) and NaOH (0.20 g) in distilled water (ca 10 g). The mixture was stirred at ambient temperature for 30 min, yielding a suspension with a molar composition of 2.1:1.2:1.0:1.1:4.2:467, which was transferred to the reaction vessel. After the reaction, a large quantity of light-blue single crystals of the title compound were isolated by vacuum filtration, washed with copious amounts of distilled water (ca 3 × 50 ml), and then air-dried at ambient temperature.

Crystal data
  • C14H20CoN4O18P2V2·CoH12O6·2H2O

  • Mr = 958.15

  • Triclinic, [P \overline 1]

  • a = 7.2200 (14) Å

  • b = 10.140 (2) Å

  • c = 12.080 (2) Å

  • α = 93.79 (3)°

  • β = 103.21 (3)°

  • γ = 104.21 (3)°

  • V = 827.6 (3) Å3

  • Z = 1

  • Dx = 1.922 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5000 reflections

  • θ = 2–22.5°

  • μ = 1.73 mm−1

  • T = 298 (2) K

  • Prism, blue

  • 0.44 × 0.33 × 0.14 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • ω scans

  • Absorption correction: numerical(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.354, Tmax = 0.724

  • 14552 measured reflections

  • 3994 independent reflections

  • 3510 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 28.8°

  • h = −9 → 9

  • k = −13 → 13

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.08

  • 3994 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0369P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.46 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0134 (13)

Table 1
Selected geometric parameters (Å, °)[link]

Co1—O1i 2.044 (2)
Co1—O1W 2.093 (2)
Co1—N2 2.218 (2)
Co2—O2W 2.144 (2)
Co2—O3W 2.063 (2)
Co2—O4W 2.061 (2)
V1—O2ii 1.996 (2)
V1—O3 1.957 (2)
V1—O4 2.041 (2)
V1—O6 2.030 (2)
V1—O8 1.593 (2)
V1—N1 2.354 (2)
O1—P1 1.508 (2)
O2—P1 1.534 (2)
O3—P1 1.529 (2)
O1—Co1 2.044 (2)
P1—C1 1.829 (2)
O1—Co1—O1Wi 89.40 (6)
O1—Co1—O1W 90.60 (6)
O1i—Co1—N2 91.96 (6)
O1—Co1—N2 88.04 (6)
O1Wi—Co1—N2 88.11 (7)
O1W—Co1—N2 91.89 (7)
O3W—Co2—O2W 88.56 (6)
O3W—Co2—O2Wiii 91.44 (6)
O4W—Co2—O2Wiii 87.84 (6)
O4W—Co2—O2W 92.16 (6)
O4W—Co2—O3Wiii 91.43 (7)
O4W—Co2—O3W 88.57 (7)
O2ii—V1—O4 165.00 (5)
O2ii—V1—O6 84.32 (6)
O2ii—V1—N1 89.08 (6)
O3—V1—O2ii 91.38 (6)
O3—V1—O4 90.11 (6)
O3—V1—O6 154.21 (5)
O3—V1—N1 80.43 (6)
O4—V1—N1 76.45 (6)
O6—V1—O4 87.87 (6)
O6—V1—N1 74.10 (5)
O8—V1—O2ii 100.68 (8)
O8—V1—O3 105.45 (7)
O8—V1—O4 93.29 (8)
O8—V1—O6 100.33 (7)
O8—V1—N1 168.34 (7)
O1—P1—O3 112.77 (8)
O1—P1—O2 111.06 (7)
O3—P1—O2 110.17 (7)
O1—P1—C1 110.75 (8)
O3—P1—C1 104.04 (7)
O2—P1—C1 107.73 (8)
P1—O1—Co1 136.12 (7)
P1—O3—V1 126.89 (7)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1C⋯O2i 0.84 (2) 1.98 (1) 2.7489 (19) 154 (2)
O1W—H1D⋯O2W 0.84 (2) 2.09 (1) 2.878 (2) 160 (3)
O2W—H2C⋯O5 0.84 (2) 2.00 (1) 2.798 (2) 159 (2)
O2W—H2D⋯O7iv 0.84 (2) 1.93 (1) 2.736 (2) 166 (2)
O3W—H3A⋯O5 0.84 (2) 1.87 (1) 2.672 (2) 159 (2)
O3W—H3B⋯O6v 0.84 (2) 1.95 (2) 2.7801 (18) 173 (2)
O4W—H4C⋯O5Wiii 0.84 (2) 1.86 (1) 2.698 (2) 175 (3)
O4W—H4D⋯O7vi 0.84 (2) 1.86 (1) 2.689 (2) 167 (2)
O5W—H5B⋯O4 0.84 (2) 2.14 (2) 2.893 (2) 151 (3)
O5W—H5A⋯O5vii 0.84 (2) 2.54 (2) 3.311 (3) 157 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z+1; (vi) -x, -y, -z+1; (vii) x+1, y, z.

Non-H atoms were located from difference Fourier maps calculated in successive least-squares refinement cycles. The C-bound H atoms were placed in idealized positions and refined as riding with C—H = 0.93–0.97 Å and Uiso = 1.2Ueq(C). H atoms of water mol­ecules were located in difference Fourier maps, and refined with the O—H and H⋯H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively, to ensure chemically reasonable geometry, with Uiso fixed at 1.5Ueq(O).

Data collection: CrysAlis CCD (Kuma, 1999[Kuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Kuma, 1999[Kuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of coordination-based materials in which the topology is extended from zero-dimensional (i.e. discrete complexes) into one-, two- or three-dimensional, is a topical and interesting field of research. Since the seminal paper by Hoskins & Robson (1990), where diamondoid-type hybrid frameworks were engineered based upon the simple structures of cadmium and zinc cyanides, the field has expanded rapidly. This was motivated by the unusual architectures and the potential applications of such frameworks (Batten & Robson, 1998; Janiak, 2003; Mori et al., 2004; Moulton & Zaworotko, 2001; Rowsell & Yaghi, 2004). In order to control, at least partially, the occurrence of `supramolecular isomerism' (Moulton & Zaworotko, 2001), these hydrid crystalline materials are now being constructed using a typical modular approach: rigid and highly robust coordination-based cores are used as secondary building units (SBUs) for the construction of multi-dimensional metal–organic frameworks (MOFs) (Yaghi et al., 1998).

During the course of our work on crystalline organic–inorganic hybrid materials (Paz et al., 2002, 2002a,b,c; Paz & Klinowski, 2003, 2004a,b,c; Paz, Shi et al., 2004), we came across N-(phosphonomethyl)iminodiacetic acid (H4pmida), an organic molecule which, despite possessing several types of chelating functional groups, is relatively unexplored in the construction of MOFs (Fan et al., 2004; Gutschke et al., 1999; Mao et al., 2002; Pei et al., 2004; Song et al., 2004), as confirmed by a search in the Cambridge Structural Database (Allen, 2002; Allen & Motherwell, 2002). This molecule forms with V4+ centres centrosymmetric dimeric [V2O2(pmida)2]4- anionic units, as originally reported by Crans and collaborators (Crans et al., 1998), which is a rather convenient SBU due, on the one hand, to its predictable self-assembly in aqueous media (particularly when hydrothermal synthetic approaches are employed) and, on the other, due to the several terminal O atoms which can bound to a large variety of metal centres through various coordination modes. We recently reported the first three-dimensional frameworks containing [V2O2(pmida)2]4- anionic units, through their combination with transition metal centres (namely, Cd2+ and Co2+) and the bridging 4,4'-bipyridine organic ligand (Paz, Shi et al., 2004). We report here the first two-dimensional framework containing these anionic units: [Co(H2O)6]{[Co(pyr)(H2O)2][V2O2(pmida)2]}·2(H2O), (I) (where pyr is pyrazine).

The title compound, (I), crystallizes in the triclinic space group P1, with all its primary building blocks have inversion symmetry: the [V2O2(pmida)2]4- anionic unit has its centre of gravity located at inversion centre (1/2, 0, 0); both Co1 and Co2 are themselves located at inversion centres, with the former positioned in the middle of the ab plane, at (1/2, 1/2, 0), and the latter in the centre of the unit cell, at (1/2, 1/2, 1/2); the pyrazine bridging organic ligand, as for the [V2O2(pmida)2]4- anionic unit, is also fully constructed by inversion symmetry, with its centre of gravity located at (0,1/2,0).

The geometry of the [V2O2(pmida)2]4- anionic unit is very similar to that previously reported for related compounds (Crans et al., 1998; Paz, Shi et al., 2004), with the pmida4- anionic ligands encapsulating the V4+ centres inside three five-membered chelate rings (average bite angle of ca 77°, Table 1). The coordination geometry of these metal centres resembles a highly distorted octahedron, {VNO5}, with the oxo group [VO = 1.593 (2) Å] markedly showing its trans influence in the rather long V—N distance [2.354 (2) Å]. The phosphonate groups establish the physical bridges between adjacent V4+ centres (Fig. 1a), leading to V1···V1v distance of 5.149 (2) Å [symmetry code: (v) 1 - x, -y, 1 - z].

Both cobalt(II) centres adopt Jahn–Teller-distorted octahedral cooordination geometries, as depicted in Fig. 1 and Table 1. For Co1, the equatorial plane is formed by two water molecules plus two O-donor atoms from phosphonate groups (Fig. 1a), with an average Co—O distance of ca 2.07 Å; pyr ligands, axially coordinated, complete the coordination sphere, with Co—N bond lengths of 2.218 (2) Å (Table 1). Co2 is uniquely coordinated to water molecules, with O3W and O4W forming the equatorial plane (the average Co—O bond length is 2.06 Å) and O2W located at 2.144 (2) Å from the metal centre. The cis octahedral angles are within the ranges 88.04 (6)–91.96 (6) and 87.84 (6)–92.16 (6)° for Co1 and Co2, respectively (Table 1).

The centrosymmetric [V2O2(pmida)2]4- anionic unit is bound to two adjacent Co1 metal centres via the trans-uncoordinated P—O bonds, imposing a Co1···Co1viii separation of 10.140 (2) Å [symmetry code: (viii) x, -1 + y, z] (Fig. 1a). The repetition of this bridging fashion leads to the formation of a one-dimensional anionic ribbon (running along the [010] direction), {[Co(H2O)2][V2O2(pmida)2]}n2n-, as depicted in Fig. 2(a). Centrosymmetric bridging pyr ligands are axially coordinated to these Co1 centres (Fig. 2b), establishing physical connections between adjacent ribbons and further imposing a Co1···Co1vii separation of 7.220 (1) Å [symmetry code: (vii) 1 + x, y, z]. Such an arrangement leads to the formation of a decorated two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- anionic layer with distances between Co1 atoms defined by the a- and b-axis lengths. The charge of this layer is compensated by the presence of hexaaquacobalt(II) cations, [Co(H2O)6]2+ (Fig. 1b), which also act as space-filling moieties located in the available spaces resulting from the parallel packing, along the [001] direction, of individual anionic layers (Fig. 3). Each {[Co(H2O)2][V2O2(pmida)2]}n2n- layer is further interconnected to the [Co(H2O)6]2+ moieties via a series of very strong and highly directional hydrogen-bond interactions, also involving the water molecules of crystallization (Fig. 4 and Table 2).

Experimental top

Chemicals were readily available from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, 97% Fluka), pyrazine (98% Fluka), vanadium(IV) oxide sulfate pentahydrate (99% Sigma-Aldrich) and cobalt acetate tetrahydrate (99.0% Fluka). Syntheses were typically carried out in PTFE-lined stainless steel reaction vessels (ca 40 cm3), under autogenous pressure and static conditions in a preheated oven at 373 K. Reactions took place over a period of 4 d, after which the vessels were removed from the oven and left to cool to ambient temperature before opening. The title compound proved to be air- and light-stable, and insoluble in water and common organic solvents such as methanol, ethanol, acetone, dichloromethane, toluene, dimethyl sulfoxide and chloroform. The title compound was synthesized from a mixture containing VOSO4·5H2O (0.40 g), CoC4H6O4·4H2O (0.34 g), H4pmida (0.27 g), pyrazine (0.10 g) and NaOH (0.20 g) in distilled water (ca 10 g). The mixture was stirred through roughly at ambient temperature for 30 min, yielding a suspension with a molar composition of 2.1:1.2:1.0:1.1:4.2:467, which was transferred to the reaction vessel. After reacting, a large quantity of light-blue single crystals of the title compound were isolated by vacuum filtering, washed with copious amounts of distilled water (ca 3 × 50 ml), and then air-dried at ambient temperature.

Refinement top

The structure was solved using Patterson synthesis, which permitted the location of the heaviest atoms (Co and V). The remaining non-H atoms were located from difference Fourier maps calculated in successive least-squares refinement cycles. The C-bound H atoms were placed in idealized positions and refined as riding with C—H = 0.93–0.97 Å and Uiso = 1.2Ueq(C). H atoms associated with the water molecules were directly located from difference Fourier maps, and refined with the O—H and H···H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively, to ensure chemically reasonable geometry. These H atoms were allowed to ride on their parent atoms with Uiso fixed at 1.5Ueq(O). The highest peak in the last difference Fourier map synthesis was located 0.80 Å from atom O4, and the deepest hole 0.68 Å from V1.

Computing details top

Data collection: CrysAlis CCD (Kuma, 1999); cell refinement: CrysAlis RED (Kuma, 1999); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Schematic representation of (a) a portion of the anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- layer and (b) the interlayer [Co(H2O)6]2+ cations, showing the labelling scheme for selected atoms in asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Schematic representation of the construction of the anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- layers which are placed in the ab plane of the unit cell.
[Figure 3] Fig. 3. A lternation along the [001] direction of anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- layers (in green and orange), which are intercalated by [Co(H2O)6]2+ cations (in grey). H atoms have been omitted for clarity.
[Figure 4] Fig. 4. Perspective view of the crystal packing of the title compound, viewed along the (a) [100] and (b) [010] directions of the unit cell. Hydrogen bonds are represented as green dashed bonds and H atoms have been omitted for clarity.
polymeric hexaaquacobalt(II) diaquadioxodi-µ2-pyrazine- bis[µ3-N-(phosphonomethyl)iminodiacetato]cobaltdivanadium dihydrate top
Crystal data top
C14H20CoN4O18P2V2·CoH12O6·2H2OZ = 1
Mr = 958.15F(000) = 486
Triclinic, P1Dx = 1.922 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2200 (14) ÅCell parameters from 5000 reflections
b = 10.140 (2) Åθ = 2–22.5°
c = 12.080 (2) ŵ = 1.73 mm1
α = 93.79 (3)°T = 298 K
β = 103.21 (3)°Prism, blue
γ = 104.21 (3)°0.44 × 0.33 × 0.14 mm
V = 827.6 (3) Å3
Data collection top
Kuma KM-4 CCD
diffractometer
3994 independent reflections
Radiation source: fine-focus sealed tube3510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 1024x1024 pixels mm-1θmax = 28.8°, θmin = 3.8°
ω scansh = 99
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.354, Tmax = 0.724l = 1616
14552 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3994 reflectionsΔρmax = 0.62 e Å3
260 parametersΔρmin = 0.46 e Å3
15 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0134 (13)
Crystal data top
C14H20CoN4O18P2V2·CoH12O6·2H2Oγ = 104.21 (3)°
Mr = 958.15V = 827.6 (3) Å3
Triclinic, P1Z = 1
a = 7.2200 (14) ÅMo Kα radiation
b = 10.140 (2) ŵ = 1.73 mm1
c = 12.080 (2) ÅT = 298 K
α = 93.79 (3)°0.44 × 0.33 × 0.14 mm
β = 103.21 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
3994 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
3510 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 0.724Rint = 0.033
14552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02515 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.62 e Å3
3994 reflectionsΔρmin = 0.46 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.51181 (4)0.03887 (3)0.78924 (2)0.01748 (8)
O10.38825 (17)0.29890 (12)0.92992 (10)0.0214 (2)
O20.48337 (19)0.16776 (12)1.09285 (10)0.0245 (3)
O30.56779 (16)0.11785 (12)0.90678 (11)0.0227 (3)
O40.42943 (19)0.07725 (14)0.66491 (12)0.0313 (3)
O50.2021 (2)0.16356 (15)0.56053 (13)0.0407 (4)
O60.33410 (17)0.20694 (12)0.68114 (11)0.0237 (3)
O70.0648 (2)0.37963 (14)0.64107 (14)0.0390 (4)
O80.71664 (19)0.03326 (15)0.75874 (14)0.0375 (3)
P10.41953 (6)0.16339 (4)0.96220 (4)0.01682 (10)
N10.18692 (19)0.04201 (13)0.79481 (11)0.0163 (3)
C10.1916 (2)0.02552 (16)0.90872 (14)0.0188 (3)
H1A0.18390.04150.96230.023*
H1B0.07860.06280.90230.023*
C20.1096 (3)0.03117 (19)0.70046 (15)0.0256 (4)
H2A0.05960.10190.73170.031*
H2B0.00060.03310.64600.031*
C30.2581 (3)0.09627 (18)0.63776 (16)0.0257 (4)
C40.0813 (2)0.18895 (17)0.77421 (16)0.0223 (3)
H4A0.05850.20020.74210.027*
H4B0.09700.22710.84620.027*
C50.1623 (2)0.26528 (17)0.69158 (15)0.0220 (3)
Co10.50000.50001.00000.01579 (9)
N20.1939 (2)0.50640 (15)0.99665 (13)0.0230 (3)
O1W0.4763 (3)0.56113 (14)0.83634 (12)0.0373 (3)
H1C0.502 (4)0.6456 (10)0.839 (2)0.056*
H1D0.448 (4)0.522 (2)0.7698 (11)0.056*
C60.0397 (3)0.4324 (2)0.91448 (17)0.0287 (4)
H60.06210.38360.85320.034*
C70.1526 (3)0.57413 (19)1.08241 (16)0.0272 (4)
H70.25590.62711.14160.033*
Co20.50000.50000.50000.01874 (9)
O2W0.28922 (19)0.44976 (14)0.60052 (12)0.0289 (3)
H2C0.234 (3)0.3656 (10)0.590 (2)0.043*
H2D0.208 (3)0.4943 (18)0.602 (2)0.043*
O3W0.4097 (2)0.29797 (13)0.42618 (12)0.0294 (3)
H3A0.355 (3)0.2393 (19)0.4626 (19)0.044*
H3B0.490 (3)0.267 (2)0.399 (2)0.044*
O4W0.2951 (2)0.54223 (15)0.36770 (13)0.0344 (3)
H4C0.276 (3)0.6200 (12)0.380 (2)0.052*
H4D0.187 (2)0.4825 (16)0.359 (2)0.052*
O5W0.7873 (3)0.2140 (2)0.6045 (2)0.0671 (6)
H5A0.866 (4)0.188 (3)0.575 (3)0.101*
H5B0.695 (4)0.151 (2)0.611 (3)0.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01399 (13)0.01636 (14)0.02252 (15)0.00357 (10)0.00684 (10)0.00046 (10)
O10.0248 (6)0.0135 (5)0.0242 (6)0.0076 (5)0.0011 (5)0.0004 (4)
O20.0305 (6)0.0169 (6)0.0221 (6)0.0068 (5)0.0009 (5)0.0004 (5)
O30.0156 (5)0.0169 (6)0.0336 (7)0.0037 (4)0.0051 (5)0.0042 (5)
O40.0261 (6)0.0353 (7)0.0352 (8)0.0057 (6)0.0130 (6)0.0143 (6)
O50.0455 (9)0.0369 (8)0.0390 (8)0.0092 (7)0.0067 (7)0.0209 (7)
O60.0204 (6)0.0241 (6)0.0254 (6)0.0038 (5)0.0083 (5)0.0060 (5)
O70.0240 (6)0.0254 (7)0.0595 (10)0.0010 (5)0.0078 (6)0.0198 (7)
O80.0232 (6)0.0395 (8)0.0533 (9)0.0080 (6)0.0188 (6)0.0001 (7)
P10.01643 (19)0.01190 (19)0.0207 (2)0.00478 (15)0.00191 (15)0.00152 (15)
N10.0151 (6)0.0149 (6)0.0182 (6)0.0037 (5)0.0037 (5)0.0002 (5)
C10.0163 (7)0.0181 (7)0.0219 (8)0.0040 (6)0.0062 (6)0.0009 (6)
C20.0232 (8)0.0309 (9)0.0260 (9)0.0130 (7)0.0050 (7)0.0083 (7)
C30.0297 (9)0.0204 (8)0.0249 (9)0.0053 (7)0.0041 (7)0.0042 (7)
C40.0177 (7)0.0167 (8)0.0309 (9)0.0006 (6)0.0090 (7)0.0031 (6)
C50.0181 (7)0.0196 (8)0.0259 (9)0.0059 (6)0.0017 (6)0.0040 (6)
Co10.01567 (15)0.01301 (15)0.01878 (16)0.00569 (11)0.00303 (11)0.00031 (11)
N20.0173 (6)0.0229 (7)0.0295 (8)0.0074 (6)0.0053 (6)0.0013 (6)
O1W0.0689 (10)0.0210 (7)0.0209 (7)0.0146 (7)0.0068 (7)0.0018 (5)
C60.0221 (8)0.0324 (10)0.0304 (10)0.0085 (7)0.0059 (7)0.0065 (7)
C70.0199 (8)0.0290 (9)0.0289 (9)0.0050 (7)0.0029 (7)0.0059 (7)
Co20.01870 (16)0.01772 (16)0.01970 (16)0.00470 (12)0.00555 (12)0.00003 (12)
O2W0.0292 (7)0.0260 (7)0.0354 (7)0.0086 (5)0.0151 (6)0.0008 (6)
O3W0.0349 (7)0.0210 (6)0.0350 (8)0.0066 (5)0.0170 (6)0.0016 (5)
O4W0.0250 (6)0.0337 (8)0.0399 (8)0.0056 (6)0.0002 (6)0.0097 (6)
O5W0.0588 (12)0.0496 (11)0.1159 (19)0.0278 (10)0.0442 (12)0.0441 (12)
Geometric parameters (Å, º) top
Co1—O1i2.044 (2)N1—C41.473 (2)
Co1—O1Wi2.093 (2)N1—C21.478 (2)
Co1—O1W2.093 (2)N1—C11.485 (2)
Co1—N22.218 (2)C1—H1A0.9700
Co1—N2i2.218 (2)C1—H1B0.9700
Co2—O2Wii2.144 (2)C2—C31.500 (3)
Co2—O2W2.144 (2)C2—H2A0.9700
Co2—O3Wii2.063 (2)C2—H2B0.9700
Co2—O3W2.063 (2)C4—C51.525 (2)
Co2—O4Wii2.061 (2)C4—H4A0.9700
Co2—O4W2.061 (2)C4—H4B0.9700
V1—O2iii1.996 (2)N2—C61.332 (2)
V1—O31.957 (2)N2—C71.334 (2)
V1—O42.041 (2)O1W—H1C0.828 (9)
V1—O62.030 (2)O1W—H1D0.829 (9)
V1—O81.593 (2)C6—C7iv1.384 (2)
V1—N12.354 (2)C6—H60.9300
O1—P11.508 (2)C7—C6iv1.384 (2)
O2—P11.534 (2)C7—H70.9300
O2—V1iii1.996 (2)O2W—H2C0.84 (2)
O3—P11.529 (2)O2W—H2D0.84 (2)
O1—Co12.044 (2)O3W—H3A0.84 (2)
O4—C31.271 (2)O3W—H3B0.84 (2)
O5—C31.244 (2)O4W—H4C0.84 (2)
O6—C51.275 (2)O4W—H4D0.84 (2)
O7—C51.234 (2)O5W—H5A0.84 (2)
P1—C11.829 (2)O5W—H5B0.84 (2)
O1i—Co1—O1180.0P1—O1—Co1136.12 (7)
O1i—Co1—O1Wi90.60 (6)P1—O3—V1126.89 (7)
O1—Co1—O1Wi89.40 (6)P1—O2—V1iii139.35 (8)
O1i—Co1—O1W89.40 (6)C3—O4—V1123.11 (12)
O1—Co1—O1W90.60 (6)C5—O6—V1121.69 (11)
O1i—Co1—N291.96 (6)C4—N1—C2111.32 (14)
O1—Co1—N288.04 (6)C4—N1—C1113.13 (13)
O1i—Co1—N2i88.04 (6)C2—N1—C1112.01 (13)
O1—Co1—N2i91.96 (6)C4—N1—V1104.02 (9)
O1Wi—Co1—O1W180.000 (1)C2—N1—V1107.11 (10)
O1Wi—Co1—N288.11 (7)C1—N1—V1108.73 (9)
O1W—Co1—N291.89 (7)N1—C1—P1110.13 (11)
O1Wi—Co1—N2i91.89 (7)N1—C1—H1A109.6
O1W—Co1—N2i88.11 (7)P1—C1—H1A109.6
N2—Co1—N2i180.000 (1)N1—C1—H1B109.6
C6—N2—C7116.30 (15)P1—C1—H1B109.6
C6—N2—Co1121.70 (12)H1A—C1—H1B108.1
C7—N2—Co1121.71 (12)N1—C2—C3114.49 (14)
O2Wii—Co2—O2W180.0N1—C2—H2A108.6
O3W—Co2—O2W88.56 (6)C3—C2—H2A108.6
O3Wii—Co2—O2W91.44 (6)N1—C2—H2B108.6
O3W—Co2—O2Wii91.44 (6)C3—C2—H2B108.6
O3Wii—Co2—O2Wii88.56 (6)H2A—C2—H2B107.6
O3Wii—Co2—O3W180.0O5—C3—O4124.57 (18)
O4Wii—Co2—O2Wii92.16 (6)O5—C3—C2116.87 (17)
O4W—Co2—O2Wii87.84 (6)O4—C3—C2118.55 (15)
O4Wii—Co2—O2W87.84 (6)N1—C4—C5110.13 (14)
O4W—Co2—O2W92.16 (6)N1—C4—H4A109.6
O4Wii—Co2—O3Wii88.57 (7)C5—C4—H4A109.6
O4W—Co2—O3Wii91.43 (7)N1—C4—H4B109.6
O4Wii—Co2—O3W91.43 (7)C5—C4—H4B109.6
O4W—Co2—O3W88.57 (7)H4A—C4—H4B108.1
O4Wii—Co2—O4W180.000 (1)O7—C5—O6123.15 (16)
O2iii—V1—O4165.00 (5)O7—C5—C4120.01 (15)
O2iii—V1—O684.32 (6)O6—C5—C4116.81 (14)
O2iii—V1—N189.08 (6)Co1—O1W—H1C111.9 (16)
O3—V1—O2iii91.38 (6)Co1—O1W—H1D136.3 (16)
O3—V1—O490.11 (6)H1C—O1W—H1D111.8 (16)
O3—V1—O6154.21 (5)N2—C6—C7iv121.99 (17)
O3—V1—N180.43 (6)N2—C6—H6119.0
O4—V1—N176.45 (6)C7iv—C6—H6119.0
O6—V1—O487.87 (6)N2—C7—C6iv121.72 (17)
O6—V1—N174.10 (5)N2—C7—H7119.1
O8—V1—O2iii100.68 (8)C6iv—C7—H7119.1
O8—V1—O3105.45 (7)Co2—O2W—H2C111.1 (16)
O8—V1—O493.29 (8)Co2—O2W—H2D121.1 (17)
O8—V1—O6100.33 (7)H2C—O2W—H2D110.5 (15)
O8—V1—N1168.34 (7)Co2—O3W—H3A117.6 (16)
O1—P1—O3112.77 (8)Co2—O3W—H3B117.6 (16)
O1—P1—O2111.06 (7)H3A—O3W—H3B108.7 (14)
O3—P1—O2110.17 (7)Co2—O4W—H4C113.2 (18)
O1—P1—C1110.75 (8)Co2—O4W—H4D108.3 (18)
O3—P1—C1104.04 (7)H4C—O4W—H4D108.0 (15)
O2—P1—C1107.73 (8)H5A—O5W—H5B113.1 (18)
O8—V1—O3—P1177.17 (10)O4—V1—N1—C1116.81 (11)
O2iii—V1—O3—P181.35 (10)C4—N1—C1—P1148.25 (11)
O6—V1—O3—P11.59 (19)C2—N1—C1—P184.94 (14)
O4—V1—O3—P183.73 (10)V1—N1—C1—P133.23 (12)
N1—V1—O3—P17.49 (9)O1—P1—C1—N193.41 (12)
O8—V1—O4—C3171.55 (15)O3—P1—C1—N128.01 (13)
O3—V1—O4—C382.97 (15)O2—P1—C1—N1144.95 (10)
O2iii—V1—O4—C312.8 (3)C4—N1—C2—C3118.68 (16)
O6—V1—O4—C371.31 (15)C1—N1—C2—C3113.55 (16)
N1—V1—O4—C32.84 (14)V1—N1—C2—C35.58 (17)
O8—V1—O6—C5166.52 (14)V1—O4—C3—O5178.12 (15)
O3—V1—O6—C514.7 (2)V1—O4—C3—C20.4 (2)
O2iii—V1—O6—C566.66 (14)N1—C2—C3—O5177.29 (16)
O4—V1—O6—C5100.52 (14)N1—C2—C3—O44.1 (2)
N1—V1—O6—C524.00 (13)C2—N1—C4—C580.61 (17)
Co1—O1—P1—O395.31 (12)C1—N1—C4—C5152.22 (14)
Co1—O1—P1—O228.90 (13)V1—N1—C4—C534.42 (15)
Co1—O1—P1—C1148.56 (10)V1—O6—C5—O7167.08 (15)
V1—O3—P1—O1112.31 (10)V1—O6—C5—C410.9 (2)
V1—O3—P1—O2122.98 (10)N1—C4—C5—O7161.79 (17)
V1—O3—P1—C17.75 (12)N1—C4—C5—O620.2 (2)
V1iii—O2—P1—O1159.07 (11)P1—O1—Co1—O1Wi34.28 (12)
V1iii—O2—P1—O375.24 (13)P1—O1—Co1—O1W145.72 (12)
V1iii—O2—P1—C137.63 (14)P1—O1—Co1—N2122.41 (12)
O8—V1—N1—C493.5 (3)P1—O1—Co1—N2i57.59 (12)
O3—V1—N1—C4145.17 (11)O1i—Co1—N2—C6146.95 (15)
O2iii—V1—N1—C453.62 (11)O1—Co1—N2—C633.05 (15)
O6—V1—N1—C430.73 (10)O1Wi—Co1—N2—C6122.52 (16)
O4—V1—N1—C4122.38 (11)O1W—Co1—N2—C657.48 (16)
O8—V1—N1—C224.5 (4)O1i—Co1—N2—C739.57 (15)
O3—V1—N1—C296.86 (11)O1—Co1—N2—C7140.43 (15)
O2iii—V1—N1—C2171.59 (11)O1Wi—Co1—N2—C750.97 (15)
O6—V1—N1—C287.24 (11)O1W—Co1—N2—C7129.03 (15)
O4—V1—N1—C24.41 (11)C7—N2—C6—C7iv0.0 (3)
O8—V1—N1—C1145.7 (3)Co1—N2—C6—C7iv173.84 (15)
O3—V1—N1—C124.37 (10)C6—N2—C7—C6iv0.0 (3)
O2iii—V1—N1—C167.19 (10)Co1—N2—C7—C6iv173.84 (15)
O6—V1—N1—C1151.54 (11)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2; (iv) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O2i0.84 (2)1.98 (1)2.7489 (19)154 (2)
O1W—H1D···O2W0.84 (2)2.09 (1)2.878 (2)160 (3)
O2W—H2C···O50.84 (2)2.00 (1)2.798 (2)159 (2)
O2W—H2D···O7v0.84 (2)1.93 (1)2.736 (2)166 (2)
O3W—H3A···O50.84 (2)1.87 (1)2.672 (2)159 (2)
O3W—H3B···O6vi0.84 (2)1.95 (2)2.7801 (18)173 (2)
O4W—H4C···O5Wii0.84 (2)1.86 (1)2.698 (2)175 (3)
O4W—H4D···O7vii0.84 (2)1.86 (1)2.689 (2)167 (2)
O5W—H5B···O40.84 (2)2.14 (2)2.893 (2)151 (3)
O5W—H5A···O5viii0.84 (2)2.54 (2)3.311 (3)157 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H20CoN4O18P2V2·CoH12O6·2H2O
Mr958.15
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2200 (14), 10.140 (2), 12.080 (2)
α, β, γ (°)93.79 (3), 103.21 (3), 104.21 (3)
V3)827.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.44 × 0.33 × 0.14
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.354, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
14552, 3994, 3510
Rint0.033
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.08
No. of reflections3994
No. of parameters260
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.46

Computer programs: CrysAlis CCD (Kuma, 1999), CrysAlis RED (Kuma, 1999), CrysAlis RED, SIR92 (Altomare et al., 1994), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—O1i2.044 (2)V1—O62.030 (2)
Co1—O1W2.093 (2)V1—O81.593 (2)
Co1—N22.218 (2)V1—N12.354 (2)
Co2—O2W2.144 (2)O1—P11.508 (2)
Co2—O3W2.063 (2)O2—P11.534 (2)
Co2—O4W2.061 (2)O3—P11.529 (2)
V1—O2ii1.996 (2)O1—Co12.044 (2)
V1—O31.957 (2)P1—C11.829 (2)
V1—O42.041 (2)
O1—Co1—O1Wi89.40 (6)O3—V1—N180.43 (6)
O1—Co1—O1W90.60 (6)O4—V1—N176.45 (6)
O1i—Co1—N291.96 (6)O6—V1—O487.87 (6)
O1—Co1—N288.04 (6)O6—V1—N174.10 (5)
O1Wi—Co1—N288.11 (7)O8—V1—O2ii100.68 (8)
O1W—Co1—N291.89 (7)O8—V1—O3105.45 (7)
O3W—Co2—O2W88.56 (6)O8—V1—O493.29 (8)
O3W—Co2—O2Wiii91.44 (6)O8—V1—O6100.33 (7)
O4W—Co2—O2Wiii87.84 (6)O8—V1—N1168.34 (7)
O4W—Co2—O2W92.16 (6)O1—P1—O3112.77 (8)
O4W—Co2—O3Wiii91.43 (7)O1—P1—O2111.06 (7)
O4W—Co2—O3W88.57 (7)O3—P1—O2110.17 (7)
O2ii—V1—O4165.00 (5)O1—P1—C1110.75 (8)
O2ii—V1—O684.32 (6)O3—P1—C1104.04 (7)
O2ii—V1—N189.08 (6)O2—P1—C1107.73 (8)
O3—V1—O2ii91.38 (6)P1—O1—Co1136.12 (7)
O3—V1—O490.11 (6)P1—O3—V1126.89 (7)
O3—V1—O6154.21 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O2i0.84 (2)1.983 (13)2.7489 (19)154 (2)
O1W—H1D···O2W0.84 (2)2.087 (14)2.878 (2)160 (3)
O2W—H2C···O50.84 (2)2.003 (11)2.798 (2)159 (2)
O2W—H2D···O7iv0.84 (2)1.927 (11)2.736 (2)166 (2)
O3W—H3A···O50.84 (2)1.873 (11)2.672 (2)159 (2)
O3W—H3B···O6v0.84 (2)1.95 (2)2.7801 (18)173 (2)
O4W—H4C···O5Wiii0.84 (2)1.855 (10)2.698 (2)175 (3)
O4W—H4D···O7vi0.84 (2)1.864 (12)2.689 (2)167 (2)
O5W—H5B···O40.84 (2)2.143 (17)2.893 (2)151 (3)
O5W—H5A···O5vii0.84 (2)2.541 (17)3.311 (3)157 (3)
Symmetry codes: (i) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x+1, y, z.
 

Acknowledgements

We are grateful to FEDER, POCTI (Portugal), InTerreg IIIB and to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support and the postdoctoral and PhD research grants Nos. SFRH/BPD/9309/2002 (to FNS) and SFRH/BD/13858/2003 (to LM).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals
First citationAllen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422. Web of Science CrossRef CAS IUCr Journals
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1461–1494. Web of Science CrossRef CAS
First citationBrandenburg, K. (2001). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCrans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645–6655. Web of Science CSD CrossRef PubMed CAS
First citationFan, Y., Li, G. H., Shi., Z., Zhang, D., Xu, J. N., Song, T. Y. & Feng, S. H. (2004). J. Solid State Chem. 177, 4346–4350. CrossRef CAS
First citationGutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088–1090. CrossRef CAS
First citationHoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546–1554. CSD CrossRef CAS Web of Science
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef
First citationKuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland.
First citationMao, J. G., Wang, Z. K. & Clearfield, A. (2002). Inorg. Chem. 41, 6106–6111. Web of Science CSD CrossRef PubMed CAS
First citationMori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31–46. Web of Science CSD CrossRef CAS
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002a). Acta Cryst. C58, m608–m610. Web of Science CSD CrossRef IUCr Journals
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002b). Acta Cryst. E58, m691–m693. CSD CrossRef IUCr Journals
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002c). Acta Cryst. E58, m730–m732. CSD CrossRef IUCr Journals
First citationPaz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828.
First citationPaz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484–1485.
First citationPaz, F. A. A. & Klinowski, J. (2004a). J. Solid State Chem. 177, 3423–3432. Web of Science CSD CrossRef CAS
First citationPaz, F. A. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3882–2893. Web of Science CSD CrossRef PubMed CAS
First citationPaz, F. A. A. & Klinowski, J. (2004c). Inorg. Chem. 43, 3948–3954. Web of Science CSD CrossRef PubMed CAS
First citationPaz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768.
First citationPei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207–210.
First citationRowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3–14. Web of Science CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSong, J. L., Prosvirin, A. V., Zhao, H. H. & Mao, J. G. (2004). Eur. J. Inorg. Chem. pp. 3706–3711.
First citationYaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484. Web of Science CrossRef CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds