organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­chloro­thia­zide–1,4-dioxane (1/1)

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 5 July 2005; accepted 13 July 2005; online 16 July 2005)

Hydro­chloro­thia­zide forms a 1:1 solvate with 1,4-dioxane, C7H8ClN3O4S2·C4H8O2 [systematic name: 6-chloro-3,4-di­hydro-2H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-dioxide–1,4-dioxane ([{1/1}])]. The asymmetric unit comprises one mol­ecule of hydro­chloro­thia­zide and halves of two solvent mol­ecules arranged around inversion centres. The structure contains a hydrogen-bonding network comprising three N—H⋯O and one N—H⋯N hydrogen bonds.

Comment

Hydro­chloro­thia­zide (HCT) is a thia­zide diuretic which is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]). The title compound, (I)[link], was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated 1:1 acetone/dioxane solution, by slow evaporation at 298 K, yielded samples of the HCT 1,4-dioxane solvate suitable for single-crystal X-ray analysis (Fig. 1[link]).

[Scheme 1]

In (I)[link], the six-membered S1/N1/C1/N2/C2/C7 ring in HCT displays a half-chair conformation, atoms C1 and N1 having deviations of −0.134 (2) and 0.554 (2) Å, respectively, from the least-squares plane through atoms C2–C7. The sulfon­amide side chain adopts an N3—S2—C5—C4 torsion angle of 57.55 (18)°, such that atom O3 eclipses atom H6, and atoms O4 and N3 are staggered with respect to atom Cl1. In the non-solvated structure, this group is rotated by approximately 120° compared with that in (I)[link], such that the amine group lies on the opposite side of the benzothia­diazine ring system. Both centrosymmetric solvent mol­ecules adopt chair conformations, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for rings A and B of Q = 0.564 (2) and 0.566 (2) Å, θ = 2.11 (1) and 0.00° and φ = 0 and 0°, respectively.

The crystal structure is stabilized by a network of hydrogen bonds inter­connecting (a) HCT mol­ecules (Fig. 2[link], contacts 1 and 2), (b) HCT and solvent mol­ecule A (contact 3), and (c) HCT and solvent mol­ecule B (contact 4). Contact 1 forms an infinite chain of HCT mol­ecules, which combine with contact 2 to form layers of HCT mol­ecules in the ab plane. Each HCT layer is connected to parallel layers of 1,4-dioxane (via contacts 3 and 4) and HCT mol­ecules. Hydro­phobic inter­actions between layers of HCT include offset face-to-face (off) ππ stacking between the ring formed by atoms C2–C7 [centroid–centroid distance = 4.192 (1) Å]. Compound (I)[link] therefore adopts a stacked structure with alternating double layers of HCT, with single layers of solvent stacked in the c direction (Fig. 3[link]). Three C—H⋯O contacts also exist between HCT mol­ecules (Fig. 2[link], contacts 5–7), with a fourth connecting 1,4-dioxane mol­ecule B to atom O3 of HCT (contact 8).

[Figure 1]
Figure 1
The asymmetric unit contents, expanded to complete the solvent molecules, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen-bond contacts. [Symmetry codes: (i) 1 – x, −y, 1 − z; (ii) –x, 1 − y, 1 − z].
[Figure 2]
Figure 2
Intermolecular interactions in (I)[link]. Dashed lines indicate hydrogen bonds and unique contacts are labelled as follows: (1) N3⋯N1(−1 + x, 1 + y, z) = 3.097 (3) Å; (2) N2⋯O2(−1 + x, y, z) = 3.032 (2) Å; (3) N3⋯O5 = 2.879 (2) Å; (4) N1⋯O6 = 2.848 (2) Å; (5) C1⋯O2(2 − x, −y, −z) = 3.304 (2) Å; (6) C1⋯O4(x, −1 + y, z) = 3.220 (2) Å; (7) C3⋯O2(−1 + x, y, z) = 3.285 (2) Å; (8) C11⋯O3(x, −1 + y, z) = 3.412 (2) Å. Contacts calculated and illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; program version 280604)
[Figure 3]
Figure 3
The crystal packing in the structure of (I)[link]; view down the a axis, showing the alternating layers of HCT and 1,4-dioxane mol­ecules stacked along c. Hydrogen bonds are shown as dashed lines.

Experimental

A single-crystal sample of the title compound was recrystallized from a 1:1 acetone/1,4-dioxane solution by slow evaporation at 298 K.

Crystal data
  • C7H8ClN3O4S2·C4H8O2

  • Mr = 385.84

  • Triclinic, [P \overline 1]

  • a = 6.6684 (2) Å

  • b = 9.8585 (3) Å

  • c = 12.9149 (4) Å

  • α = 87.046 (2)°

  • β = 78.017 (2)°

  • γ = 70.872 (2)°

  • V = 784.55 (4) Å3

  • Z = 2

  • Dx = 1.633 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3105 reflections

  • θ = 1.0–27.1°

  • μ = 0.54 mm−1

  • T = 123 (2) K

  • Plate, colourless

  • 0.50 × 0.20 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 12343 measured reflections

  • 3445 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 27.1°

  • h = −8 → 8

  • k = −12 → 12

  • l = −16 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.03

  • 3445 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0335P)2 + 0.4818P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.82 (2) 2.04 (2) 2.848 (2) 170 (2)
N2—H2N⋯O2i 0.81 (2) 2.28 (3) 3.032 (2) 154 (2)
N3—H3N⋯N1ii 0.81 (2) 2.35 (2) 3.097 (3) 155 (2)
N3—H4N⋯O5 0.87 (3) 2.02 (3) 2.879 (2) 170 (3)
C1—H1A⋯O2 0.99 2.60 2.980 (2) 103
C1—H1A⋯O2iii 0.99 2.55 3.304 (2) 133
C1—H1B⋯O4iv 0.99 2.41 3.220 (2) 139
C3—H3⋯O2i 0.95 2.56 3.285 (2) 133
C6—H6⋯O3 0.95 2.38 2.800 (2) 107
C11—H11B⋯O3iv 0.99 2.50 3.412 (2) 153
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z; (iii) -x+2, -y, -z; (iv) x, y-1, z.

The amine H atoms were located in difference syntheses and were refined isotropically. All other H atoms were constrained to an idealized geometry using a riding model with Uiso(H) = 1.2Ueq(C); for CH2 groups, C—H = 0.99 Å, whilst for CH groups, C—H = 0.95 Å.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrochlorothiazide (HCT) is a thiazide diuretic which is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1972). The title compound, (I), was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003). Subsequent manual recrystallization from a saturated 1:1 acetone/dioxane solution by slow evaporation at 298 K yielded samples of the HCT 1,4-dioxane disolvate suitable for single-crystal X-ray analysis (Fig. 1).

In (I), the six-membered S1/N1/C1/N2/C2/C7 ring in HCT displays a puckered conformation, atoms C1 and N1 having deviations of -0.134 (2) and 0.554 (2) Å, respectively, from the least-squares plane through atoms C2–C7. The sulphonamide sidechain adopts an N3—S2—C5—C4 torsion angle of 57.55 (18)°, such that atom O3 eclipses atom H6, and atoms O4 and N3 are staggered with respect to atom Cl1. In the non-solvated structure, this group is rotated by approximately 120° compared with that in (I), such that the amine group lies on the opposite side of the benzothiadiazine moiety. Both solvent molecules adopt chair conformations, with puckering parameters for rings A and B of Q = 0.564 (2) and 0.566 (2) Å, θ = 2.11 (1) and 0.00° and ϕ = 0 and 0°, respectively.

The crystal structure is stabilized by a network of hydrogen bonds interconnecting (a) HCT molecules (Fig. 2, contacts 1 and 2), (b) HCT and solvent molecule A (contact 3), and (c) HCT and solvent molecule B (contact 4). Contact 1 forms an infinite chain of HCT molecules, which combine with contact 2 to form layers of HCT molecules in the ab plane. Each HCT layer is connected to parallel layers of 1,4-dioxane (via contacts 3 and 4) and HCT molecules. Hydrophobic interactions between layers of HCT include offset face-to-face (off) ππ stacking between the ring formed by atoms C2–C7 [centroid–centroid distance = 4.192 (1) Å]. Compound (I) therefore adopts a stacked structure with alternating double layers of HCT, with single layers of solvent stacked in the c direction (Fig. 3). Three C—H···O contacts also exist between HCT molecules (Fig. 2, contacts 5 to 7), with a fourth connecting 1,4-dioxane molecule B to atom O3 of HCT (contact 8).

Experimental top

A single-crystal sample of the title compound was recrystallized from a 1:1 acetone/1,4-dioxane solution by slow evaporation at 298 K.

Refinement top

The amine H atoms were located in difference syntheses and were refined isotropically. All other H atoms were constrained to an idealized geometry using a riding model with Uiso(H) = 1.2Ueq(C); for CH2 groups, C—H = 0.99 Å, whilst for CH groups, C—H = 0.95 Å.

Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit contents, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen-bond contacts. [Symmetry codes: (i) 1 – x, -y, 1 - z; (ii) –x, 1 - y, 1 - z].
[Figure 2] Fig. 2. A packing diagram of (I). Dashed lines indicate hydrogen bonds and unique contacts are labelled as follows: (1) N3···N1(-1 + x, 1 + y, z) = 3.097 (3) Å; (2) N2···O2(-1 + x, y, z) = 3.032 (2) Å; (3) N3···O5 = 2.879 (2) Å; (4) N1···O6 = 2.848 (2) Å; (5) C1···O2(2 - x, -y, -z) = 3.304 (2) Å; (6) C1···O4(x, -1 + y, z) = 3.220 (2) Å; (7) C3···O2(-1 + x, y, z) = 3.285 (2) Å; (8) C11···O3(x, -1 + y, z) = 3.412 (2) Å. Contacts calculated and illustrated using PLATON (Spek, 2003; program version 280604)
[Figure 3] Fig. 3. The crystal packing in the structure of (I); view down the a axis, showing the alternating layers of HCT and 1,4-dioxane molecules stacked along c. Hydrogen bonds are shown as dashed lines.
6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide–1,4-dioxane (1/1) top
Crystal data top
C7H8ClN3O4S2·C4H8O2Z = 2
Mr = 385.84F(000) = 400
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6684 (2) ÅCell parameters from 3105 reflections
b = 9.8585 (3) Åθ = 1.0–27.1°
c = 12.9149 (4) ŵ = 0.54 mm1
α = 87.046 (2)°T = 123 K
β = 78.017 (2)°Flattened (Plate?), colourless
γ = 70.872 (2)°0.50 × 0.20 × 0.08 mm
V = 784.55 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2879 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.1°, θmin = 1.6°
ω and ϕ scansh = 88
12343 measured reflectionsk = 1212
3445 independent reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.4818P]
where P = (Fo2 + 2Fc2)/3
3445 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C7H8ClN3O4S2·C4H8O2γ = 70.872 (2)°
Mr = 385.84V = 784.55 (4) Å3
Triclinic, P1Z = 2
a = 6.6684 (2) ÅMo Kα radiation
b = 9.8585 (3) ŵ = 0.54 mm1
c = 12.9149 (4) ÅT = 123 K
α = 87.046 (2)°0.50 × 0.20 × 0.08 mm
β = 78.017 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2879 reflections with I > 2σ(I)
12343 measured reflectionsRint = 0.035
3445 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3445 reflectionsΔρmin = 0.43 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07843 (7)0.65012 (5)0.09254 (4)0.01908 (12)
S10.88826 (7)0.17340 (4)0.20012 (4)0.01332 (11)
S20.42002 (7)0.73615 (4)0.20612 (4)0.01410 (11)
O10.9318 (2)0.20556 (13)0.29836 (11)0.0206 (3)
O21.05861 (19)0.14951 (13)0.10752 (10)0.0168 (3)
O30.5917 (2)0.72299 (13)0.26103 (11)0.0193 (3)
O40.4063 (2)0.82446 (13)0.11418 (10)0.0200 (3)
O50.1010 (2)0.58970 (15)0.43701 (11)0.0260 (3)
O60.5231 (2)0.09459 (16)0.41565 (11)0.0258 (3)
N10.8111 (3)0.03091 (16)0.21498 (13)0.0151 (3)
N20.5155 (3)0.12683 (16)0.12386 (13)0.0148 (3)
N30.1942 (3)0.79977 (18)0.28862 (14)0.0173 (3)
C10.7164 (3)0.01179 (18)0.12586 (15)0.0153 (4)
H1A0.82060.00980.05860.018*
H1B0.68860.08130.13220.018*
C20.5001 (3)0.26611 (18)0.13433 (13)0.0130 (4)
C30.3216 (3)0.37838 (19)0.11015 (14)0.0140 (4)
H30.21570.35630.08140.017*
C40.2995 (3)0.51923 (19)0.12782 (14)0.0136 (4)
C50.4490 (3)0.55796 (18)0.17218 (14)0.0128 (4)
C60.6283 (3)0.44909 (18)0.19318 (14)0.0140 (4)
H60.73340.47250.22180.017*
C70.6567 (3)0.30640 (18)0.17301 (14)0.0129 (4)
C80.1831 (3)0.5178 (2)0.52605 (17)0.0273 (5)
H8A0.25060.57680.55760.033*
H8B0.29580.42470.50250.033*
C90.0039 (4)0.4925 (2)0.60737 (16)0.0296 (5)
H9A0.06350.44040.66760.035*
H9B0.10350.58590.63450.035*
C100.3289 (3)0.0572 (2)0.44691 (17)0.0271 (5)
H10A0.26410.05820.38440.032*
H10B0.22260.12900.49910.032*
C110.3771 (4)0.0892 (2)0.49485 (16)0.0267 (5)
H11A0.24090.11220.51770.032*
H11B0.47530.16200.44110.032*
H3N0.095 (4)0.837 (2)0.2591 (18)0.021 (6)*
H1N0.730 (4)0.039 (2)0.2727 (18)0.022 (6)*
H2N0.416 (4)0.108 (2)0.1080 (17)0.020 (6)*
H4N0.172 (4)0.741 (3)0.339 (2)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0167 (2)0.0153 (2)0.0241 (3)0.00054 (17)0.00968 (19)0.00146 (18)
S10.0128 (2)0.0109 (2)0.0167 (2)0.00285 (17)0.00548 (17)0.00024 (17)
S20.0154 (2)0.0108 (2)0.0156 (2)0.00413 (17)0.00203 (18)0.00034 (17)
O10.0239 (7)0.0184 (7)0.0214 (7)0.0040 (6)0.0132 (6)0.0006 (6)
O20.0118 (6)0.0151 (6)0.0226 (7)0.0036 (5)0.0025 (5)0.0007 (5)
O30.0181 (7)0.0162 (6)0.0247 (7)0.0050 (5)0.0066 (6)0.0032 (5)
O40.0274 (7)0.0154 (6)0.0176 (7)0.0095 (6)0.0017 (6)0.0035 (5)
O50.0361 (8)0.0293 (8)0.0194 (7)0.0191 (7)0.0085 (6)0.0080 (6)
O60.0289 (8)0.0357 (8)0.0152 (7)0.0130 (7)0.0062 (6)0.0033 (6)
N10.0156 (8)0.0127 (7)0.0168 (8)0.0046 (6)0.0033 (7)0.0017 (6)
N20.0136 (8)0.0129 (7)0.0201 (8)0.0056 (6)0.0061 (7)0.0004 (6)
N30.0165 (8)0.0144 (8)0.0179 (8)0.0009 (7)0.0034 (7)0.0010 (7)
C10.0142 (9)0.0119 (8)0.0195 (9)0.0036 (7)0.0031 (7)0.0018 (7)
C20.0138 (8)0.0147 (9)0.0101 (8)0.0048 (7)0.0011 (7)0.0008 (7)
C30.0134 (9)0.0168 (9)0.0130 (9)0.0060 (7)0.0038 (7)0.0002 (7)
C40.0110 (8)0.0145 (9)0.0121 (9)0.0010 (7)0.0011 (7)0.0022 (7)
C50.0136 (9)0.0110 (8)0.0131 (9)0.0038 (7)0.0019 (7)0.0008 (7)
C60.0125 (8)0.0152 (9)0.0148 (9)0.0057 (7)0.0016 (7)0.0010 (7)
C70.0111 (8)0.0124 (8)0.0139 (9)0.0025 (7)0.0015 (7)0.0003 (7)
C80.0301 (11)0.0320 (12)0.0257 (11)0.0151 (9)0.0116 (9)0.0062 (9)
C90.0424 (13)0.0379 (13)0.0184 (10)0.0241 (11)0.0115 (10)0.0070 (9)
C100.0215 (10)0.0382 (12)0.0208 (11)0.0070 (9)0.0073 (9)0.0009 (9)
C110.0298 (11)0.0380 (12)0.0168 (10)0.0158 (10)0.0068 (9)0.0003 (9)
Geometric parameters (Å, º) top
Cl1—C41.7372 (18)C1—H1B0.9900
S1—O11.4316 (13)C2—C31.412 (2)
S1—O21.4373 (13)C2—C71.416 (2)
S1—N11.6371 (15)C3—C41.373 (2)
S1—C71.7541 (17)C3—H30.9500
S2—O31.4357 (13)C4—C51.406 (2)
S2—O41.4362 (13)C5—C61.386 (2)
S2—N31.6060 (16)C6—C71.388 (2)
S2—C51.7713 (17)C6—H60.9500
O5—C81.431 (2)C8—C91.497 (3)
O5—C9i1.435 (2)C8—H8A0.9900
O6—C101.434 (2)C8—H8B0.9900
O6—C11ii1.439 (2)C9—O5i1.435 (2)
N1—C11.470 (2)C9—H9A0.9900
N1—H1N0.82 (2)C9—H9B0.9900
N2—C21.355 (2)C10—C111.502 (3)
N2—C11.448 (2)C10—H10A0.9900
N2—H2N0.81 (2)C10—H10B0.9900
N3—H3N0.81 (2)C11—O6ii1.439 (2)
N3—H4N0.87 (3)C11—H11A0.9900
C1—H1A0.9900C11—H11B0.9900
O1—S1—O2118.26 (8)C3—C4—Cl1117.42 (14)
O1—S1—N1108.70 (8)C5—C4—Cl1120.55 (13)
O2—S1—N1107.54 (8)C6—C5—C4117.82 (16)
O1—S1—C7110.05 (8)C6—C5—S2117.75 (13)
O2—S1—C7108.81 (8)C4—C5—S2124.42 (13)
N1—S1—C7102.26 (8)C5—C6—C7120.92 (16)
O3—S2—O4118.54 (8)C5—C6—H6119.5
O3—S2—N3107.75 (9)C7—C6—H6119.5
O4—S2—N3106.87 (9)C6—C7—C2121.50 (16)
O3—S2—C5105.19 (8)C6—C7—S1118.84 (14)
O4—S2—C5110.01 (8)C2—C7—S1119.63 (13)
N3—S2—C5108.10 (8)O5—C8—C9110.31 (17)
C8—O5—C9i110.22 (15)O5—C8—H8A109.6
C10—O6—C11ii110.16 (15)C9—C8—H8A109.6
C1—N1—S1111.21 (12)O5—C8—H8B109.6
C1—N1—H1N114.2 (16)C9—C8—H8B109.6
S1—N1—H1N107.2 (15)H8A—C8—H8B108.1
C2—N2—C1121.31 (15)O5i—C9—C8110.81 (17)
C2—N2—H2N119.1 (15)O5i—C9—H9A109.5
C1—N2—H2N119.0 (15)C8—C9—H9A109.5
S2—N3—H3N112.0 (16)O5i—C9—H9B109.5
S2—N3—H4N113.6 (17)C8—C9—H9B109.5
H3N—N3—H4N116 (2)H9A—C9—H9B108.1
N2—C1—N1111.09 (14)O6—C10—C11110.61 (17)
N2—C1—H1A109.4O6—C10—H10A109.5
N1—C1—H1A109.4C11—C10—H10A109.5
N2—C1—H1B109.4O6—C10—H10B109.5
N1—C1—H1B109.4C11—C10—H10B109.5
H1A—C1—H1B108.0H10A—C10—H10B108.1
N2—C2—C3121.02 (16)O6ii—C11—C10110.62 (17)
N2—C2—C7122.07 (16)O6ii—C11—H11A109.5
C3—C2—C7116.88 (15)C10—C11—H11A109.5
C4—C3—C2120.68 (16)O6ii—C11—H11B109.5
C4—C3—H3119.7C10—C11—H11B109.5
C2—C3—H3119.7H11A—C11—H11B108.1
C3—C4—C5122.04 (16)
O1—S1—N1—C1166.87 (12)N3—S2—C5—C457.55 (18)
O2—S1—N1—C163.99 (13)C4—C5—C6—C71.3 (3)
C7—S1—N1—C150.51 (14)S2—C5—C6—C7177.15 (14)
C2—N2—C1—N147.3 (2)C5—C6—C7—C22.5 (3)
S1—N1—C1—N266.28 (17)C5—C6—C7—S1179.43 (13)
C1—N2—C2—C3166.39 (16)N2—C2—C7—C6173.58 (17)
C1—N2—C2—C715.7 (3)C3—C2—C7—C64.4 (3)
N2—C2—C3—C4175.51 (16)N2—C2—C7—S14.4 (2)
C7—C2—C3—C42.5 (3)C3—C2—C7—S1177.61 (13)
C2—C3—C4—C51.3 (3)O1—S1—C7—C641.38 (17)
C2—C3—C4—Cl1178.41 (13)O2—S1—C7—C689.67 (15)
C3—C4—C5—C63.2 (3)N1—S1—C7—C6156.76 (15)
Cl1—C4—C5—C6176.47 (13)O1—S1—C7—C2136.70 (14)
C3—C4—C5—S2175.12 (14)O2—S1—C7—C292.25 (15)
Cl1—C4—C5—S25.2 (2)N1—S1—C7—C221.32 (16)
O3—S2—C5—C65.88 (16)C9i—O5—C8—C957.3 (3)
O4—S2—C5—C6122.85 (14)O5—C8—C9—O5i57.7 (2)
N3—S2—C5—C6120.79 (15)C11ii—O6—C10—C1157.4 (2)
O3—S2—C5—C4172.46 (15)O6—C10—C11—O6ii57.7 (2)
O4—S2—C5—C458.81 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.82 (2)2.04 (2)2.848 (2)170.4 (18)
N2—H2N···O2iii0.81 (2)2.28 (3)3.032 (2)153.7 (18)
N3—H3N···N1iv0.81 (2)2.35 (2)3.097 (3)154.5 (19)
N3—H4N···O50.87 (3)2.02 (3)2.879 (2)170 (3)
C1—H1A···O20.992.602.980 (2)103
C1—H1A···O2v0.992.553.304 (2)133
C1—H1B···O4vi0.992.413.220 (2)139
C3—H3···O2iii0.952.563.285 (2)133
C6—H6···O30.952.382.800 (2)107
C11—H11B···O3vi0.992.503.412 (2)153
Symmetry codes: (iii) x1, y, z; (iv) x1, y+1, z; (v) x+2, y, z; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H8ClN3O4S2·C4H8O2
Mr385.84
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.6684 (2), 9.8585 (3), 12.9149 (4)
α, β, γ (°)87.046 (2), 78.017 (2), 70.872 (2)
V3)784.55 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.50 × 0.20 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12343, 3445, 2879
Rint0.035
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03
No. of reflections3445
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.43

Computer programs: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.82 (2)2.04 (2)2.848 (2)170.4 (18)
N2—H2N···O2i0.81 (2)2.28 (3)3.032 (2)153.7 (18)
N3—H3N···N1ii0.81 (2)2.35 (2)3.097 (3)154.5 (19)
N3—H4N···O50.87 (3)2.02 (3)2.879 (2)170 (3)
C1—H1A···O20.992.602.980 (2)103
C1—H1A···O2iii0.992.553.304 (2)133
C1—H1B···O4iv0.992.413.220 (2)139
C3—H3···O2i0.952.563.285 (2)133
C6—H6···O30.952.382.800 (2)107
C11—H11B···O3iv0.992.503.412 (2)153
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x+2, y, z; (iv) x, y1, z.
 

Acknowledgements

We thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk ).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science
First citationDupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340–2347. CSD CrossRef CAS IUCr Journals Web of Science
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds