organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­chloro­thia­zide–aniline (1/1)

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 23 June 2005; accepted 7 July 2005; online 13 July 2005)

Hydro­chloro­thia­zide forms a 1:1 solvate with aniline, C7H8ClN3O4S2·C6H7N. The crystal structure contains a hydrogen-bonding network comprising two N—H⋯N and three N—H⋯O contacts.

Comment

Hydro­chloro­thia­zide (HCT) is a thia­zide diuretic which is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]). The aniline solvate, (I)[link], was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multisample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated 1:1 acetone–aniline solution by slow evaporation at 278 K yielded samples of (I)[link] suitable for single-crystal X-ray analysis (Fig. 1[link]).

[Scheme 1]

In (I)[link], the N1—S1—C1—N2—C2—C7 six-membered ring in HCT adopts a non-planar conformation, with atoms S1 and N1 having deviations of 0.271 (1) and 0.843 (1) Å, respectively, from the least-squares plane through atoms C2–C7. The sulfonamide side chain adopts a torsion angle N3—S2—C5—C4 of 69.05 (12)°, such that atom O4 eclipses H6 and atoms O3 and N3 are staggered with respect to Cl1. In the non-solvated structure (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]), this group is rotated by approximately 130° compared to (I)[link] such that the amine group lies on the opposite side of the benzothia­diazine moiety. The aniline mol­ecule is planar, the greatest deviation of any non-H atom from the least-squares plane through C8–C13/N4 being 0.013 (1) Å for C8.

The crystal structure is stabilized by a network of hydrogen bonds inter­connecting (a) HCT mol­ecules (Fig. 2[link], contacts 1 and 2) and (b) HCT and solvent mol­ecules (contacts 3, 4 and 5). Two C—H⋯O contacts also exist between HCT mol­ecules (contacts 6 and 7). Contact 1 (N3—H3N⋯O2) forms a centrosymmetric R22(16) motif between mol­ecules of HCT, whilst contacts 4 and 5 (N4—H5N⋯N3 and N4—H6N⋯O4) combine to form an R44(12) motif between aniline and HCT (Fig. 3[link]). Hydro­phobic inter­actions between HCT and aniline include a C—H⋯π contact and an offset face-to-face (off) ππ approach (Fig. 4[link]).

[Figure 1]
Figure 1
Plot of the asymmetric unit contents with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of (I)[link]. Dashed lines indicate hydrogen bonds and unique contacts are labelled as follows: 1 = N3⋯O2 [2.9725 (16) Å, O2 in the mol­ecule at (1 − x, 1 − y, 2 − z)]; 2 = N3⋯O1 [2.9390 (15) Å, O1 in the mol­ecule at ([{1\over 2}] + x, [{1\over 2}]y, −[{1\over 2}] + z)]; 3 = N1⋯N4 [2.9652 (17) Å]; 4 = N4⋯N3 [3.3944 (18) Å, in the mol­ecule at (−1 + x, y, z)]; 5 = N4⋯O4 [3.1000 (17) Å, O4 in the mol­ecule at (1 − x, 1 − y, 2 − z)]; 6 = C1⋯O3 [3.2535 (18) Å, O3 in the mol­ecule at (1 − x, −y, 2 − z)]; 7 = C1⋯O3 [3.2852 (17) Å, O3 in the mol­ecule at (−1 + x, y, z)]. Contacts calculated and illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; program version 280604)
[Figure 3]
Figure 3
The R22(16) (left) and R44(12) hydrogen-bond motifs in the crystal structure of (I)[link].
[Figure 4]
Figure 4
Hydro­phobic inter­actions in (I)[link], showing a C3—H3⋯centroid contact to the centroid of the benzene ring of aniline [C3⋯centroid = 3.618 (2) Å] (top) and a ππ off-stacking inter­action between HCT and aniline with a centroid–centroid distance of 3.6955 (8) Å (bottom). Contacts are illustrated using dashed lines.

Experimental

A single-crystal sample of the title compound was recrystallized from a 1:1 acetone–aniline solution by slow evaporation at 278 K.

Crystal data
  • C7H8ClN3O4S2·C6H7N

  • Mr = 390.86

  • Monoclinic, P 21 /n

  • a = 9.7757 (3) Å

  • b = 10.5004 (3) Å

  • c = 15.6093 (4) Å

  • β = 91.692 (2)°

  • V = 1601.58 (8) Å3

  • Z = 4

  • Dx = 1.621 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5824 reflections

  • θ = 1.0–32.0°

  • μ = 0.53 mm−1

  • T = 123 (2) K

  • Prism, colourless

  • 0.38 × 0.30 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 10766 measured reflections

  • 5573 independent reflections

  • 4379 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 32.0°

  • h = −14 → 14

  • k = −15 → 15

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.02

  • 5573 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.036P)2 + 0.781P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4 0.87 (2) 2.10 (2) 2.9652 (17) 174 (2)
N3—H3N⋯O2i 0.85 (2) 2.13 (2) 2.9725 (16) 169 (2)
N3—H4N⋯O1ii 0.90 (2) 2.09 (2) 2.9390 (15) 157 (2)
N4—H5N⋯N3iii 0.89 (2) 2.52 (2) 3.3944 (18) 169 (2)
N4—H6N⋯O4i 0.83 (2) 2.28 (2) 3.1000 (17) 173 (2)
C1—H1A⋯O3iv 0.99 2.37 3.2535 (18) 148
C1—H1B⋯O3iii 0.99 2.47 3.2852 (17) 139
C6—H6⋯O4 0.95 2.38 2.8101 (16) 107
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y, -z+2.

The N-bound H atoms were found in difference maps and refined freely [N—H = 0.77 (2)–0.90 (2) Å]. The remaining H atoms were positioned geometrically at distances of 0.95 (CH) and 0.99 Å (CH2) from the parent C atoms; a riding model was used [Uiso(H) = 1.2Ueq(C)] during the refinement process.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrochlorothiazide (HCT) is a thiazide diuretic which is known to crystallize as a monoclinic non-solvated form (Dupont & Dideberg, 1972). The aniline solvate, (I), was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multisample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003). Subsequent manual recrystallization from a saturated 50:50 acetone–aniline solution by slow evaporation at 278 K yielded samples of (I) suitable for single-crystal X-ray analysis (Fig. 1).

In (I), the N1—S1—C1—N2—C2—C7 six-membered ring in HCT displays a puckered conformation, with atoms S1 and N1 having deviations of 0.271 (1) and 0.843 (1) Å, respectively, from the least-squares plane through atoms C2–C7. The sulfonamide side chain adopts a torsion angle N3—S2—C5—C4 of 69.05 (12)°, such that atom O4 eclipses H6 and atoms O3 and N3 are staggered with respect to Cl1. In the non-solvated structure (Dupont & Dideberg, 1972), this group is rotated by approximately 130° compared to (I) such that the amine group lies on the opposite side of the benzothiadiazine moiety. The aniline molecule is planar, the greatest deviation of any non-H atom from the least-squares plane through C8–C13/N4 being 0.013 (1) Å for C8.

The crystal structure is stabilized by a network of hydrogen bonds interconnecting: (a) HCT molecules (Fig. 2, contacts 1 and 2) and (b) HCT and solvent molecules (contacts 3, 4 and 5). Two C—H···O contacts also exist between HCT molecules (contacts 6 and 7). Contact 1 (N3—H3N···O2) forms a centrosymmetric R22(16) motif between molecules of HCT, whilst contacts 4 and 5 (N4—H5N···N3 and N4—H6N···O4) combine to form an R44(12) motif between aniline and HCT (Fig. 3). Hydrophobic interactions between HCT and aniline include a C—H···π contact and an offset face-to-face (off) ππ approach (Fig. 4).

Experimental top

A single-crystal sample of the title compound was recrystallized from a 50:50 acetone–aniline solution by slow evaporation at 278 K.

Refinement top

The N-bound H atoms were found in difference maps and refined freely [N—H = 0.77 (2)–0.90 (2) Å]. The remaining H atoms were positioned geometrically at distances of 0.95 (CH) and 0.99 Å (CH2) from the parent C atoms; a riding model was used [Uiso(H) = 1.2Ueq(C)] during the refinement process.

Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Plot of the asymmetric unit contents with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Dashed lines indicate hydrogen bonds and unique contacts are labelled as follows: 1 = N3···O2 [2.9725 (16) Å, O2 in the molecule at (1 - x, 1 - y, 2 - z)]; 2 = N3···O1 [2.9390 (15) Å, O1 in the molecule at (1/2 + x, 1/2 - y, -1/2 + z)]; 3 = N1···N4 [2.9652 (17) Å]; 4 = N4···N3 [3.3944 (18) Å, N4 in the molecule at (-1 + x, y, z)]; 5 = N4···O4 [3.1000 (17) Å, O4 in the molecule at (1 - x, 1 - y, 2 - z)]; 6 = C1···O3 [3.2535 (18) Å, O3 in the molecule at (1 - x, -y, 2 - z)]; 7 = C1···O3 [3.2852 (17) Å, O3 in the molecule at (-1 + x, y, z)]. Contacts calculated and illustrated using PLATON (Spek, 2003; program version 280604)
[Figure 3] Fig. 3. The R22(16) (left) and R44(12) hydrogen-bond motifs in the crystal structure of (I).
[Figure 4] Fig. 4. Hydrophobic interactions in (I), showing a C3—H3···centroid contact to the centroid of the benzene ring of aniline [C3···centroid = 3.618 (2) Å] (top) and a ππ off-stacking interaction between HCT and aniline with a centroid–centroid distance of 3.6955 (8) Å (bottom). Contacts are illustrated using dashed lines.
Hydrochlorothiazide–aniline (1/1) top
Crystal data top
C7H8ClN3O4S2·C6H7NF(000) = 808
Mr = 390.86Dx = 1.621 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5824 reflections
a = 9.7757 (3) Åθ = 1.0–32.0°
b = 10.5004 (3) ŵ = 0.53 mm1
c = 15.6093 (4) ÅT = 123 K
β = 91.692 (2)°Prism, colourless
V = 1601.58 (8) Å30.38 × 0.30 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4379 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 32.0°, θmin = 2.3°
ω and ϕ scansh = 1414
10766 measured reflectionsk = 1515
5573 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 0.781P]
where P = (Fo2 + 2Fc2)/3
5573 reflections(Δ/σ)max = 0.002
241 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C7H8ClN3O4S2·C6H7NV = 1601.58 (8) Å3
Mr = 390.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7757 (3) ŵ = 0.53 mm1
b = 10.5004 (3) ÅT = 123 K
c = 15.6093 (4) Å0.38 × 0.30 × 0.18 mm
β = 91.692 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4379 reflections with I > 2σ(I)
10766 measured reflectionsRint = 0.027
5573 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.48 e Å3
5573 reflectionsΔρmin = 0.53 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60656 (4)0.10198 (3)0.76024 (2)0.02108 (8)
S10.31003 (3)0.26967 (3)1.08865 (2)0.01544 (7)
S20.77750 (3)0.24797 (3)0.91533 (2)0.01472 (7)
O10.32719 (11)0.18921 (11)1.16255 (6)0.0239 (2)
O20.34691 (11)0.40187 (10)1.09743 (7)0.0236 (2)
O30.85848 (10)0.14419 (10)0.88491 (6)0.0208 (2)
O40.81363 (10)0.30354 (10)0.99740 (6)0.0201 (2)
N10.15186 (12)0.26228 (12)1.05407 (7)0.0174 (2)
N20.19235 (13)0.10009 (12)0.94740 (8)0.0197 (2)
N30.78744 (12)0.36009 (12)0.84548 (7)0.0169 (2)
N40.10950 (14)0.44391 (13)0.91027 (8)0.0213 (2)
C10.11769 (14)0.13361 (14)1.02355 (9)0.0186 (3)
H1A0.13970.07141.06960.022*
H1B0.01820.12861.01030.022*
C20.32626 (13)0.13305 (13)0.93952 (8)0.0154 (2)
C30.39693 (14)0.10032 (13)0.86510 (8)0.0168 (2)
H30.35100.05410.82050.020*
C40.53177 (14)0.13466 (12)0.85650 (8)0.0153 (2)
C50.60499 (13)0.19994 (12)0.92215 (8)0.0144 (2)
C60.53557 (13)0.23532 (13)0.99458 (8)0.0145 (2)
H60.58230.28151.03890.017*
C70.39858 (13)0.20412 (12)1.00318 (8)0.0143 (2)
C80.19792 (14)0.41456 (13)0.84290 (8)0.0176 (3)
C90.15625 (15)0.33026 (14)0.77775 (9)0.0210 (3)
H90.06740.29360.77800.025*
C100.24467 (17)0.30030 (15)0.71291 (9)0.0253 (3)
H100.21600.24230.66930.030*
C110.37402 (17)0.35352 (16)0.71078 (10)0.0266 (3)
H110.43320.33360.66550.032*
C120.41639 (16)0.43643 (16)0.77571 (10)0.0264 (3)
H120.50490.47360.77480.032*
C130.32954 (15)0.46523 (14)0.84205 (10)0.0219 (3)
H130.36030.51990.88710.026*
H1N0.1400 (19)0.3198 (19)1.0149 (12)0.028 (5)*
H2N0.152 (2)0.076 (2)0.9075 (13)0.034 (5)*
H3N0.740 (2)0.426 (2)0.8565 (13)0.038 (6)*
H4N0.777 (2)0.334 (2)0.7909 (13)0.036 (5)*
H5N0.023 (2)0.434 (2)0.8934 (13)0.039 (6)*
H6N0.126 (2)0.515 (2)0.9315 (12)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02599 (17)0.02251 (16)0.01513 (14)0.00209 (13)0.00727 (11)0.00585 (12)
S10.01651 (15)0.01855 (15)0.01136 (13)0.00149 (12)0.00224 (10)0.00156 (11)
S20.01443 (14)0.01536 (15)0.01445 (14)0.00048 (12)0.00169 (10)0.00067 (11)
O10.0255 (5)0.0336 (6)0.0129 (4)0.0078 (5)0.0032 (4)0.0041 (4)
O20.0244 (5)0.0211 (5)0.0255 (5)0.0013 (4)0.0048 (4)0.0089 (4)
O30.0187 (5)0.0184 (5)0.0254 (5)0.0046 (4)0.0034 (4)0.0008 (4)
O40.0185 (5)0.0260 (5)0.0157 (4)0.0035 (4)0.0012 (4)0.0012 (4)
N10.0160 (5)0.0192 (6)0.0169 (5)0.0017 (4)0.0012 (4)0.0015 (4)
N20.0194 (6)0.0228 (6)0.0168 (5)0.0055 (5)0.0021 (4)0.0043 (5)
N30.0201 (6)0.0151 (5)0.0157 (5)0.0008 (4)0.0045 (4)0.0015 (4)
N40.0229 (6)0.0213 (6)0.0196 (6)0.0003 (5)0.0012 (5)0.0001 (5)
C10.0182 (6)0.0193 (6)0.0186 (6)0.0012 (5)0.0041 (5)0.0011 (5)
C20.0180 (6)0.0133 (6)0.0149 (5)0.0024 (5)0.0016 (4)0.0001 (4)
C30.0206 (6)0.0154 (6)0.0143 (5)0.0034 (5)0.0017 (5)0.0026 (5)
C40.0207 (6)0.0129 (6)0.0125 (5)0.0001 (5)0.0039 (4)0.0014 (4)
C50.0155 (6)0.0141 (6)0.0136 (5)0.0002 (5)0.0019 (4)0.0002 (4)
C60.0162 (6)0.0162 (6)0.0111 (5)0.0002 (5)0.0002 (4)0.0004 (4)
C70.0173 (6)0.0143 (6)0.0112 (5)0.0005 (5)0.0023 (4)0.0002 (4)
C80.0203 (6)0.0159 (6)0.0167 (6)0.0015 (5)0.0016 (5)0.0034 (5)
C90.0232 (7)0.0188 (7)0.0208 (6)0.0025 (5)0.0042 (5)0.0024 (5)
C100.0357 (8)0.0218 (7)0.0183 (6)0.0040 (6)0.0042 (6)0.0014 (5)
C110.0306 (8)0.0283 (8)0.0213 (7)0.0092 (7)0.0045 (6)0.0064 (6)
C120.0205 (7)0.0266 (8)0.0320 (8)0.0001 (6)0.0010 (6)0.0064 (6)
C130.0221 (7)0.0184 (6)0.0250 (7)0.0020 (5)0.0037 (5)0.0001 (5)
Geometric parameters (Å, º) top
Cl1—C41.7248 (13)C1—H1B0.9900
S1—O11.4357 (10)C2—C31.4114 (18)
S1—O21.4398 (11)C2—C71.4151 (18)
S1—N11.6244 (12)C3—C41.3769 (19)
S1—C71.7524 (13)C3—H30.9500
S2—O31.4359 (10)C4—C51.4103 (18)
S2—O41.4421 (10)C5—C61.3864 (17)
S2—N31.6095 (12)C6—C71.3890 (18)
S2—C51.7665 (13)C6—H60.9500
N1—C11.4678 (18)C8—C131.393 (2)
N1—H1N0.86 (2)C8—C91.3997 (19)
N2—C21.3631 (18)C9—C101.386 (2)
N2—C11.4564 (17)C9—H90.9500
N2—H2N0.77 (2)C10—C111.384 (2)
N3—H3N0.85 (2)C10—H100.9500
N3—H4N0.90 (2)C11—C121.390 (2)
N4—C81.4148 (18)C11—H110.9500
N4—H5N0.89 (2)C12—C131.392 (2)
N4—H6N0.83 (2)C12—H120.9500
C1—H1A0.9900C13—H130.9500
O1—S1—O2117.90 (7)C4—C3—C2120.64 (12)
O1—S1—N1109.05 (6)C4—C3—H3119.7
O2—S1—N1108.12 (6)C2—C3—H3119.7
O1—S1—C7109.38 (6)C3—C4—C5121.55 (12)
O2—S1—C7108.86 (6)C3—C4—Cl1117.67 (10)
N1—S1—C7102.42 (6)C5—C4—Cl1120.70 (10)
O3—S2—O4118.55 (6)C6—C5—C4118.21 (12)
O3—S2—N3106.63 (6)C6—C5—S2117.63 (10)
O4—S2—N3106.73 (6)C4—C5—S2124.05 (10)
O3—S2—C5109.87 (6)C5—C6—C7120.81 (12)
O4—S2—C5105.74 (6)C5—C6—H6119.6
N3—S2—C5109.06 (6)C7—C6—H6119.6
C1—N1—S1110.92 (9)C6—C7—C2121.30 (11)
C1—N1—H1N112.9 (13)C6—C7—S1118.70 (10)
S1—N1—H1N107.9 (13)C2—C7—S1119.60 (10)
C2—N2—C1121.20 (12)C13—C8—C9118.93 (13)
C2—N2—H2N118.6 (15)C13—C8—N4120.58 (13)
C1—N2—H2N119.0 (15)C9—C8—N4120.44 (13)
S2—N3—H3N114.2 (14)C10—C9—C8119.97 (14)
S2—N3—H4N114.1 (13)C10—C9—H9120.0
H3N—N3—H4N113.3 (19)C8—C9—H9120.0
C8—N4—H5N110.7 (13)C11—C10—C9121.05 (14)
C8—N4—H6N112.1 (14)C11—C10—H10119.5
H5N—N4—H6N113.4 (19)C9—C10—H10119.5
N2—C1—N1111.88 (11)C10—C11—C12119.23 (14)
N2—C1—H1A109.2C10—C11—H11120.4
N1—C1—H1A109.2C12—C11—H11120.4
N2—C1—H1B109.2C11—C12—C13120.23 (14)
N1—C1—H1B109.2C11—C12—H12119.9
H1A—C1—H1B107.9C13—C12—H12119.9
N2—C2—C3120.47 (12)C12—C13—C8120.54 (14)
N2—C2—C7122.12 (12)C12—C13—H13119.7
C3—C2—C7117.38 (12)C8—C13—H13119.7
O1—S1—N1—C164.70 (10)S2—C5—C6—C7178.11 (10)
O2—S1—N1—C1165.97 (9)C5—C6—C7—C21.4 (2)
C7—S1—N1—C151.12 (10)C5—C6—C7—S1171.34 (10)
C2—N2—C1—N140.07 (18)N2—C2—C7—C6179.10 (13)
S1—N1—C1—N266.52 (13)C3—C2—C7—C62.93 (19)
C1—N2—C2—C3179.71 (13)N2—C2—C7—S18.21 (18)
C1—N2—C2—C71.8 (2)C3—C2—C7—S1169.76 (10)
N2—C2—C3—C4179.28 (13)O1—S1—C7—C687.71 (12)
C7—C2—C3—C41.3 (2)O2—S1—C7—C642.40 (12)
C2—C3—C4—C51.9 (2)N1—S1—C7—C6156.72 (11)
C2—C3—C4—Cl1175.03 (10)O1—S1—C7—C299.41 (11)
C3—C4—C5—C63.4 (2)O2—S1—C7—C2130.48 (11)
Cl1—C4—C5—C6173.40 (10)N1—S1—C7—C216.17 (12)
C3—C4—C5—S2179.53 (11)C13—C8—C9—C101.2 (2)
Cl1—C4—C5—S22.69 (17)N4—C8—C9—C10178.78 (13)
O3—S2—C5—C6136.39 (11)C8—C9—C10—C110.7 (2)
O4—S2—C5—C67.36 (12)C9—C10—C11—C121.2 (2)
N3—S2—C5—C6107.07 (11)C10—C11—C12—C130.1 (2)
O3—S2—C5—C447.49 (13)C11—C12—C13—C82.0 (2)
O4—S2—C5—C4176.52 (11)C9—C8—C13—C122.5 (2)
N3—S2—C5—C469.04 (13)N4—C8—C13—C12179.93 (13)
C4—C5—C6—C71.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.865 (19)2.104 (19)2.9652 (17)174.0 (18)
N3—H3N···O2i0.85 (2)2.13 (2)2.9725 (16)168.6 (18)
N3—H4N···O1ii0.90 (2)2.09 (2)2.9390 (15)157.1 (17)
N4—H5N···N3iii0.89 (2)2.52 (2)3.3944 (18)168.6 (18)
N4—H6N···O4i0.83 (2)2.28 (2)3.1000 (17)173.1 (17)
C1—H1A···O3iv0.992.373.2535 (18)148
C1—H1B···O3iii0.992.473.2852 (17)139
C6—H6···O40.952.382.8101 (16)107
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC7H8ClN3O4S2·C6H7N
Mr390.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.7757 (3), 10.5004 (3), 15.6093 (4)
β (°) 91.692 (2)
V3)1601.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.38 × 0.30 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10766, 5573, 4379
Rint0.027
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.02
No. of reflections5573
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.53

Computer programs: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.865 (19)2.104 (19)2.9652 (17)174.0 (18)
N3—H3N···O2i0.85 (2)2.13 (2)2.9725 (16)168.6 (18)
N3—H4N···O1ii0.90 (2)2.09 (2)2.9390 (15)157.1 (17)
N4—H5N···N3iii0.89 (2)2.52 (2)3.3944 (18)168.6 (18)
N4—H6N···O4i0.83 (2)2.28 (2)3.1000 (17)173.1 (17)
C1—H1A···O3iv0.992.373.2535 (18)148
C1—H1B···O3iii0.992.473.2852 (17)139
C6—H6···O40.952.382.8101 (16)107
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+1, y, z+2.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk).

References

First citationDupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340–2347. CSD CrossRef CAS IUCr Journals Web of Science
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds