organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-tert-But­yl-4-(4-nitro­phen­yl)-1-phen­yl-1H-pyrazolo[3,4-b]pyridine

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 July 2005; accepted 7 July 2005; online 20 July 2005)

Mol­ecules of the title compound, C22H20N4O2, are linked by paired C—H⋯O hydrogen bonds into centrosymmetric R22(18) dimers and these dimers are linked into chains by paired C—H⋯π(arene) hydrogen bonds.

Comment

We have recently described the preparation of pyrazolo[3,4-b]pyridines from 5-amino­pyrazoles in solution with different reacta­nts (Low et al., 2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Torres, H. & Insuasty, B. (2002). Acta Cryst. C58, o298-o300.], and references therein), and we have reported the crystal structure of the fully aromatized 3-meth­yl-1,4-diphen­yl-1H-pyrazolo[3,4-b]pyridine (Low et al., 2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Torres, H. & Insuasty, B. (2002). Acta Cryst. C58, o298-o300.]). We report here an analogous structure, that of 3-tert-but­yl-4-(4-nitro­phen­yl)-1-phen­yl-1H-pyrazolo[3,4-b]pyridine, (I)[link], obtained from the solvent-free reaction of the corres­ponding 5-amino­pyrazole and the Mannich adduct β-dimethyl­amino-4-nitro­propiophenone hydro­chloride, under microwave irradiation. The title compound, (I)[link], was obtained along with the reduced 6-(4-nitro­phen­yl) analogue, (II); however, in pyridine solution under reflux, a similar reaction yielded regioselectively the isomeric 6-aryl­pyrazolo[3,4-b]pyridine (Quiroga et al., 1998[Quiroga, J., Insuasty, B., Cruz, S., Hernández, P., Bolaños, A., Moreno, R., Hormaza, A. & de Almedia, R. H. (1998). J. Heterocycl. Chem. 35, 333-338.]).

[Scheme 1]

Neither of the ar­yl rings in compound (I)[link] (Fig. 1[link]) is coplanar with the pyrazolopyridine system; unsubstituted phen­yl ring C11–C16 makes a dihedral angle of 25.3 (2)° with the adjacent pyrazole ring, while substituted ring C41–C46 is nearly orthogonal to the pyridine ring, with a dihedral angle between these ring planes of 85.1 (2)°; in addition, the nitro group makes a dihedral angle of 11.6 (2)° with the adjacent ar­yl ring. The bond distances within the fused heterocyclic ring system (Table 1[link]) are consistent with electronic delocalization in the pyridine ring and strong bond fixation in the pyrazole ring.

The mol­ecules of compound (I)[link] are linked into chains of fused rings by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond (Table 2[link]). Pyridine atom C5 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O41 in the mol­ecule at (1 − x, 1 − y, 1 − z), generating a centrosymmetric R22(18) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 2[link]). In addition, ar­yl atoms C43 in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which are both components of the R22(18) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]), act as donors respectively to ar­yl rings C11–C16 in the mol­ecules at (−x, 1 − y, −z) and (1 + x, y, 1 + z), which themselves are components of the R22(18) dimers centred at (−[{1\over 2}], [{1\over 2}], −[{1\over 2}]) and ([{3\over 2}], [{1\over 2}], [{3\over 2}]). Propagation by inversion of these two inter­actions thus generates a chain of edge-fused rings running parallel to the [101] direction, rings built from paired C—H⋯O hydrogen bonds centred at (n + [{1\over 2}], [{1\over 2}], n + [{1\over 2}]) (n = zero or integer) and rings built from paired C—H⋯π(arene) hydrogen bonds centred at (n, [{1\over 2}], n) (n = zero or integer) (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a centrosymmetric R22(18) dimer. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z). Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
Stereoview of part of the crystal structure of (I)[link], showing the formation of a [101] chain of edge-fused rings. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted. Dashed lines indicate hydrogen bonds.

Experimental

Equimolar quantities (0.465 mmol) of 5-amino-3-tert-but­yl-1-phen­yl-1H-pyrazole and β-dimethyl­amino-4-nitro­propiophenone hydro­chloride were placed in open Pyrex-glass vessels and irradiated in a domestic microwave oven for 15 s (at 600 W). The reaction mixture was extracted with eth­yl acetate and the product was purified by column chromatography on silica gel, using hexa­ne/eth­yl acetate (15:1 (v/v) as eluent. Evaporation of the eluate yielded colourless crystals of compound (I)[link] (yield 45%; m.p. 448–450 K) suitable for single-crystal X-ray diffraction, accompanied by a small quantity of the reduced 6-(4-nitro­phen­yl) derivative, (II). MS (EI 30 eV), m/z (%): 372 (M+, 10), 357, (17), 149 (58), 57 (100).

Crystal data
  • C22H20N4O2

  • Mr = 372.42

  • Triclinic, [P \overline 1]

  • a = 9.5877 (5) Å

  • b = 9.8541 (5) Å

  • c = 11.7050 (4) Å

  • α = 105.982 (2)°

  • β = 103.570 (2)°

  • γ = 108.433 (2)°

  • V = 943.75 (8) Å3

  • Z = 2

  • Dx = 1.311 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4338 reflections

  • θ = 3.2–27.7°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.19 × 0.08 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.980, Tmax = 0.996

  • 23240 measured reflections

  • 4338 independent reflections

  • 2724 reflections with I > 2σ(I)

  • Rint = 0.070

  • θmax = 27.7°

  • h = −12 → 12

  • k = −12 → 12

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.137

  • S = 1.02

  • 4338 reflections

  • 256 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1475P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)[link]

N1—N2 1.371 (2)
N2—C3 1.327 (2)
C3—C3A 1.447 (3)
C3A—C4 1.415 (3)
C4—C5 1.386 (3)
C5—C6 1.394 (3)
C6—N7 1.332 (2)
N7—C7A 1.340 (2)
C7A—N1 1.363 (2)
C3A—C7A 1.419 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O41i 0.95 2.46 3.399 (2) 169
C43—H43⋯Cgii 0.95 2.65 3.501 (2) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (meth­yl), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the meth­yl groups.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We have recently described the preparation of pyrazolo[3,4-b]pyridines from 5-aminopyrazoles in solution with different reactants (Low et al., 2002, and references therein), and we have reported the crystal structure of the fully aromatized 3-methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridine (Low et al., 2002). We report here an analogous structure, that of 3-tert-butyl-4-(4-nitrophenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine, (I), obtained from the solvent-free reaction of the coresponding 5-aminopyrazole and the Mannich adduct β-dimethylamino-4-nitropropiophenone hydrochloride, under microwave irradiation. The title compound, (I), was obtained along with the reduced 6-(4-nitrophenyl) analogue, (II); however, in pyridine solution under reflux, a similar reaction yielded regioselectively the isomeric 6-arylpyrazolo[3,4-b]pyridine (Quiroga et al., 1998).

Neither of the aryl rings in compound (I) (Fig. 1) is coplanar with the pyrazolopyridine system; unsubstituted phenyl ring C11–C16 makes a dihedral angle of 25.3 (2)° with the adjacent pyrazole ring, while substituted ring C41–C46 is nearly orthogonal to the pyridine ring, with a dihedral angle between these ring planes of 85.1 (2)°; in addition, the nitro group makes a dihedral angle of 11.6 (2)° with the adjacent aryl ring. The bond distances within the fused heterocyclic ring system (Table 1) are consistent with electronic delocalization in the pyridine ring and strong bond fixation in the pyrazole ring.

The molecules of compound (I) are linked into chains of fused rings by a combination of one C—H···O hydrogen bond and one C—H···π(arene) hydrogen bond (Table 2). Pyridine atom C5 in the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O41 in the molecule at (1 - x, 1 - y, 1 - z), so generating a centrosymmetric R22(18) dimer centred at (1/2, 1/2, 1/2) (Fig. 2). In addition, aryl atoms C43 in the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z), which are both components of the R22(18) dimer centred at (1/2, 1/2, 1/2), act as donors respectively to aryl rings C11–C16 in the molecules at (-x, 1 - y, -z) and (1 + x, y, 1 + z), which themselves are components of the R22(18) dimers centred at (-1/2, 1/2, -1/2) and (3/2, 1/2, 3/2). Propagation by inversion of these two interactions thus generates a chain of edge-fused rings running parallel to the [101] direction, rings built from paired C—H···O hydrogen bonds centred at (n+1/2, 1/2, n+1/2) (n = zero or integer) and rings built from paired C—H···π(arene) hydrogen bonds centred at (n,1/2, n) (n = zero or integer) (Fig. 3).

Experimental top

Equimolar quantities (0.465 mmol) of 5-amino-3-tert-butyl-1-phenyl-1H-pyrazole and β-dimethylamino-4-nitropropiophenone hydrochloride were placed in open Pyrex-glass vessels and irradiated in a domestic microwave oven for 15 s (at 600 W). The reaction mixture was extracted with ethyl acetate and the product was purified by column chromatography on silica gel, using hexane/ethyl acetate (15:1 (v/v) as eluent. Evaporation of the eluate yielded colourless crystals of compound (I) (yield 45%; m.p. 448–450 K) suitable for single-crystal X-ray diffraction accompanied by a small quantity of the reduced 6-(4-nitrophenyl) derivative, (II). MS (EI 30 eV), m/z (%): 372 (M+, 10), 357, (17), 149 (58), 57 (100).

Refinement top

All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a centrosymmetric R22(18) dimer. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 3] Fig. 3. Stereoview of part of the crystal structure of (I), showing the formation of a [101] chain of edge-fused rings. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
3-tert-butyl-4-(4-nitrophenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine top
Crystal data top
C22H20N4O2Z = 2
Mr = 372.42F(000) = 392
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5877 (5) ÅCell parameters from 4338 reflections
b = 9.8541 (5) Åθ = 3.2–27.7°
c = 11.7050 (4) ŵ = 0.09 mm1
α = 105.982 (2)°T = 120 K
β = 103.570 (2)°Plate, colourless
γ = 108.433 (2)°0.19 × 0.08 × 0.05 mm
V = 943.75 (8) Å3
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
4338 independent reflections
Radiation source: Bruker–Nonius FR91 rotating anode2724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.2°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.980, Tmax = 0.996l = 1515
23240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1475P]
where P = (Fo2 + 2Fc2)/3
4338 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H20N4O2γ = 108.433 (2)°
Mr = 372.42V = 943.75 (8) Å3
Triclinic, P1Z = 2
a = 9.5877 (5) ÅMo Kα radiation
b = 9.8541 (5) ŵ = 0.09 mm1
c = 11.7050 (4) ÅT = 120 K
α = 105.982 (2)°0.19 × 0.08 × 0.05 mm
β = 103.570 (2)°
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
4338 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2724 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.996Rint = 0.070
23240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
4338 reflectionsΔρmin = 0.34 e Å3
256 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O410.69225 (17)0.83405 (17)0.65880 (13)0.0458 (4)
O420.46382 (19)0.7917 (2)0.67528 (13)0.0557 (5)
N10.11065 (16)0.35207 (17)0.22947 (13)0.0253 (4)
N20.17138 (16)0.51029 (17)0.17602 (13)0.0267 (4)
N70.09648 (17)0.14201 (17)0.16190 (14)0.0294 (4)
N440.5484 (2)0.77491 (19)0.61333 (15)0.0361 (4)
C30.23820 (19)0.5540 (2)0.05157 (16)0.0250 (4)
C3A0.22141 (19)0.4193 (2)0.01952 (16)0.0245 (4)
C40.2566 (2)0.3797 (2)0.08789 (17)0.0266 (4)
C50.2111 (2)0.2236 (2)0.06525 (18)0.0328 (5)
C60.1342 (2)0.1116 (2)0.05761 (17)0.0324 (5)
C7A0.14011 (19)0.2932 (2)0.13833 (16)0.0249 (4)
C110.0266 (2)0.2763 (2)0.36273 (16)0.0258 (4)
C120.0587 (2)0.3567 (2)0.44065 (17)0.0289 (4)
C130.0246 (2)0.2847 (2)0.57028 (18)0.0337 (5)
C140.1388 (2)0.1357 (2)0.62257 (18)0.0350 (5)
C150.1704 (2)0.0575 (2)0.54349 (18)0.0368 (5)
C160.0891 (2)0.1262 (2)0.41376 (18)0.0331 (5)
C310.3120 (2)0.7265 (2)0.02705 (16)0.0264 (4)
C320.3095 (2)0.8158 (2)0.06107 (18)0.0358 (5)
C330.2145 (3)0.7647 (2)0.10799 (19)0.0406 (5)
C340.4821 (2)0.7785 (2)0.1107 (2)0.0400 (5)
C410.3343 (2)0.4888 (2)0.22334 (16)0.0261 (4)
C420.2448 (2)0.5348 (2)0.29180 (17)0.0311 (4)
C430.3139 (2)0.6283 (2)0.41949 (17)0.0329 (5)
C440.4730 (2)0.6759 (2)0.47773 (16)0.0282 (4)
C450.5651 (2)0.6324 (2)0.41341 (17)0.0305 (4)
C460.4945 (2)0.5371 (2)0.28592 (17)0.0296 (4)
H50.23270.19240.13490.039*
H60.10700.00650.06760.039*
H120.13670.45960.40560.035*
H130.00260.33900.62400.040*
H140.19500.08740.71150.042*
H150.24920.04500.57890.044*
H160.11180.07180.36030.040*
H32A0.35490.92690.01010.054*
H32B0.20080.78380.11540.054*
H32C0.37110.79400.11410.054*
H33A0.10660.73330.05240.061*
H33B0.26100.87610.15770.061*
H33C0.21370.70890.16560.061*
H34A0.52950.89110.15530.060*
H34B0.54110.74870.05770.060*
H34C0.48500.72920.17290.060*
H420.13530.50150.25010.037*
H430.25280.65900.46600.040*
H450.67480.66700.45570.037*
H460.55590.50430.24080.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O410.0379 (9)0.0472 (9)0.0333 (8)0.0042 (7)0.0039 (6)0.0107 (7)
O420.0562 (10)0.0796 (12)0.0316 (8)0.0369 (9)0.0180 (7)0.0084 (8)
N10.0255 (8)0.0228 (8)0.0254 (8)0.0090 (6)0.0085 (6)0.0073 (7)
N20.0232 (8)0.0255 (9)0.0280 (8)0.0081 (7)0.0084 (6)0.0078 (7)
N70.0299 (8)0.0266 (9)0.0322 (9)0.0134 (7)0.0108 (7)0.0100 (7)
N440.0426 (11)0.0359 (10)0.0282 (9)0.0167 (8)0.0098 (8)0.0117 (8)
C30.0188 (9)0.0294 (10)0.0283 (10)0.0102 (8)0.0109 (7)0.0105 (8)
C3A0.0192 (8)0.0267 (10)0.0272 (9)0.0094 (7)0.0092 (7)0.0088 (8)
C40.0218 (9)0.0308 (11)0.0291 (10)0.0117 (8)0.0107 (7)0.0115 (8)
C50.0369 (11)0.0340 (12)0.0299 (10)0.0166 (9)0.0103 (8)0.0144 (9)
C60.0360 (11)0.0276 (11)0.0368 (11)0.0154 (9)0.0139 (9)0.0131 (9)
C7A0.0207 (9)0.0276 (10)0.0278 (10)0.0112 (8)0.0103 (7)0.0096 (8)
C110.0256 (9)0.0284 (10)0.0229 (9)0.0136 (8)0.0082 (7)0.0065 (8)
C120.0246 (9)0.0322 (11)0.0273 (10)0.0103 (8)0.0107 (8)0.0079 (8)
C130.0343 (11)0.0406 (12)0.0299 (10)0.0167 (9)0.0158 (8)0.0133 (9)
C140.0383 (11)0.0370 (12)0.0235 (10)0.0175 (10)0.0071 (8)0.0035 (9)
C150.0330 (11)0.0299 (11)0.0339 (11)0.0088 (9)0.0029 (9)0.0048 (9)
C160.0334 (11)0.0300 (11)0.0315 (10)0.0103 (9)0.0079 (8)0.0113 (9)
C310.0249 (9)0.0253 (10)0.0270 (10)0.0087 (8)0.0094 (7)0.0086 (8)
C320.0402 (12)0.0286 (11)0.0351 (11)0.0113 (9)0.0110 (9)0.0123 (9)
C330.0475 (13)0.0306 (11)0.0436 (12)0.0143 (10)0.0250 (10)0.0082 (10)
C340.0311 (11)0.0308 (11)0.0437 (12)0.0048 (9)0.0017 (9)0.0120 (9)
C410.0282 (10)0.0263 (10)0.0265 (9)0.0120 (8)0.0103 (8)0.0122 (8)
C420.0254 (10)0.0382 (11)0.0300 (10)0.0135 (9)0.0093 (8)0.0130 (9)
C430.0341 (11)0.0403 (12)0.0309 (10)0.0189 (9)0.0168 (9)0.0141 (9)
C440.0322 (10)0.0282 (10)0.0253 (10)0.0130 (8)0.0094 (8)0.0115 (8)
C450.0248 (10)0.0334 (11)0.0321 (10)0.0109 (8)0.0082 (8)0.0133 (9)
C460.0279 (10)0.0339 (11)0.0312 (10)0.0151 (9)0.0127 (8)0.0132 (9)
Geometric parameters (Å, º) top
N1—N21.371 (2)C32—H32A0.98
N2—C31.327 (2)C32—H32B0.98
C3—C3A1.447 (3)C32—H32C0.98
C3A—C41.415 (3)C33—H33A0.98
C4—C51.386 (3)C33—H33B0.98
C5—C61.394 (3)C33—H33C0.98
C6—N71.332 (2)C34—H34A0.98
N7—C7A1.340 (2)C34—H34B0.98
C7A—N11.363 (2)C34—H34C0.98
C3A—C7A1.419 (2)C4—C411.492 (2)
N1—C111.424 (2)C41—C461.393 (3)
C11—C121.389 (3)C41—C421.397 (2)
C11—C161.393 (3)C42—C431.383 (3)
C12—C131.387 (3)C42—H420.95
C12—H120.95C43—C441.377 (3)
C13—C141.380 (3)C43—H430.95
C13—H130.95C44—C451.380 (2)
C14—C151.385 (3)C44—N441.468 (2)
C14—H140.95N44—O411.225 (2)
C15—C161.384 (3)N44—O421.227 (2)
C15—H150.95C45—C461.385 (2)
C16—H160.95C45—H450.95
C3—C311.520 (3)C46—H460.95
C31—C341.525 (3)C5—H50.95
C31—C321.530 (3)C6—H60.95
C31—C331.535 (2)
C7A—N1—N2110.38 (14)C31—C34—H34A109.5
C7A—N1—C11130.66 (15)C31—C34—H34B109.5
N2—N1—C11118.93 (14)H34A—C34—H34B109.5
C12—C11—C16120.50 (17)C31—C34—H34C109.5
C12—C11—N1118.72 (16)H34A—C34—H34C109.5
C16—C11—N1120.75 (16)H34B—C34—H34C109.5
C13—C12—C11119.10 (18)C4—C3A—C7A115.63 (17)
C13—C12—H12120.4C4—C3A—C3140.28 (17)
C11—C12—H12120.4C7A—C3A—C3104.07 (15)
C14—C13—C12121.16 (18)C5—C4—C3A116.79 (17)
C14—C13—H13119.4C5—C4—C41116.73 (16)
C12—C13—H13119.4C3A—C4—C41126.46 (17)
C13—C14—C15119.05 (17)C46—C41—C42119.02 (16)
C13—C14—H14120.5C46—C41—C4120.66 (16)
C15—C14—H14120.5C42—C41—C4120.15 (15)
C16—C15—C14121.09 (19)C43—C42—C41120.77 (17)
C16—C15—H15119.5C43—C42—H42119.6
C14—C15—H15119.5C41—C42—H42119.6
C15—C16—C11119.09 (18)C44—C43—C42118.61 (17)
C15—C16—H16120.5C44—C43—H43120.7
C11—C16—H16120.5C42—C43—H43120.7
C3—N2—N1108.20 (15)C43—C44—C45122.28 (17)
N2—C3—C3A109.76 (15)C43—C44—N44119.38 (16)
N2—C3—C31116.96 (16)C45—C44—N44118.33 (16)
C3A—C3—C31133.27 (16)O41—N44—O42123.63 (16)
C3—C31—C34111.06 (16)O41—N44—C44118.17 (15)
C3—C31—C32109.66 (14)O42—N44—C44118.18 (16)
C34—C31—C32108.49 (15)C44—C45—C46118.68 (16)
C3—C31—C33109.37 (14)C44—C45—H45120.7
C34—C31—C33110.76 (16)C46—C45—H45120.7
C32—C31—C33107.42 (16)C45—C46—C41120.62 (16)
C31—C32—H32A109.5C45—C46—H46119.7
C31—C32—H32B109.5C41—C46—H46119.7
H32A—C32—H32B109.5C4—C5—C6121.42 (18)
C31—C32—H32C109.5C4—C5—H5119.3
H32A—C32—H32C109.5C6—C5—H5119.3
H32B—C32—H32C109.5N7—C6—C5124.38 (18)
C31—C33—H33A109.5N7—C6—H6117.8
C31—C33—H33B109.5C5—C6—H6117.8
H33A—C33—H33B109.5C6—N7—C7A113.47 (16)
C31—C33—H33C109.5N7—C7A—N1124.13 (16)
H33A—C33—H33C109.5N7—C7A—C3A128.29 (17)
H33B—C33—H33C109.5N1—C7A—C3A107.58 (16)
C7A—N1—C11—C12157.30 (17)C3A—C4—C41—C4698.4 (2)
N2—N1—C11—C1225.1 (2)C5—C4—C41—C4292.0 (2)
C7A—N1—C11—C1624.6 (3)C3A—C4—C41—C4286.5 (2)
N2—N1—C11—C16152.94 (16)C46—C41—C42—C430.7 (3)
C16—C11—C12—C130.8 (3)C4—C41—C42—C43175.98 (17)
N1—C11—C12—C13178.89 (15)C41—C42—C43—C440.4 (3)
C11—C12—C13—C140.4 (3)C42—C43—C44—C450.6 (3)
C12—C13—C14—C150.1 (3)C42—C43—C44—N44179.87 (17)
C13—C14—C15—C160.2 (3)C43—C44—N44—O41169.59 (18)
C14—C15—C16—C110.2 (3)C45—C44—N44—O4111.1 (3)
C12—C11—C16—C150.7 (3)C43—C44—N44—O4211.6 (3)
N1—C11—C16—C15178.75 (16)C45—C44—N44—O42167.64 (18)
C7A—N1—N2—C30.60 (18)C43—C44—C45—C460.2 (3)
C11—N1—N2—C3177.44 (14)N44—C44—C45—C46179.05 (17)
N1—N2—C3—C3A0.19 (18)C44—C45—C46—C411.3 (3)
N1—N2—C3—C31179.34 (13)C42—C41—C46—C451.6 (3)
N2—C3—C31—C34126.87 (17)C4—C41—C46—C45176.80 (17)
C3A—C3—C31—C3454.2 (2)C3A—C4—C5—C60.1 (3)
N2—C3—C31—C327.0 (2)C41—C4—C5—C6178.52 (16)
C3A—C3—C31—C32174.12 (18)C4—C5—C6—N70.8 (3)
N2—C3—C31—C33110.58 (17)C5—C6—N7—C7A0.2 (3)
C3A—C3—C31—C3368.3 (2)C6—N7—C7A—N1178.24 (16)
N2—C3—C3A—C4177.3 (2)C6—N7—C7A—C3A1.3 (3)
C31—C3—C3A—C41.7 (4)N2—N1—C7A—N7179.27 (15)
N2—C3—C3A—C7A0.86 (18)C11—N1—C7A—N73.0 (3)
C31—C3—C3A—C7A179.81 (17)N2—N1—C7A—C3A1.15 (18)
C7A—C3A—C4—C51.3 (2)C11—N1—C7A—C3A176.59 (16)
C3—C3A—C4—C5179.3 (2)C4—C3A—C7A—N72.1 (3)
C7A—C3A—C4—C41177.14 (16)C3—C3A—C7A—N7179.25 (16)
C3—C3A—C4—C410.9 (3)C4—C3A—C7A—N1177.51 (14)
C5—C4—C41—C4683.2 (2)C3—C3A—C7A—N11.19 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O41i0.952.463.399 (2)169
C43—H43···Cgii0.952.653.501 (2)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H20N4O2
Mr372.42
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.5877 (5), 9.8541 (5), 11.7050 (4)
α, β, γ (°)105.982 (2), 103.570 (2), 108.433 (2)
V3)943.75 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.08 × 0.05
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.980, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
23240, 4338, 2724
Rint0.070
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 1.02
No. of reflections4338
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.34

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) top
N1—N21.371 (2)C5—C61.394 (3)
N2—C31.327 (2)C6—N71.332 (2)
C3—C3A1.447 (3)N7—C7A1.340 (2)
C3A—C41.415 (3)C7A—N11.363 (2)
C4—C51.386 (3)C3A—C7A1.419 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O41i0.952.463.399 (2)169
C43—H43···Cgii0.952.653.501 (2)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. RA and ER thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Torres, H. & Insuasty, B. (2002). Acta Cryst. C58, o298–o300. Web of Science CSD CrossRef CAS IUCr Journals
First citationMcArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationQuiroga, J., Insuasty, B., Cruz, S., Hernández, P., Bolaños, A., Moreno, R., Hormaza, A. & de Almedia, R. H. (1998). J. Heterocycl. Chem. 35, 333–338. CrossRef CAS
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds