organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Elaidic acid (trans-9-octa­decenoic acid)

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bScottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, and cEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: che562@abdn.ac.uk

(Received 11 October 2005; accepted 14 October 2005; online 19 October 2005)

Elaidic acid, C18H34O2, has an essentially linear alkyl chain. The double bond is twisted across the mean direction of the alkyl chain in a skew′, trans, skew conformation. In the crystal structure, the mol­ecules form centrosymmetric O—H⋯O hydrogen-bonded dimers (O⋯O = 2.684 Å).

Comment

The physical, biological and nutritional properties of fatty acids are largely determined by the number, position and configuration of their double bonds. These determine the shape of the mol­ecules, the way mol­ecules can pack together in solid phases, monolayers, bilayers etc., and how individual mol­ecules can inter­act with enzymes and receptors. Most natural unsaturated fatty acids have cis (Z) double bonds. Trans (E) fatty acids are present in dairy fats and are produced during the catalytic partial hydrogenation used in the production of hardened fats and during deodorization of commodity oils. The labelling of foods with trans content is increasingly required due to their undesirable nutritional properties. Alternative ways of producing hardened fats, such as inter­esterification or blending with fully saturated fats, and milder deodorization procedures, are being developed to reduce trans content. Trans fatty acids more closely resemble saturated acids in melting point and nutritional properties, sharing an essentially linear structure which allows closely aligned packing in condensed phases. In contrast, cis double bonds introduce a bend in the alkyl chain, making packing less stable and lowering the melting point. We have determined the structure of elaidic acid (trans-9-octa­decenoic acid), (I)[link], to enable a detailed comparison of a trans fatty acid with saturated and cis-unsaturated compounds.

[Scheme 1]

Relatively few crystal structures of fatty acids are available, as good crystals are difficult to obtain, often being thin plates and often crystallizing in several polymorphs. Most monoenes have low melting points and polyenes are liquids at room temperature. The crystal structures of the following saturated and monoene C18 fatty acids have been reported to date: stearic acid (octa­deca­noic acid) (Malta et al., 1971[Malta, V., Celotti G., Zannetti, R. & Martelli, A. F. (1971). J. Chem. Soc. B, pp. 548-553.]; Kaneko et al., 1990[Kaneko, F., Kobayashi, M., Kitagawa, Y. & Matsuura, Y. (1990). Acta Cryst. C46, 1490-1492.], 1994a[Kaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994a). Acta Cryst. C50, 245-247.],b[Kaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994b). Acta Cryst. C50, 247-250.]), oleic acid (cis-9-octa­decenoic acid) (Abrahamsson & Ryderstedt-Nahringbauer, 1962[Abrahamsson, S. & Ryderstedt-Nahringbauer, I. (1962). Acta Cryst. 15, 1261-1268.]; Kaneko et al., 1997[Kaneko, F., Yamazaki, K., Kitagawa, K., Kikyo, T., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1997). J. Phys. Chem. B, 101, 1803-1809.]) and petroselinic acid (cis-6-octa­decenoic acid) (Kaneko et al., 1992a[Kaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992a). Acta Cryst. C48, 1054-1057.],b[Kaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992b). Acta Cryst. C48, 1057-1060.]). No trans-octa­decenoic acid structure has been reported to date.

Elaidic acid (I)[link] has an essentially linear alkyl chain, with the torsion angle between saturated C atoms close to 180° (Table 1[link]). The C7—C8—C9—C10, C8—C9—C10—C11 and C9—C10—C11—C12 torsion angles are −118.8 (4), −179.9 (4) and 118.6 (4)°, respectively, resulting in the double bond being twisted across the mean direction of the alkyl chain in a skew′, trans, skew conformation. The C1–C18 distance is 21.393 (6) Å, comparable with that in fully extended stearic acid structures (21.6 Å; Malta et al., 1971[Malta, V., Celotti G., Zannetti, R. & Martelli, A. F. (1971). J. Chem. Soc. B, pp. 548-553.]; Kaneko et al., 1990[Kaneko, F., Kobayashi, M., Kitagawa, Y. & Matsuura, Y. (1990). Acta Cryst. C46, 1490-1492.], 1994b[Kaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994b). Acta Cryst. C50, 247-250.]). This contrasts with the cis-octa­decenoic acids, where the mol­ecules are bent and the C1–C18 distance is reduced to between 17.8 and 19.7 Å (Abrahamsson & Ryderstedt-Nahringbauer, 1962[Abrahamsson, S. & Ryderstedt-Nahringbauer, I. (1962). Acta Cryst. 15, 1261-1268.]; Kaneko et al., 1997[Kaneko, F., Yamazaki, K., Kitagawa, K., Kikyo, T., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1997). J. Phys. Chem. B, 101, 1803-1809.], 1992a[Kaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992a). Acta Cryst. C48, 1054-1057.],b[Kaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992b). Acta Cryst. C48, 1057-1060.]).

In the crystal structure of (I)[link], mol­ecules related by inversion centres are linked by O—H⋯O hydrogen bonds to form R22(8) dimers (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) typical of carboxylic acids (Table 2[link]).

[Figure 1]
Figure 1
A view of (I)[link], with displacement ellipsoids drawn at the 30% probability level.

Experimental

A commercial sample of (I)[link] (Sigma, Poole, Dorset, UK) was re-crystallized from ethanol at room temperature. The crystals were composed of very thin stacked sheets which tended to be twisted. After many attempts, a crystal was found from which it was possible to obtain a data set.

Crystal data
  • C18H34O2

  • Mr = 282.45

  • Monoclinic, C 2/c

  • a = 98.48 (2) Å

  • b = 4.9381 (3) Å

  • c = 7.1826 (8) Å

  • β = 92.570 (12)°

  • V = 3489.4 (8) Å3

  • Z = 8

  • Dx = 1.075 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3830 reflections

  • θ = 3.3–27.6°

  • μ = 0.07 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.20 × 0.18 × 0.01 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.987, Tmax = 0.999

  • 17532 measured reflections

  • 3830 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.150

  • θmax = 27.6°

  • h = −126 → 126

  • k = −6 → 6

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.102

  • wR(F2) = 0.256

  • S = 1.08

  • 3830 reflections

  • 182 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0744P)2 + 7.8445P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected torsion angles (°)[link]

C1—C2—C3—C4 −170.7 (3)
C2—C3—C4—C5 177.0 (3)
C3—C4—C5—C6 −176.6 (3)
C4—C5—C6—C7 178.9 (3)
C5—C6—C7—C8 −179.1 (3)
C6—C7—C8—C9 −178.4 (3)
C7—C8—C9—C10 −118.8 (4)
C8—C9—C10—C11 −179.9 (4)
C9—C10—C11—C12 118.6 (4)
C10—C11—C12—C13 178.4 (3)
C11—C12—C13—C14 −179.8 (3)
C12—C13—C14—C15 179.9 (3)
C13—C14—C15—C16 179.8 (3)
C14—C15—C16—C17 −179.6 (3)
C15—C16—C17—C18 179.5 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 1.86 2.684 (3) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

H atoms were treated as riding, with C—H(aromatic) = 0.95 and C—H(CH2) = 0.99 Å, with Uiso(H) = 1.2Ueq(C), CH(meth­yl) = 0.98 Å, with Uiso(H) = 1.5Ueq(C), and O—H = 0.87 Å, with Uiso(H) = 1.5Ueq(O). The O-bound H atom was allowed to ride at its position as determined from a difference map. Although the best crystal was selected from many crystallization attempts, the higher than usual values for R, wR and Rint may be a result of the crystal quality. The possibilty that the crystal was twinned was investigated but this did not give any significant results.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The physical, biological and nutritional properties of fatty acids are largely determined by the number, position and configuration of their double bonds. These determine the shape of the molecules, the way molecules can pack together in solid phases, monolayers, bilayers etc., and how individual molecules can interact with enzymes and receptors. Most natural unsaturated fatty acids have cis (Z) double bonds. Trans (E) fatty acids are present in dairy fats and are produced during the catalytic partial hydrogenation used in the production of hardened fats and during deodorization of commodity oils. The labelling of foods with trans content is increasingly required due to their undesirable nutritional properties. Alternative ways of producing hardened fats, such as interesterification or blending with fully saturated fats, and milder deodorization procedures, are being developed to reduce trans content. Trans fatty acids more closely resemble saturated acids in melting point and nutritional properties, sharing an essentially linear structure which allows closely aligned packing in condensed phases. In contrast, cis double bonds introduce a bend in the alkyl chain, making packing less stable and lowering the melting point. We have determined the structure of elaidic acid (trans-9-octadecenoic acid), (I), to enable a detailed comparison of a trans fatty acid with saturated and cis-unsaturated compounds.

Relatively few crystal structures of fatty acids are available, as good crystals are difficult to obtain, often being thin plates and often crystallizing in several polymorphs. Most monoenes have low melting points and polyenes are liquids at room temperature. The crystal structures of the following saturated and monoene C18 fatty acids have been reported to date: stearic acid (octadecanoic acid) (Malta et al., 1971; Kaneko et al., 1990, 1994a,b), oleic acid (cis-9-octadecenoic acid) (Abrahamsson & Ryderstedt-Nahringbauer, 1962; Kaneko et al., 1997) and petroselinic acid (cis-6-octadecenoic acid) (Kaneko et al., 1992a,b). No trans-octadecenoic acid structure has been reported to date.

Elaidic acid (I) has an essentially linear alkyl chain, with the torsion angle between saturated C atoms close to 180° (Table 1). The C7—C8—C9—C10, C8—C9—C10—C11 and C9—C10—C11—C12 torsion angles are −118.8 (4), −179.9 (4) and 118.6 (4)°, respectively, resulting in the double bond being twisted across the mean direction of the alkyl chain in a skew', trans, skew conformation. The C1–C18 distance is 21.39 Å, comparable with that in fully extended stearic acid structures (21.6 Å; Malta et al., 1971; Kaneko et al., 1990, 1994b). This contrasts with the cis-octadecenoic acids, where the molecules are bent and the C1–C18 distance is reduced to between 17.8 and 19.7 Å (Abrahamsson & Ryderstedt-Nahringbauer, 1962; Kaneko et al., 1997, 1992a,b).

In the crystal structure of (I), molecules related by inversion centres are linked by O—H···O hydrogen bonds to form R22(8) dimers (Bernstein et al., 1995) typical of carboxylic acids (Table 2).

Experimental top

A commercial sample of (I) (Sigma, Poole, Dorset, UK) was re-crystallized from ethanol at room temperature. The crystals were composed of very thin stacked sheets which tended to be twisted. After many attempts, a crystal was found from which it was possible to obtain a data set.

Refinement top

H atoms were treated as riding, with C—H(aromatic) = 0.95 and C—H(CH2) = 0.99 Å, with Uiso(H) = 1.2Ueq(C), CH(methyl) = 0.98 Å, with Uiso(H) = 1.5Ueq(C), and O—H = 0.87 Å, with Uiso(H) = 1.5Ueq(O). The O-bound H atom was allowed to ride at its position as determined from a difference map. Although the best crystal was selected from many crystallization attempts, the higher than usual vlaues for R, wR and Rint may be a result of the crystal quality. The possibilty that the crystal was twinned was investigated but this did not give any significant results.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with displacement ellipsoids drawn at the 30% probability level.
trans-9-octadecenoic acid top
Crystal data top
C18H34O2F(000) = 1264
Mr = 282.45Dx = 1.075 Mg m3
Monoclinic, C2/cMelting point: 318 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 98.48 (2) ÅCell parameters from 3830 reflections
b = 4.9381 (3) Åθ = 3.3–27.6°
c = 7.1826 (8) ŵ = 0.07 mm1
β = 92.570 (12)°T = 120 K
V = 3489.4 (8) Å3Plate, colourless
Z = 80.20 × 0.18 × 0.01 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3830 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.150
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.3°
ϕ and ω scansh = 126126
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.987, Tmax = 0.999l = 99
17532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.102Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.256H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0744P)2 + 7.8445P]
where P = (Fo2 + 2Fc2)/3
3830 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H34O2V = 3489.4 (8) Å3
Mr = 282.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 98.48 (2) ŵ = 0.07 mm1
b = 4.9381 (3) ÅT = 120 K
c = 7.1826 (8) Å0.20 × 0.18 × 0.01 mm
β = 92.570 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1679 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.999Rint = 0.150
17532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1020 restraints
wR(F2) = 0.256H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
3830 reflectionsΔρmin = 0.35 e Å3
182 parameters
Special details top

Experimental. The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73264 (3)0.7933 (8)0.6134 (6)0.0228 (10)
O10.74261 (2)0.9565 (6)0.6713 (4)0.0309 (8)
O20.73386 (2)0.6167 (6)0.4964 (4)0.0248 (7)
C20.71969 (3)0.8502 (8)0.7109 (5)0.0201 (10)
C30.70703 (3)0.7093 (8)0.6268 (6)0.0205 (10)
C40.69400 (3)0.8111 (8)0.7115 (5)0.0189 (9)
C50.68092 (3)0.6865 (8)0.6249 (6)0.0209 (10)
C60.66795 (3)0.8041 (8)0.7042 (6)0.0192 (9)
C70.65479 (3)0.6840 (8)0.6155 (6)0.0217 (10)
C80.64192 (3)0.8070 (8)0.6941 (6)0.0217 (10)
C90.62897 (3)0.6835 (8)0.6108 (5)0.0228 (10)
C100.61931 (3)0.8140 (8)0.5146 (5)0.0218 (10)
C110.60645 (3)0.6909 (8)0.4322 (6)0.0245 (10)
C120.59348 (3)0.8106 (8)0.5097 (5)0.0193 (9)
C130.58035 (3)0.6919 (8)0.4225 (6)0.0218 (10)
C140.56738 (3)0.8113 (8)0.4988 (6)0.0208 (10)
C150.55429 (3)0.6890 (8)0.4087 (6)0.0223 (10)
C160.54127 (3)0.8076 (8)0.4853 (6)0.0224 (10)
C170.52827 (3)0.6812 (9)0.3945 (6)0.0282 (11)
C180.51520 (3)0.7981 (9)0.4725 (7)0.0360 (12)
H10.75060.97560.62670.046*
H2A0.71811.04810.70940.024*
H2B0.72100.79400.84280.024*
H3A0.70790.51170.64780.025*
H3B0.70650.74110.49060.025*
H4A0.69351.01020.69690.023*
H4B0.69450.77110.84670.023*
H5A0.68110.48840.64640.025*
H5B0.68070.71700.48850.025*
H6A0.66791.00260.68490.023*
H6B0.66810.77040.84020.023*
H7A0.65460.71510.47930.026*
H7B0.65480.48600.63670.026*
H8A0.64220.78060.83090.026*
H8B0.64181.00430.66970.026*
H90.62770.49490.62940.027*
H100.62061.00250.49560.026*
H11A0.60660.49350.45650.029*
H11B0.60620.71730.29550.029*
H12A0.59360.77950.64590.023*
H12B0.59351.00880.48880.023*
H13A0.58040.49380.44370.026*
H13B0.58020.72240.28620.026*
H14A0.56731.00940.47760.025*
H14B0.56750.78020.63500.025*
H15A0.55420.72060.27250.027*
H15B0.55440.49080.42950.027*
H16A0.54111.00550.46350.027*
H16B0.54140.77700.62160.027*
H17A0.52820.71320.25830.034*
H17B0.52850.48300.41520.034*
H18A0.51510.76030.60630.054*
H18B0.50730.71410.40860.054*
H18C0.51490.99430.45210.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0142 (16)0.022 (2)0.032 (3)0.0038 (16)0.0035 (17)0.005 (2)
O10.0171 (11)0.0333 (19)0.042 (2)0.0079 (12)0.0022 (12)0.0123 (15)
O20.0219 (12)0.0276 (18)0.0251 (18)0.0011 (12)0.0008 (11)0.0047 (15)
C20.0194 (16)0.022 (2)0.019 (3)0.0035 (16)0.0021 (15)0.0017 (19)
C30.0166 (16)0.020 (2)0.025 (3)0.0031 (15)0.0015 (16)0.0035 (19)
C40.0191 (16)0.019 (2)0.019 (2)0.0016 (15)0.0015 (16)0.0005 (18)
C50.0183 (16)0.019 (2)0.025 (3)0.0030 (16)0.0059 (16)0.0025 (19)
C60.0163 (16)0.021 (2)0.020 (3)0.0015 (15)0.0024 (15)0.0008 (19)
C70.0201 (16)0.025 (2)0.020 (3)0.0024 (16)0.0050 (16)0.0019 (19)
C80.0194 (17)0.028 (2)0.018 (3)0.0018 (16)0.0021 (16)0.0018 (19)
C90.0232 (17)0.024 (3)0.022 (3)0.0005 (17)0.0028 (17)0.001 (2)
C100.0154 (16)0.023 (2)0.026 (3)0.0026 (16)0.0004 (16)0.001 (2)
C110.0197 (17)0.026 (2)0.027 (3)0.0010 (16)0.0068 (17)0.001 (2)
C120.0187 (16)0.025 (2)0.014 (2)0.0003 (16)0.0002 (15)0.0013 (19)
C130.0193 (17)0.026 (2)0.020 (3)0.0018 (16)0.0023 (16)0.0005 (19)
C140.0209 (17)0.021 (2)0.020 (3)0.0010 (16)0.0022 (16)0.0010 (19)
C150.0205 (17)0.025 (2)0.021 (3)0.0001 (16)0.0032 (16)0.002 (2)
C160.0232 (17)0.021 (2)0.023 (3)0.0019 (16)0.0003 (17)0.0014 (19)
C170.0207 (17)0.037 (3)0.027 (3)0.0025 (17)0.0039 (17)0.001 (2)
C180.0263 (19)0.040 (3)0.041 (3)0.0003 (19)0.0041 (19)0.002 (2)
Geometric parameters (Å, º) top
C1—O21.221 (5)C10—C111.502 (4)
C1—O11.323 (4)C10—H100.95
C1—C21.508 (5)C11—C121.535 (5)
O1—H10.8642C11—H11A0.99
C2—C31.528 (4)C11—H11B0.99
C2—H2A0.99C12—C131.527 (4)
C2—H2B0.99C12—H12A0.99
C3—C41.530 (5)C12—H12B0.99
C3—H3A0.99C13—C141.530 (5)
C3—H3B0.99C13—H13A0.99
C4—C51.534 (4)C13—H13B0.99
C4—H4A0.99C14—C151.540 (4)
C4—H4B0.99C14—H14A0.99
C5—C61.536 (5)C14—H14B0.99
C5—H5A0.99C15—C161.534 (5)
C5—H5B0.99C15—H15A0.99
C6—C71.537 (4)C15—H15B0.99
C6—H6A0.99C16—C171.542 (4)
C6—H6B0.99C16—H16A0.99
C7—C81.536 (5)C16—H16B0.99
C7—H7A0.99C17—C181.540 (5)
C7—H7B0.99C17—H17A0.99
C8—C91.512 (4)C17—H17B0.99
C8—H8A0.99C18—H18A0.98
C8—H8B0.99C18—H18B0.98
C9—C101.318 (5)C18—H18C0.98
C9—H90.95
O2—C1—O1123.9 (3)C9—C10—H10117.1
O2—C1—C2124.3 (3)C11—C10—H10117.1
O1—C1—C2111.8 (4)C10—C11—C12113.7 (3)
C1—O1—H1128.4C10—C11—H11A108.8
C1—C2—C3115.1 (3)C12—C11—H11A108.8
C1—C2—H2A108.5C10—C11—H11B108.8
C3—C2—H2A108.5C12—C11—H11B108.8
C1—C2—H2B108.5H11A—C11—H11B107.7
C3—C2—H2B108.5C13—C12—C11114.0 (3)
H2A—C2—H2B107.5C13—C12—H12A108.8
C2—C3—C4112.2 (3)C11—C12—H12A108.8
C2—C3—H3A109.2C13—C12—H12B108.8
C4—C3—H3A109.2C11—C12—H12B108.8
C2—C3—H3B109.2H12A—C12—H12B107.7
C4—C3—H3B109.2C12—C13—C14114.2 (3)
H3A—C3—H3B107.9C12—C13—H13A108.7
C3—C4—C5114.3 (3)C14—C13—H13A108.7
C3—C4—H4A108.7C12—C13—H13B108.7
C5—C4—H4A108.7C14—C13—H13B108.7
C3—C4—H4B108.7H13A—C13—H13B107.6
C5—C4—H4B108.7C13—C14—C15113.3 (3)
H4A—C4—H4B107.6C13—C14—H14A108.9
C4—C5—C6113.3 (3)C15—C14—H14A108.9
C4—C5—H5A108.9C13—C14—H14B108.9
C6—C5—H5A108.9C15—C14—H14B108.9
C4—C5—H5B108.9H14A—C14—H14B107.7
C6—C5—H5B108.9C16—C15—C14113.4 (3)
H5A—C5—H5B107.7C16—C15—H15A108.9
C5—C6—C7113.6 (3)C14—C15—H15A108.9
C5—C6—H6A108.8C16—C15—H15B108.9
C7—C6—H6A108.8C14—C15—H15B108.9
C5—C6—H6B108.8H15A—C15—H15B107.7
C7—C6—H6B108.8C15—C16—C17112.6 (3)
H6A—C6—H6B107.7C15—C16—H16A109.1
C8—C7—C6112.9 (3)C17—C16—H16A109.1
C8—C7—H7A109.0C15—C16—H16B109.1
C6—C7—H7A109.0C17—C16—H16B109.1
C8—C7—H7B109.0H16A—C16—H16B107.8
C6—C7—H7B109.0C18—C17—C16112.7 (3)
H7A—C7—H7B107.8C18—C17—H17A109.0
C9—C8—C7113.0 (3)C16—C17—H17A109.0
C9—C8—H8A109.0C18—C17—H17B109.0
C7—C8—H8A109.0C16—C17—H17B109.0
C9—C8—H8B109.0H17A—C17—H17B107.8
C7—C8—H8B109.0C17—C18—H18A109.5
H8A—C8—H8B107.8C17—C18—H18B109.5
C10—C9—C8125.9 (4)H18A—C18—H18B109.5
C10—C9—H9117.1C17—C18—H18C109.5
C8—C9—H9117.1H18A—C18—H18C109.5
C9—C10—C11125.7 (4)H18B—C18—H18C109.5
O2—C1—C2—C311.8 (6)C8—C9—C10—C11179.9 (4)
O1—C1—C2—C3168.8 (3)C9—C10—C11—C12118.6 (4)
C1—C2—C3—C4170.7 (3)C10—C11—C12—C13178.4 (3)
C2—C3—C4—C5177.0 (3)C11—C12—C13—C14179.8 (3)
C3—C4—C5—C6176.6 (3)C12—C13—C14—C15179.9 (3)
C4—C5—C6—C7178.9 (3)C13—C14—C15—C16179.8 (3)
C5—C6—C7—C8179.1 (3)C14—C15—C16—C17179.6 (3)
C6—C7—C8—C9178.4 (3)C15—C16—C17—C18179.5 (3)
C7—C8—C9—C10118.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.871.862.684 (3)158
Symmetry code: (i) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H34O2
Mr282.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)98.48 (2), 4.9381 (3), 7.1826 (8)
β (°) 92.570 (12)
V3)3489.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.18 × 0.01
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.987, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
17532, 3830, 1679
Rint0.150
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.102, 0.256, 1.08
No. of reflections3830
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.35

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) top
C1—C2—C3—C4170.7 (3)C9—C10—C11—C12118.6 (4)
C2—C3—C4—C5177.0 (3)C10—C11—C12—C13178.4 (3)
C3—C4—C5—C6176.6 (3)C11—C12—C13—C14179.8 (3)
C4—C5—C6—C7178.9 (3)C12—C13—C14—C15179.9 (3)
C5—C6—C7—C8179.1 (3)C13—C14—C15—C16179.8 (3)
C6—C7—C8—C9178.4 (3)C14—C15—C16—C17179.6 (3)
C7—C8—C9—C10118.8 (4)C15—C16—C17—C18179.5 (3)
C8—C9—C10—C11179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.871.862.684 (3)158
Symmetry code: (i) x+3/2, y+3/2, z+1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The Scottish Crop Research Institute receives grant-in-aid from the Scottish Executive Environmental and Rural Affairs Department.

References

First citationAbrahamsson, S. & Ryderstedt-Nahringbauer, I. (1962). Acta Cryst. 15, 1261–1268. CSD CrossRef CAS IUCr Journals Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
First citationKaneko, F., Kobayashi, M., Kitagawa, Y. & Matsuura, Y. (1990). Acta Cryst. C46, 1490–1492. CSD CrossRef CAS Web of Science IUCr Journals
First citationKaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992a). Acta Cryst. C48, 1054–1057. CSD CrossRef CAS Web of Science IUCr Journals
First citationKaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992b). Acta Cryst. C48, 1057–1060. CSD CrossRef CAS Web of Science IUCr Journals
First citationKaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994a). Acta Cryst. C50, 245–247. CSD CrossRef CAS Web of Science IUCr Journals
First citationKaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994b). Acta Cryst. C50, 247–250. CSD CrossRef CAS Web of Science IUCr Journals
First citationKaneko, F., Yamazaki, K., Kitagawa, K., Kikyo, T., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1997). J. Phys. Chem. B, 101, 1803–1809. CSD CrossRef CAS Web of Science
First citationMalta, V., Celotti G., Zannetti, R. & Martelli, A. F. (1971). J. Chem. Soc. B, pp. 548–553.
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds