organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4,4,5,5-Tetra­methyl-1,3,2-dioxaborolan-2-yl)aniline

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, bINRS–Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec, Canada J3X 1S2, and cGlaxoSmithKline Research and Development Ltd, Old Powder Mills, Leigh, Nr Tonbridge, Kent TN11 9AN, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 21 December 2005; accepted 23 December 2005; online 7 January 2006)

In the title compound, C12H18BNO2, the amino group is less pyramidal than in aniline, only one of its H atoms forming a strong hydrogen bond.

Comment

In the course of our studies (Giles et al., 2003[Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2003). J. Organomet. Chem. 680, 257-262.]; Coghlan et al., 2005[Coghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784-4793.]) into the potential catalytic utility of bifunctional compounds (Rowlands, 2001[Rowlands, G. J. (2001). Tetrahedron, 57, 1865-1882.]) containing both a nitro­gen-based Lewis base and a boron-based Lewis acid, we turned to the title compound, (I)[link], as a protected precursor for the synthesis of phenyl­guanidine-2-boronic acid derivatives, which we were inter­ested in as bifunctional catalysts. Unfortunately, synthesis of such compounds proved unsuccessful, producing a complex mixture of products.

[Scheme 1]

Compound (I)[link] was prepared by a modified version of the procedure reported by Vogels et al. (1999[Vogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (1999). Can. J. Chem. 77, 1196-1207.]), who synthesized it en route to various platinum complexes and imines (Vogels et al., 2001[Vogels, C. M., Nikolcheva, L. G., Norman, D. W., Spinney, H. A., Decken, A., Baerlocher, M. O., Baerlocher, F. J. & Westcott, S. A. (2001). Can. J. Chem. 79, 1115-1123.]; King et al., 2002[King, A. S., Nikolcheva, L. G., Graves, R. G., Kaminski, A., Vogels, C. M., Hudson, R. H. E., Ireland, R. J., Duffy, S. J. & Westcott, S. A. (2002). Can. J. Chem. 80, 1217-1222.]).

The asymmetric unit contains one mol­ecule. The B atom has planar-trigonal coordination; the coordination plane is inclined by 10.4 (2)° to the benzene ring plane. The borolane ring adopts a twist conformation, the C7 and C8 atoms deviating from the BO2 plane by 0.20 (2) and 0.27 (2) Å in opposite directions, with two equatorial (C9 and C11) and two axial (C10 and C12) methyl substituents. The amino group forms one strong inter­molecular hydrogen bond (Table 2[link]). The remaining amino hydrogen atom, H2N, points towards the pπ orbital of the benzene C4 atom of another mol­ecule. The H2N⋯C4ii distance [2.61 (2) Å, corrected for the idealized N—H bond length of 1.01 Å; symmetry code: (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}]z], which is considerably shorter than the sum of van der Waals radii of 2.88 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and the N—H⋯C angle of 167 (2)° suggest that this contact is a weak hydrogen bond.

The N atom in (I)[link] has a less pyramidal geometry than in unsubstituted aniline. The dihedral angle between the benzene ring and the NH2 group (so-called `inversion angle'), which equals 37–38° in both solid (Fukuyo et al., 1982[Fukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640-643.]) and gaseous (Lister et al., 1974[Lister, D. G., Tyler, J. K., Hog, J. H. & Wessel Larsen, N. (1974). J. Mol. Struct. 23, 253-264.]) aniline, is reduced to 16 (2)° in (I)[link]. The C1—N bond in (I)[link] [1.3790 (18) Å] is shorter than in aniline [solid: 1.392 (6) Å; gas: 1.402 (2) Å]. Both differences indicate that the boryl substituent enhances the inter­action of the electron lone pair of N with the aromatic ring and hence sp2 hybridization of the N atom. It is noteworthy that, in the two complexes of Pd and Pt where mol­ecule (I)[link] acts as an N-ligand (Vogels et al., 1999[Vogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (1999). Can. J. Chem. 77, 1196-1207.]), the C—N bond is lengthened to 1.438 (4) and 1.45 (1) Å, respectively, as the π-conjugation is disrupted, the lone pair being donated to the metal atom instead.

In (I)[link], the N atom deviates by 0.081 (2) Å from the benzene ring plane, but its H atoms are situated on the other side of this plane, 0.04 (2) Å from it. A similar, but stronger, distortion is shown by the aniline mol­ecule in its crystal structure, where the amino group both donates and accepts a hydrogen bond.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link]. Atomic displacement ellipsoids are drawn at the 50% probability level.

Experimental

3-Amino­phenylboronic acid (1.00 g, 6.45 mmol) and pinacol (0.763 g, 6.45 mmol) were added to ethyl acetate (150 ml). After stirring for 20 h, the solution was dried (MgSO4), filtered and evaporated to yield a brown solid, which was dissolved in a minimal amount of ethyl acetate and absorbed on to silica gel. Purification was by silica gel chromatography (hexane/ethyl acetate, 1:1 as eluant), which gave an orange oil which crystallized on standing for 48 h to give large orange crystals of (I)[link] [yield 1.31 g, 93%; m.p. 363 K, cf. 366 K according to Vogels et al. (1999[Vogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (1999). Can. J. Chem. 77, 1196-1207.])]. UV , mol dm−3 cm−1 (MeCN) 215 ( 27410), 246 ( 7100), 311 ( 2560); MS (ES+) 220.1 (M+ + H). Found: C 65.77, H 8.31, N 6.31%; C12H19BNO2 requires: C 65.70, H 8.28, N 6.39%. All other spectroscopic and analytical details were identical to those reported by Vogels et al. (1999[Vogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (1999). Can. J. Chem. 77, 1196-1207.]).

Crystal data
  • C12H18BNO2

  • Mr = 219.08

  • Monoclinic, P 21 /c

  • a = 9.823 (1) Å

  • b = 10.658 (1) Å

  • c = 12.547 (1) Å

  • β = 109.10 (1)°

  • V = 1241.3 (2) Å3

  • Z = 4

  • Dx = 1.172 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2346 reflections

  • θ = 2.6–27.0°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Block, orange

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 7402 measured reflections

  • 2697 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 27.0°

  • h = −12 → 12

  • k = −13 → 11

  • l = −16 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.04

  • 2697 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0669P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

O1—B 1.3657 (18)
O1—C7 1.4714 (16)
O2—B 1.3712 (18)
O2—C8 1.4703 (16)
N—C1 1.3790 (18)
C3—B 1.550 (2)
C2—C1—C6 118.32 (13)
C2—C3—C4 118.19 (13)
O1—B—O2 113.35 (13)
O1—B—C3 124.76 (13)
O2—B—C3 121.89 (13)
B—O1—C7—C8 −22.51 (14)
B—O2—C8—C7 −23.98 (14)
O1—C7—C8—O2 27.80 (13)
C7—O1—B—O2 8.34 (16)
C8—O2—B—O1 11.01 (16)
C2—C3—B—O1 9.9 (2)
C4—C3—B—O2 8.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1N⋯O2i 0.92 (2) 2.20 (2) 3.0743 (17) 158.4 (16)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Amino H atoms were refined in an isotropic approximation, giving N—H distances of 0.92 (2) and 0.85 (2) Å. Phenyl H atoms were treated as riding in idealized positions with C—H bond lengths of 0.95 Å and Uiso(H) = 1.2Ueq(C). Methyl groups were refined as rigid bodies rotating around the C—C bonds, with C—H bond lengths of 0.98 Å and a common refined Uiso(H) for all three H atoms of each methyl group.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline top
Crystal data top
C12H18BNO2F(000) = 472
Mr = 219.08Dx = 1.172 Mg m3
Monoclinic, P21/cMelting point: 363 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.823 (1) ÅCell parameters from 2346 reflections
b = 10.658 (1) Åθ = 2.6–27.0°
c = 12.547 (1) ŵ = 0.08 mm1
β = 109.10 (1)°T = 120 K
V = 1241.3 (2) Å3Block, orange
Z = 40.3 × 0.3 × 0.2 mm
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
1905 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
Detector resolution: 8 pixels mm-1h = 1212
ω scansk = 1311
7402 measured reflectionsl = 1613
2697 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0669P)2]
where P = (Fo2 + 2Fc2)/3
2697 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal Space, by a combination of 3 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering 0.3° in ω. Crystal to detector distance 4.85 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15436 (10)0.04664 (8)0.16868 (7)0.0263 (3)
O20.22355 (11)0.03227 (9)0.36090 (8)0.0316 (3)
N0.36360 (17)0.49698 (14)0.11742 (11)0.0404 (4)
H1N0.315 (2)0.4675 (17)0.0457 (17)0.059 (6)*
H2N0.420 (2)0.5598 (18)0.1268 (14)0.053 (6)*
C10.38192 (15)0.41584 (13)0.20664 (11)0.0273 (3)
C20.31038 (15)0.30068 (13)0.19234 (11)0.0251 (3)
H20.25320.27550.11860.030*
C30.32043 (15)0.22174 (13)0.28355 (11)0.0245 (3)
C40.40955 (15)0.25901 (13)0.39138 (11)0.0275 (3)
H40.41790.20710.45480.033*
C50.48483 (16)0.37062 (13)0.40580 (12)0.0297 (3)
H50.54740.39340.47850.036*
C60.47049 (16)0.44930 (13)0.31530 (12)0.0287 (3)
H60.52070.52700.32680.034*
C70.06845 (15)0.05605 (13)0.19253 (11)0.0256 (3)
C80.15477 (16)0.08840 (13)0.31807 (12)0.0294 (3)
C90.06005 (18)0.16155 (14)0.11008 (13)0.0367 (4)
H910.00210.13460.03410.047 (3)*
H920.01520.23500.13170.047 (3)*
H930.15730.18330.11090.047 (3)*
C100.08028 (16)0.00340 (14)0.17633 (13)0.0350 (4)
H1010.12040.03200.10020.049 (3)*
H1020.07350.06270.23220.049 (3)*
H1030.14360.07050.18610.049 (3)*
C110.06293 (18)0.12685 (15)0.38863 (12)0.0396 (4)
H1110.12460.14160.46660.054 (3)*
H1120.01030.20390.35790.054 (3)*
H1130.00580.05960.38710.054 (3)*
C120.27576 (17)0.18112 (15)0.33107 (14)0.0414 (4)
H1210.33750.18410.41030.051 (3)*
H1220.33320.15500.28400.051 (3)*
H1230.23530.26470.30740.051 (3)*
B0.23205 (17)0.09875 (15)0.26972 (13)0.0249 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (6)0.0239 (5)0.0248 (5)0.0048 (4)0.0070 (4)0.0017 (4)
O20.0373 (6)0.0275 (6)0.0252 (5)0.0099 (5)0.0036 (4)0.0013 (4)
N0.0512 (9)0.0350 (8)0.0296 (7)0.0166 (7)0.0057 (6)0.0049 (6)
C10.0271 (8)0.0276 (8)0.0280 (7)0.0006 (6)0.0101 (6)0.0010 (6)
C20.0231 (7)0.0265 (8)0.0245 (7)0.0001 (6)0.0062 (6)0.0015 (5)
C30.0232 (7)0.0225 (7)0.0277 (7)0.0007 (6)0.0081 (6)0.0012 (5)
C40.0294 (8)0.0240 (8)0.0264 (7)0.0015 (6)0.0055 (6)0.0025 (6)
C50.0296 (8)0.0288 (8)0.0266 (7)0.0013 (6)0.0035 (6)0.0034 (6)
C60.0290 (8)0.0241 (8)0.0320 (8)0.0057 (6)0.0087 (6)0.0021 (6)
C70.0285 (8)0.0219 (7)0.0247 (7)0.0038 (6)0.0067 (6)0.0027 (5)
C80.0301 (8)0.0247 (8)0.0280 (7)0.0066 (6)0.0022 (6)0.0025 (6)
C90.0457 (10)0.0310 (9)0.0311 (8)0.0061 (7)0.0092 (7)0.0033 (6)
C100.0284 (8)0.0330 (9)0.0400 (9)0.0021 (7)0.0064 (7)0.0070 (7)
C110.0448 (10)0.0404 (10)0.0300 (8)0.0143 (8)0.0073 (7)0.0049 (7)
C120.0324 (9)0.0281 (9)0.0522 (10)0.0025 (7)0.0018 (7)0.0095 (7)
B0.0244 (8)0.0221 (8)0.0268 (8)0.0022 (7)0.0066 (7)0.0024 (6)
Geometric parameters (Å, º) top
O1—B1.3657 (18)C7—C91.5118 (19)
O1—C71.4714 (16)C7—C101.515 (2)
O2—B1.3712 (18)C7—C81.5636 (18)
O2—C81.4703 (16)C8—C121.513 (2)
N—C11.3790 (18)C8—C111.513 (2)
N—H1N0.92 (2)C9—H910.9800
N—H2N0.85 (2)C9—H920.9800
C1—C21.3964 (19)C9—H930.9800
C1—C61.4024 (19)C10—H1010.9811
C2—C31.3976 (19)C10—H1020.9811
C2—H20.9500C10—H1030.9810
C3—C41.4070 (19)C11—H1110.9800
C3—B1.550 (2)C11—H1120.9800
C4—C51.3810 (19)C11—H1130.9800
C4—H40.9500C12—H1210.9809
C5—C61.3812 (19)C12—H1220.9809
C5—H50.9501C12—H1230.9808
C6—H60.9500
B—O1—C7107.29 (10)C12—C8—C11110.97 (12)
B—O2—C8107.05 (11)O2—C8—C7102.01 (10)
C1—N—H1N117.7 (12)C12—C8—C7113.62 (12)
C1—N—H2N118.3 (12)C11—C8—C7114.74 (12)
H1N—N—H2N120.4 (17)C7—C9—H91109.4
N—C1—C2121.36 (13)C7—C9—H92109.5
N—C1—C6120.29 (14)H91—C9—H92109.5
C2—C1—C6118.32 (13)C7—C9—H93109.5
C1—C2—C3121.75 (13)H91—C9—H93109.5
C1—C2—H2119.0H92—C9—H93109.5
C3—C2—H2119.2C7—C10—H101109.6
C2—C3—C4118.19 (13)C7—C10—H102109.5
C2—C3—B122.04 (12)H101—C10—H102109.4
C4—C3—B119.72 (12)C7—C10—H103109.6
C5—C4—C3120.48 (13)H101—C10—H103109.4
C5—C4—H4119.7H102—C10—H103109.4
C3—C4—H4119.8C8—C11—H111109.6
C4—C5—C6120.60 (13)C8—C11—H112109.6
C4—C5—H5119.8H111—C11—H112109.5
C6—C5—H5119.6C8—C11—H113109.3
C5—C6—C1120.58 (13)H111—C11—H113109.5
C5—C6—H6119.7H112—C11—H113109.5
C1—C6—H6119.7C8—C12—H121109.5
O1—C7—C9108.69 (11)C8—C12—H122109.6
O1—C7—C10106.81 (11)H121—C12—H122109.4
C9—C7—C10110.44 (13)C8—C12—H123109.5
O1—C7—C8102.17 (10)H121—C12—H123109.4
C9—C7—C8114.55 (12)H122—C12—H123109.4
C10—C7—C8113.46 (12)O1—B—O2113.35 (13)
O2—C8—C12106.33 (11)O1—B—C3124.76 (13)
O2—C8—C11108.28 (12)O2—B—C3121.89 (13)
N—C1—C2—C3175.49 (14)C9—C7—C8—O2145.12 (12)
C6—C1—C2—C32.7 (2)C10—C7—C8—O286.79 (13)
C1—C2—C3—C42.2 (2)O1—C7—C8—C1286.21 (13)
C1—C2—C3—B175.13 (13)C9—C7—C8—C1231.12 (17)
C2—C3—C4—C50.1 (2)C10—C7—C8—C12159.20 (12)
B—C3—C4—C5177.57 (13)O1—C7—C8—C11144.62 (12)
C3—C4—C5—C62.0 (2)C9—C7—C8—C1198.05 (16)
C4—C5—C6—C11.6 (2)C10—C7—C8—C1130.03 (18)
N—C1—C6—C5177.44 (15)C7—O1—B—O28.34 (16)
C2—C1—C6—C50.8 (2)C7—O1—B—C3170.73 (13)
B—O1—C7—C9143.96 (13)C8—O2—B—O111.01 (16)
B—O1—C7—C1096.87 (13)C8—O2—B—C3169.88 (13)
B—O1—C7—C822.51 (14)C2—C3—B—O19.9 (2)
B—O2—C8—C1295.31 (13)C4—C3—B—O1172.73 (13)
B—O2—C8—C11145.38 (13)C2—C3—B—O2169.06 (13)
B—O2—C8—C723.98 (14)C4—C3—B—O28.3 (2)
O1—C7—C8—O227.80 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O2i0.92 (2)2.20 (2)3.0743 (17)158.4 (16)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank the EPSRC for a DTA studentship (for RG), GlaxoSmithKline for CASE funding (RG) and the EPSRC National Mass Spectroscopy Service Centre at Swansea.

References

First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784–4793.  Web of Science CSD CrossRef CAS Google Scholar
First citationFukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640–643.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGiles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2003). J. Organomet. Chem. 680, 257–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationKing, A. S., Nikolcheva, L. G., Graves, R. G., Kaminski, A., Vogels, C. M., Hudson, R. H. E., Ireland, R. J., Duffy, S. J. & Westcott, S. A. (2002). Can. J. Chem. 80, 1217–1222.  Web of Science CrossRef CAS Google Scholar
First citationLister, D. G., Tyler, J. K., Hog, J. H. & Wessel Larsen, N. (1974). J. Mol. Struct. 23, 253–264.  CrossRef CAS Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationRowlands, G. J. (2001). Tetrahedron, 57, 1865–1882.  Web of Science CrossRef CAS Google Scholar
First citationVogels, C. M., Nikolcheva, L. G., Norman, D. W., Spinney, H. A., Decken, A., Baerlocher, M. O., Baerlocher, F. J. & Westcott, S. A. (2001). Can. J. Chem. 79, 1115–1123.  Web of Science CSD CrossRef CAS Google Scholar
First citationVogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (1999). Can. J. Chem. 77, 1196–1207.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds