organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-di­methyl­pyrimidine–4-hy­droxy­benzoic acid (1/1)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bFaculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 23 May 2006; accepted 10 June 2006; online 21 June 2006)

In the title compound, C6H9N3·C7H6O3, the 2-amino-4,6-dimethyl­pyrimidine and 4-hydroxy­benzoic acid mol­ecules link together via N—H⋯O and O—H⋯N hydrogen bonds to form an eight-membered R22(8) ring. Further hydrogen bonds and C—H⋯O inter­actions result in the formation of a three-dimensional network.

Comment

The crystal structures of various amino­pyrimidine carboxyl­ates (Hu et al., 2002[Hu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005-o1007.]) and cocrystals (Chinnakali et al., 1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]) have been described. From our laboratory, the crystal structures of 2-amino-4,6-dimethyl­pyrimidinium bromide 2-amino-4,6-dimethyl­pyrimidine monohydrate (Panneerselvam et al., 2004[Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747-o749.]) and 2-amino-4,6-dimethyl­pyrimidine cinnamic acid (1/2) (Balasubramani et al., 2005[Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203-o4205.]) have been reported. In this paper, the hydrogen-bonding patterns in the title compound, (I)[link], are described.

[Scheme 1]

The asymmetric unit of (I)[link] contains a 2-amino-4,6-dimethyl­pyrimidine (AMPY) mol­ecule and a 4-hydroxy­benzoic (4-HBZ) acid mol­ecule (Fig. 1[link]). Both species are neutral, thus (I)[link] is an adduct rather than a mol­ecular salt. Atoms O2 and the –N2H2 group act as hydrogen-bond donors to atoms N1 and O3, respectively, to form an eight-membered ring, which has the graph-set notation R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). This type of inter­action has been observed in the crystal structures of other 2-amino­pyrimidine–carboxylic acid adducts (Lynch & Jones, 2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]).

The second H atom of the 2-amino group links to an O2 atom in an adjacent mol­ecule via an N—H⋯O bond, and one of the C atoms (C11) of 4-HBZ is hydrogen bonded to O3 via a C—H⋯O inter­action to form a ring having graph-set notation R23(8), leading to the supra­molecular chain shown in Fig. 2[link]. Hence, O3 acts as a bifurcated acceptor. The 4-HBZ hydr­oxy (O1) group is hydrogen bonded to pyrimidine atom N3 via an O—H⋯N inter­action, to form a chain as shown in Fig. 3[link].

Aromatic ππ inter­actions between the pyrimidine ring of AMPY and the benzene ring of 4-HBZ are also observed in (I)[link]. The perpendicular separation is 3.552 Å, and the centroid-to-centroid distance is 3.660 (9) Å. The slip angle (the angle between the centroid-to-centroid vector and the normal to the plane) is 19.86°. These values are typical for aromatic ππ stacking inter­actions (Hunter, 1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]).

[Figure 1]
Figure 1
ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) view of the asymmetric unit of (I)[link], showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2]
Figure 2
A view of the supra­molecular chain in (I)[link]. Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (ii) x, −y, [{1\over 2}] + z; (iii) x, −y, z − [{1\over 2}].]
[Figure 3]
Figure 3
A view of the hydrogen-bonding patterns in (I)[link]. Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) 1 + x, −y, z − [{1\over 2}].]

Experimental

Hot methanol solutions (20 ml) of 2-amino-4,6-dimethyl­pyrimidine (30 mg, Aldrich) and 4-hydroxy­benzoic acid (32 mg, LOBA Chemie, India) were mixed and warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I)[link] appeared from the mother liquor after a few days.

Crystal data
  • C6H9N3·C7H6O3

  • Mr = 261.28

  • Monoclinic, C c

  • a = 9.0693 (3) Å

  • b = 11.1141 (4) Å

  • c = 12.6080 (5) Å

  • β = 102.916 (2)°

  • V = 1238.70 (8) Å3

  • Z = 4

  • Dx = 1.401 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Cube, colourless

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.980, Tmax = 0.980

  • 4983 measured reflections

  • 1419 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.130

  • S = 1.34

  • 1419 reflections

  • 177 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0826P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.93 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.171 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.82 1.94 2.742 (3) 167
O2—H2⋯N1 0.82 1.90 2.711 (3) 173
N2—H2A⋯O3 0.86 2.00 2.843 (3) 168
N2—H2B⋯O2ii 0.86 2.56 3.229 (3) 135
C15—H15⋯O3iii 0.93 2.55 3.181 (3) 126
Symmetry codes: (i) [x+1, -y, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}].

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. All the H atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON.

2-Amino-4,6-dimethylpyrimidine–4-hydroxybenzoic acid (1/1) top
Crystal data top
C6H9N3·C7H6O3F(000) = 552
Mr = 261.28Dx = 1.401 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 9.0693 (3) Åθ = 2.9–26.0°
b = 11.1141 (4) ŵ = 0.10 mm1
c = 12.6080 (5) ÅT = 120 K
β = 102.916 (2)°Cube, colourless
V = 1238.70 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD
diffractometer
1419 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1111
Tmin = 0.980, Tmax = 0.980k = 1414
4983 measured reflectionsl = 1316
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
1419 reflectionsΔρmax = 0.97 e Å3
177 parametersΔρmin = 0.93 e Å3
2 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.171 (13)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8055 (2)0.11658 (19)0.07773 (16)0.0171 (5)
N20.9130 (2)0.0797 (2)0.25815 (18)0.0236 (6)
N30.6766 (2)0.1679 (2)0.21803 (17)0.0187 (6)
C20.7952 (3)0.1219 (2)0.1826 (2)0.0176 (7)
C40.6897 (3)0.1626 (2)0.0032 (2)0.0183 (7)
C50.5650 (3)0.2122 (2)0.0327 (2)0.0198 (7)
C60.5633 (3)0.2143 (2)0.1422 (2)0.0183 (7)
C70.4343 (3)0.2693 (2)0.1815 (2)0.0232 (7)
C80.7040 (3)0.1597 (2)0.1131 (2)0.0219 (7)
O11.67254 (19)0.16175 (18)0.06525 (15)0.0243 (5)
O21.0396 (2)0.03521 (19)0.00365 (15)0.0224 (5)
O31.1621 (2)0.0095 (2)0.16966 (16)0.0278 (6)
C91.1602 (3)0.0057 (2)0.0723 (2)0.0183 (7)
C101.2931 (3)0.0348 (2)0.0317 (2)0.0174 (7)
C111.4103 (3)0.0928 (2)0.1046 (2)0.0193 (7)
C121.5354 (3)0.1350 (2)0.0711 (2)0.0208 (7)
C131.5476 (3)0.1186 (2)0.0367 (2)0.0189 (7)
C141.4314 (3)0.0591 (2)0.1096 (2)0.0193 (6)
C151.3049 (3)0.0179 (2)0.0759 (2)0.0188 (7)
H2A0.990900.050800.238600.0280*
H2B0.910500.081700.325900.0280*
H50.484800.243300.019300.0240*
H7A0.360700.208400.185600.0350*
H7B0.388200.331000.131700.0350*
H7C0.471200.303700.252300.0350*
H8A0.797300.197300.118700.0330*
H8B0.620700.202300.157700.0330*
H8C0.703200.077700.137200.0330*
H11.661900.157000.131400.0360*
H20.971100.055800.025200.0340*
H111.403700.103100.176600.0230*
H121.611900.174500.120200.0250*
H141.439100.047200.181200.0230*
H151.227900.021000.125000.0230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0146 (9)0.0201 (9)0.0169 (10)0.0011 (7)0.0043 (7)0.0004 (7)
N20.0208 (10)0.0349 (12)0.0161 (10)0.0077 (9)0.0061 (8)0.0016 (9)
N30.0174 (9)0.0214 (11)0.0190 (10)0.0002 (8)0.0075 (8)0.0005 (8)
C20.0163 (11)0.0185 (11)0.0186 (12)0.0017 (9)0.0050 (9)0.0008 (9)
C40.0184 (11)0.0181 (11)0.0192 (12)0.0037 (9)0.0056 (9)0.0012 (8)
C50.0168 (11)0.0223 (12)0.0201 (12)0.0003 (9)0.0038 (8)0.0018 (9)
C60.0156 (11)0.0178 (11)0.0229 (12)0.0003 (9)0.0071 (9)0.0005 (9)
C70.0182 (11)0.0271 (13)0.0264 (13)0.0044 (10)0.0094 (10)0.0015 (10)
C80.0228 (12)0.0248 (12)0.0185 (12)0.0005 (10)0.0055 (9)0.0018 (9)
O10.0176 (9)0.0367 (10)0.0198 (9)0.0058 (7)0.0068 (7)0.0003 (8)
O20.0161 (8)0.0334 (10)0.0181 (9)0.0063 (7)0.0049 (7)0.0015 (7)
O30.0190 (8)0.0474 (12)0.0180 (9)0.0063 (8)0.0062 (7)0.0025 (8)
C90.0171 (11)0.0209 (11)0.0174 (12)0.0014 (9)0.0051 (9)0.0023 (9)
C100.0128 (11)0.0207 (12)0.0189 (12)0.0012 (9)0.0042 (9)0.0020 (9)
C110.0191 (11)0.0252 (12)0.0145 (11)0.0013 (10)0.0059 (9)0.0008 (9)
C120.0163 (11)0.0264 (12)0.0185 (12)0.0023 (9)0.0016 (9)0.0004 (10)
C130.0162 (12)0.0212 (12)0.0203 (12)0.0008 (9)0.0060 (9)0.0011 (9)
C140.0202 (11)0.0234 (11)0.0154 (11)0.0017 (9)0.0065 (9)0.0019 (9)
C150.0167 (11)0.0205 (11)0.0184 (13)0.0013 (9)0.0025 (9)0.0002 (9)
Geometric parameters (Å, º) top
O1—C131.351 (3)C7—H7A0.9601
O2—C91.324 (3)C7—H7C0.9599
O3—C91.225 (3)C7—H7B0.9602
O1—H10.8196C8—H8B0.9598
O2—H20.8195C8—H8C0.9602
N1—C41.344 (3)C8—H8A0.9604
N1—C21.347 (3)C9—C101.481 (4)
N2—C21.347 (3)C10—C151.397 (4)
N3—C21.354 (3)C10—C111.398 (4)
N3—C61.340 (3)C11—C121.378 (4)
N2—H2B0.8598C12—C131.400 (4)
N2—H2A0.8608C13—C141.400 (4)
C4—C51.382 (4)C14—C151.387 (4)
C4—C81.501 (4)C11—H110.9301
C5—C61.384 (4)C12—H120.9302
C6—C71.499 (4)C14—H140.9303
C5—H50.9301C15—H150.9298
C13—O1—H1109.46H8A—C8—H8B109.47
C9—O2—H2109.50C4—C8—H8B109.46
C2—N1—C4117.0 (2)C4—C8—H8C109.47
C2—N3—C6116.7 (2)H8B—C8—H8C109.48
C2—N2—H2B120.05H8A—C8—H8C109.52
C2—N2—H2A119.97O2—C9—C10115.5 (2)
H2A—N2—H2B119.98O3—C9—C10121.8 (2)
N1—C2—N3125.1 (2)O2—C9—O3122.7 (2)
N1—C2—N2117.4 (2)C11—C10—C15119.2 (2)
N2—C2—N3117.5 (2)C9—C10—C11118.1 (2)
N1—C4—C5121.5 (2)C9—C10—C15122.7 (2)
N1—C4—C8116.8 (2)C10—C11—C12120.8 (2)
C5—C4—C8121.7 (2)C11—C12—C13120.2 (2)
C4—C5—C6117.9 (2)O1—C13—C14123.1 (2)
N3—C6—C7116.8 (2)O1—C13—C12117.7 (2)
N3—C6—C5121.8 (2)C12—C13—C14119.2 (2)
C5—C6—C7121.3 (2)C13—C14—C15120.5 (2)
C6—C5—H5121.03C10—C15—C14120.1 (2)
C4—C5—H5121.11C10—C11—H11119.55
C6—C7—H7C109.52C12—C11—H11119.61
C6—C7—H7A109.49C11—C12—H12119.95
C6—C7—H7B109.45C13—C12—H12119.90
H7B—C7—H7C109.51C13—C14—H14119.70
H7A—C7—H7B109.41C15—C14—H14119.79
H7A—C7—H7C109.44C10—C15—H15119.99
C4—C8—H8A109.42C14—C15—H15119.94
C2—N1—C4—C8178.2 (2)O2—C9—C10—C11165.6 (2)
C4—N1—C2—N2177.8 (2)O2—C9—C10—C1514.0 (3)
C4—N1—C2—N31.2 (4)O3—C9—C10—C1113.3 (4)
C2—N1—C4—C50.6 (3)C15—C10—C11—C121.1 (4)
C6—N3—C2—N2177.2 (2)C9—C10—C15—C14179.2 (2)
C2—N3—C6—C51.9 (3)C9—C10—C11—C12178.5 (2)
C2—N3—C6—C7177.9 (2)C11—C10—C15—C140.4 (3)
C6—N3—C2—N11.9 (4)C10—C11—C12—C130.9 (4)
N1—C4—C5—C60.6 (4)C11—C12—C13—O1180.0 (2)
C8—C4—C5—C6178.1 (2)C11—C12—C13—C140.1 (4)
C4—C5—C6—C7178.4 (2)C12—C13—C14—C150.6 (4)
C4—C5—C6—N31.3 (4)O1—C13—C14—C15179.3 (2)
O3—C9—C10—C15167.1 (2)C13—C14—C15—C100.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.821.942.742 (3)167
O2—H2···N10.821.902.711 (3)173
N2—H2A···O30.862.002.843 (3)168
N2—H2B···O2ii0.862.563.229 (3)135
C15—H15···O3iii0.932.553.181 (3)126
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y, z+1/2; (iii) x, y, z1/2.
 

Acknowledgements

DL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

References

First citationBalasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPanneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747–o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds