organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

myo-Inositol dihydrate: a redetermination

CROSSMARK_Color_square_no_text.svg

aThe Pfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bThe Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: motherwell@ccdc.cam.ac.uk

(Received 22 May 2006; accepted 9 June 2006; online 21 June 2006)

The crystal structure of myo-inositol dihydrate, C6H12O6·2H2O, previously reported by Lomer, Miller & Beevers [Acta Cryst. (1963), 16, 264–268], has been redetermined, and the positions of the H atoms of the hydroxyl groups were located, showing an ordered hydrogen-bonding scheme.

Comment

myo-Inositol (Fig. 1[link]) is a biological mol­ecule of nutritional and medical importance, which has been extracted from both plant and animal sources (Posternak, 1965[Posternak, T. (1965). The Cyclitols, Chemistry, Biochemisry, Biology, edited by E. Lederer, pp. 284-286. Paris: Hermann.]). The crystal structure of the anhydrous form has previously been determined (Rabin­ovich & Kraut, 1964[Rabinovich, H. N. & Kraut, J. (1964). Acta Cryst. 17, 159-168.]) and that of the dihydrate by Lomer et al. (1963[Lomer, T. R., Miller, A. & Beevers, C. A. (1963). Acta Cryst. 16, 264-268.]).

[Scheme 1]

In a series of experiments aimed at inhibiting the crystallization of myo-inositol from solution, we evaporated aqueous solutions of varying concentrations of myo-inositol and polyvinyl­pyrrolidone. Needle-shaped crystals formed as the solutions became more concentrated at room temperature. We obtained the structure by single-crystal X-ray diffraction analysis at 180 K, confirming the dihydrate structure, with well located H atoms and a rational hydrogen-bonding scheme.

Each myo-inositol mol­ecule forms a total of 13 inter­molecular hydrogen bonds, defined as having O⋯O less than 3.04 Å. All 13 hydrogen bonds have normal bond lengths and geometry. The immediate hydrogen-bonded neighbours are six water mol­ecules and four myo-inositol mol­ecules (Fig. 2[link]). Both water mol­ecules show an optimal hydrogen-bond environment of two donor and two acceptor bonds. Each hydroxyl group on the inositol has a donor and acceptor hydrogen bond, with one (O3) forming (as an acceptor) a third hydrogen bond. The packing diagram (Fig. 3[link]) shows an inter­esting feature where the water mol­ecules link the inositol mol­ecules in the b-axis direction, forming four-membered ring motifs H2O⋯OH⋯H2O⋯OH.

[Figure 1]
Figure 1
The aymmetric unit of myo-inositol. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
myo-Inositol dihydrate, showing hydrogen-bonds (dashed lines) to the neighbouring mol­ecules.
[Figure 3]
Figure 3
Packing diagram viewed in a axis projection, with b horizontal and c vertical. H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Experimental

An aqueous solution (10 ml) of myo-inositol (0.426 g) and poly­vinyl­pyrrolidone (0.631 g) was prepared. The colourless solution was allowed to evaporate at room temperature. When the solution had reduced to about half its initial volume, white needle-shaped crystals were observed and analysed by single-crystal X-ray diffraction. The crystals dehydrate prior to melting at 469 K.

Crystal data
  • C6H12O6·2H2O

  • Mr = 216.19

  • Monoclinic, P 21 /n

  • a = 6.6099 (2) Å

  • b = 16.6009 (4) Å

  • c = 9.0264 (2) Å

  • β = 110.751 (1)°

  • V = 926.22 (4) Å3

  • Z = 4

  • Dx = 1.550 Mg m−3

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 180 (2) K

  • Block cut from needle, white

  • 0.46 × 0.35 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin-slice ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.905, Tmax = 0.968

  • 7754 measured reflections

  • 2104 independent reflections

  • 1907 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.101

  • S = 1.14

  • 2104 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2568P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O7 0.82 (2) 2.02 (2) 2.8259 (13) 168 (2)
O2—H2A⋯O6i 0.81 (2) 1.92 (2) 2.7275 (12) 175 (2)
O3—H3A⋯O5ii 0.82 (2) 1.83 (2) 2.6454 (12) 173 (2)
O4—H4A⋯O7iii 0.81 (2) 2.02 (2) 2.8207 (12) 170 (2)
O5—H5A⋯O3iv 0.84 (2) 1.80 (2) 2.6359 (12) 172 (2)
O6—H6A⋯O8 0.81 (2) 1.93 (2) 2.7365 (13) 176 (2)
O7—H7A⋯O8v 0.82 (2) 2.18 (2) 2.9903 (14) 169 (2)
O7—H7B⋯O2vi 0.84 (2) 2.01 (2) 2.8442 (13) 179 (2)
O8—H8A⋯O4vii 0.82 (2) 2.23 (2) 3.0141 (13) 160 (2)
O8—H8A⋯O3vii 0.82 (2) 2.45 (2) 3.0272 (13) 128 (2)
O8—H8B⋯O1viii 0.83 (2) 2.03 (2) 2.8525 (13) 172 (2)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) -x, -y+1, -z+1.

All OH H atoms were located in the final difference map without any difficulty. The positions of the H atoms were refined independently and successfully, with a single O—H bond-length restraint [O—H = 0.807 (16)–0.844 (17) Å] and common Uiso(H) values for similar atoms [Uiso(H) = 0.44 (2) Å2 for OH and Uiso(H) = 0.52 (3) Å2 for H2O]. The remaining H atoms were positioned geometrically, with C—H = 1.00 Å, and refined as riding with a common displacement parameter [Uiso(H) = 0.206 (14) Å2].

Data collection: COLLECT (Nonius, 1998[Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe. P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: please supply; software used to prepare material for publication: SHELXL97.

myo-Inositol dihydrate top
Crystal data top
C6H12O6·2H2OF(000) = 464
Mr = 216.19Dx = 1.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5712 reflections
a = 6.6099 (2) Åθ = 1.0–27.5°
b = 16.6009 (4) ŵ = 0.15 mm1
c = 9.0264 (2) ÅT = 180 K
β = 110.751 (1)°Needle, white
V = 926.22 (4) Å30.46 × 0.35 × 0.23 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1907 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
thin slice ω and φ scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 88
Tmin = 0.905, Tmax = 0.968k = 2121
7754 measured reflectionsl = 1111
2104 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2568P]
where P = (Fo2 + 2Fc2)/3
2104 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.27 e Å3
10 restraintsΔρmin = 0.30 e Å3
Special details top

Experimental. Previous report: MYTOLD in CSD.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28308 (15)0.46905 (5)0.31146 (11)0.0298 (2)
H1A0.367 (3)0.4968 (11)0.285 (2)0.044 (2)*
C10.16681 (18)0.41915 (6)0.18041 (13)0.0186 (2)
H10.07990.45440.09050.0206 (14)*
O20.44085 (14)0.42063 (5)0.06268 (10)0.0227 (2)
H2A0.563 (3)0.4227 (11)0.126 (2)0.044 (2)*
C20.32068 (17)0.36849 (6)0.12653 (12)0.0167 (2)
H20.42260.33880.21940.0206 (14)*
O30.34860 (13)0.25832 (5)0.03785 (10)0.0215 (2)
H3A0.315 (3)0.2566 (11)0.135 (2)0.044 (2)*
C30.19698 (17)0.30839 (6)0.00098 (12)0.0168 (2)
H30.10950.33870.09840.0206 (14)*
O40.17370 (13)0.20684 (5)0.18073 (10)0.0223 (2)
H4A0.092 (3)0.1746 (10)0.198 (2)0.044 (2)*
C40.04578 (17)0.25630 (6)0.05213 (13)0.0168 (2)
H40.04000.22090.03790.0206 (14)*
O50.24375 (14)0.25828 (5)0.15365 (10)0.0215 (2)
H5A0.370 (3)0.2604 (11)0.086 (2)0.044 (2)*
C50.10927 (17)0.30913 (6)0.10039 (12)0.0168 (2)
H50.20210.34030.00600.0206 (14)*
O60.13972 (14)0.41902 (5)0.26532 (11)0.0238 (2)
H6A0.119 (3)0.4181 (11)0.359 (2)0.044 (2)*
C60.01239 (17)0.36792 (6)0.23186 (12)0.0170 (2)
H60.09640.33700.32940.0206 (14)*
O70.56987 (15)0.58094 (5)0.25510 (12)0.0272 (2)
H7A0.698 (3)0.5847 (12)0.310 (2)0.052 (3)*
H7B0.566 (3)0.5798 (12)0.162 (2)0.052 (3)*
O80.05058 (16)0.41219 (6)0.58513 (12)0.0300 (2)
H8A0.119 (3)0.3725 (10)0.595 (2)0.052 (3)*
H8B0.107 (3)0.4492 (13)0.620 (2)0.052 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (5)0.0288 (5)0.0372 (5)0.0131 (4)0.0207 (4)0.0156 (4)
C10.0193 (5)0.0172 (5)0.0210 (5)0.0006 (4)0.0094 (4)0.0016 (4)
O20.0193 (4)0.0267 (4)0.0249 (4)0.0054 (3)0.0114 (3)0.0009 (3)
C20.0151 (5)0.0192 (5)0.0171 (5)0.0010 (4)0.0074 (4)0.0007 (4)
O30.0172 (4)0.0296 (4)0.0192 (4)0.0036 (3)0.0081 (3)0.0044 (3)
C30.0144 (5)0.0207 (5)0.0162 (5)0.0019 (4)0.0067 (4)0.0005 (4)
O40.0194 (4)0.0205 (4)0.0268 (4)0.0015 (3)0.0080 (3)0.0057 (3)
C40.0147 (5)0.0190 (5)0.0161 (5)0.0005 (4)0.0046 (4)0.0016 (4)
O50.0146 (4)0.0281 (4)0.0221 (4)0.0037 (3)0.0070 (3)0.0031 (3)
C50.0134 (5)0.0211 (5)0.0168 (5)0.0003 (4)0.0063 (4)0.0018 (4)
O60.0200 (4)0.0290 (5)0.0258 (4)0.0038 (3)0.0124 (4)0.0044 (3)
C60.0148 (5)0.0195 (5)0.0184 (5)0.0014 (4)0.0079 (4)0.0007 (4)
O70.0265 (5)0.0271 (5)0.0306 (5)0.0033 (3)0.0134 (4)0.0051 (4)
O80.0356 (5)0.0245 (5)0.0354 (5)0.0028 (4)0.0194 (4)0.0063 (4)
Geometric parameters (Å, º) top
O1—C11.4255 (13)O4—H4A0.813 (16)
O1—H1A0.820 (16)C4—C51.5250 (14)
C1—C61.5221 (14)C4—H41.0000
C1—C21.5261 (14)O5—C51.4271 (13)
C1—H11.0000O5—H5A0.844 (17)
O2—C21.4271 (12)C5—C61.5267 (14)
O2—H2A0.807 (16)C5—H51.0000
C2—C31.5237 (14)O6—C61.4273 (13)
C2—H21.0000O6—H6A0.809 (16)
O3—C31.4292 (13)C6—H61.0000
O3—H3A0.824 (17)O7—H7A0.821 (17)
C3—C41.5218 (14)O7—H7B0.836 (17)
C3—H31.0000O8—H8A0.820 (15)
O4—C41.4287 (13)O8—H8B0.83 (2)
C1—O1—H1A107.8 (13)O4—C4—C3108.47 (8)
O1—C1—C6107.11 (9)O4—C4—C5111.26 (8)
O1—C1—C2111.13 (9)C3—C4—C5110.24 (9)
C6—C1—C2112.58 (9)O4—C4—H4108.9
O1—C1—H1108.6C3—C4—H4108.9
C6—C1—H1108.6C5—C4—H4108.9
C2—C1—H1108.6C5—O5—H5A107.8 (13)
C2—O2—H2A107.7 (13)O5—C5—C4108.54 (8)
O2—C2—C3108.58 (8)O5—C5—C6109.61 (8)
O2—C2—C1108.88 (8)C4—C5—C6111.56 (8)
C3—C2—C1111.20 (8)O5—C5—H5109.0
O2—C2—H2109.4C4—C5—H5109.0
C3—C2—H2109.4C6—C5—H5109.0
C1—C2—H2109.4C6—O6—H6A110.0 (13)
C3—O3—H3A108.6 (13)O6—C6—C1109.34 (9)
O3—C3—C4109.62 (9)O6—C6—C5109.14 (8)
O3—C3—C2108.89 (8)C1—C6—C5110.21 (8)
C4—C3—C2111.76 (8)O6—C6—H6109.4
O3—C3—H3108.8C1—C6—H6109.4
C4—C3—H3108.8C5—C6—H6109.4
C2—C3—H3108.8H7A—O7—H7B105 (2)
C4—O4—H4A107.1 (13)H8A—O8—H8B103 (2)
O1—C1—C2—O266.81 (11)O4—C4—C5—O557.95 (11)
C6—C1—C2—O2173.04 (8)C3—C4—C5—O5178.33 (8)
O1—C1—C2—C3173.60 (9)O4—C4—C5—C662.93 (11)
C6—C1—C2—C353.45 (11)C3—C4—C5—C657.46 (11)
O2—C2—C3—O364.86 (11)O1—C1—C6—O663.29 (11)
C1—C2—C3—O3175.37 (8)C2—C1—C6—O6174.27 (8)
O2—C2—C3—C4173.89 (8)O1—C1—C6—C5176.74 (8)
C1—C2—C3—C454.12 (11)C2—C1—C6—C554.30 (11)
O3—C3—C4—O454.92 (11)O5—C5—C6—O663.34 (11)
C2—C3—C4—O465.91 (11)C4—C5—C6—O6176.42 (8)
O3—C3—C4—C5176.97 (8)O5—C5—C6—C1176.57 (8)
C2—C3—C4—C556.14 (11)C4—C5—C6—C156.33 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.82 (2)2.02 (2)2.8259 (13)168 (2)
O2—H2A···O6i0.81 (2)1.92 (2)2.7275 (12)175 (2)
O3—H3A···O5ii0.82 (2)1.83 (2)2.6454 (12)173 (2)
O4—H4A···O7iii0.81 (2)2.02 (2)2.8207 (12)170 (2)
O5—H5A···O3iv0.84 (2)1.80 (2)2.6359 (12)172 (2)
O6—H6A···O80.81 (2)1.93 (2)2.7365 (13)176 (2)
O7—H7A···O8v0.82 (2)2.18 (2)2.9903 (14)169 (2)
O7—H7B···O2vi0.84 (2)2.01 (2)2.8442 (13)179 (2)
O8—H8A···O4vii0.82 (2)2.23 (2)3.0141 (13)160 (2)
O8—H8A···O3vii0.82 (2)2.45 (2)3.0272 (13)128 (2)
O8—H8B···O1viii0.83 (2)2.03 (2)2.8525 (13)172 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x1/2, y+1/2, z+1/2; (viii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to Dr John Davies (Department of Chemistry, University of Cambridge) for determining the crystal structure, and Drs A. Trask and L. Fabian for help with CIF preparation. The Pfizer Institute for Pharmaceutical Materials Science is acknowledged for funding the work.

References

First citationAltomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLomer, T. R., Miller, A. & Beevers, C. A. (1963). Acta Cryst. 16, 264–268.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe. P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPosternak, T. (1965). The Cyclitols, Chemistry, Biochemisry, Biology, edited by E. Lederer, pp. 284–286. Paris: Hermann.  Google Scholar
First citationRabinovich, H. N. & Kraut, J. (1964). Acta Cryst. 17, 159–168.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds