organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-4-Methyl-2-(1-oxo-1H-2,3-di­hydro­isoindol-2-yl)penta­noic acid

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland
*Correspondence e-mail: john.gallagher@dcu.ie

(Received 6 July 2006; accepted 7 July 2006; online 14 July 2006)

The title compound, C14H17NO3, exhibits carboxylic acid group disorder about the C—CO2 axis, with site occupancies of 0.79 (5):0.21 (5). Mol­ecules are linked by inter­molecular O—H⋯O=Ciso, C—H⋯O=Ciso and C—H⋯π(arene) inter­actions (iso = isoindolinone).

Comment

The majority of structurally determined phthalimidine systems are either N-substituted or have a hydr­oxy substituent at the 3-position (McNab et al., 1997[McNab, H., Parsons, S. & Shannon, D. A. (1997). Acta Cryst. C53, 1098-1099.]; Mukherjee et al., 2000[Mukherjee, A. K., Guha, S., Khan, M. W., Kundu, N. G. & Helliwell, M. (2000). Acta Cryst. C56, 85-87.]). The title compound, (I)[link], synthesized from L-leucine and ortho-phthal­aldehyde (Allin et al., 1996[Allin, S. M., Hodkinson, C. C. & Taj, N. (1996). Synlett, pp. 781-782.]), forms part of a structural study of phthalimidines (Brady et al., 1998[Brady, F., Gallagher, J. F. & Kenny, P. T. M. (1998). Acta Cryst. C54, 1523-1525.]; Gallagher et al., 2000[Gallagher, J. F., Brady, F. & Murphy, C. (2000). Acta Cryst. C56, 365-368.]; Gallagher & Brady, 2000[Gallagher, J. F. & Brady, F. (2000). Acta Cryst. C56, 619-622.]; Gallagher & Murphy, 2001[Gallagher, J. F. & Murphy, C. (2001). Acta Cryst. E57, o1227-o1229.]).

[Scheme 1]

The mol­ecular structure of (I)[link] is depicted in Fig. 1[link] (S configuration) and selected dimensions are given in Table 1[link]. The geometric data are normal (McNab et al., 1997[McNab, H., Parsons, S. & Shannon, D. A. (1997). Acta Cryst. C53, 1098-1099.]) and in agreement with expected values (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The five- and six-membered rings of the isoindole group are coplanar [dihedral angle between rings = 1.0 (2)°], and the isoindolinone atom O3 is 0.022 (5) Å from the C4N ring plane; this ring is oriented at 82.5 (5)° to the major orientation of the CCO2 plane (O1A/O2A/C1/C2).

Mol­ecules of (I)[link] exhibit CO2H group disorder about the C—CO2 axis with site occupancies of 0.79 (5):0.21 (5) for the major/minor sites, respectively. Conventional CO2H dimeric hydrogen bonding [R22(8) ring] is not present as a requirement of symmetry; rather, the primary hydrogen bonding as an (⋯O—H⋯O—H⋯)n chain along [010] involving O1A/B—H1A/B⋯O3i (Table 1[link]) is described by a C(7) motif (Grell et al., 1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]). The closest H atoms to the carbonyl O2A/B are at contact distances, e.g. H7⋯O2Aiii is 2.71 Å, with C7—H7⋯O2Aiii = 136° (symmetry codes iii as in Table 2[link]). Disorder is facilitated on geometric grounds as O2 can rotate about the C1—C2 axis without greatly affecting the O1A/B—H1A/B⋯O3i inter­action distance (Fig. 2[link]).

Combination of the O—H⋯O=Ciso C(7) motif with a C(5) motif (from C10—H10A⋯O3ii) generates a two-dimensional sheet comprising R43(20) rings as C(7)C(5)[R43(20)]; modest (arene)C—H⋯π(arene) inter­actions (Nishio, 2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]) link these sheets (Fig. 3[link] and Table 2[link]).

Compound (I)[link] and the L-norvaline derivative, (II), C13H15NO3, (2S)-2-(1-oxo-1H-2,3-dihydro­isoindol-2-yl)­penta­noic acid (Gallagher & Brady, 2000[Gallagher, J. F. & Brady, F. (2000). Acta Cryst. C56, 619-622.]), both crystallize in space group P212121 with similar cell dimensions. The corres­ponding atom coordinates and mol­ecular conformations are comparable and hence the crystal structures are isomorphous. Mol­ecules of (I)[link] and (II) differ in their respective alkyl chains with the (CH3)2CHCH2– group in (I)[link] occupying a similar volume as the disordered CH3CH2CH2– group in (II). The solid-state (KBr disk) C=O stretching vibrations are similar, 1736, 1638 cm−1 in (I)[link] and 1730, 1649 cm−1 in (II), highlighting the analogous environments of both C=O groups in (I)[link] and (II).

[Figure 1]
Figure 1
A view of (I)[link], with the atomic numbering scheme; displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.
[Figure 2]
Figure 2
Two molecules of (I)[link], with atoms depicted as their van der Waals spheres, with C7 (C—H⋯Oiii contact) and C8 [C—H⋯π(arene)iii] labels.
[Figure 3]
Figure 3
A view of the C(7)C(5)[R43(20)] sheet in (I)[link] with the unit-cell outline (symmetry codes as in Table 2[link]); H atoms not involved in hydrogen bonding have been omitted for clarity.

Experimental

The title compound (I)[link] was prepared by the overnight reaction of L-leucine and o-phthalaldehyde in refluxing CH3CN under N2 (Allin et al., 1996[Allin, S. M., Hodkinson, C. C. & Taj, N. (1996). Synlett, pp. 781-782.]). Filtration of the hot solution and subsequent slow cooling of the filtrate allowed the isolation of block-like colourless crystals. M.p. 485–487 K (uncorrected).

Crystal data
  • C14H17NO3

  • Mr = 247.29

  • Orthorhombic, P 21 21 21

  • a = 5.8790 (5) Å

  • b = 12.5223 (16) Å

  • c = 18.029 (3) Å

  • V = 1327.3 (3) Å3

  • Z = 4

  • Dx = 1.237 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (1) K

  • Block, colourless

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω–2θ scans

  • Absorption correction: none

  • 2394 measured reflections

  • 1373 independent reflections

  • 889 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 25.0°

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.080

  • S = 1.00

  • 1373 reflections

  • 185 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0312P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.013 (2)

Table 1
Selected torsion angles (°)

C3—N1—C2—C11 133.9 (3)
C3—N1—C2—C1 −97.4 (4)
O3—C3—N1—C2 −1.6 (5)
O1A—C1—C2—C11 −51.2 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O3i 0.82 1.83 2.634 (9) 168
C10—H10A⋯O3ii 0.97 2.54 3.366 (4) 144
C8—H8⋯Cg1iii 0.93 2.74 3.473 (4) 137
C2—H2⋯O3 0.98 2.38 2.812 (4) 106
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

In the absence of significant anomalous dispersion effects, Friedel equivalents were merged prior to the final refinement cycles. The absolute configuration can be inferred from the known absolute configuration of the L-leucine starting material. H atoms were treated as riding atoms using the SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) defaults [at 294 (1) K], with C—H distances from 0.93 to 0.98 Å and O—H = 0.82 Å, and with Uiso(H) from 1.2 to 1.5 times Ueq(C,O).

Data collection: CAD-4 (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4, SET4 and CELDIM. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 and CELDIM (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4, SET4 and CELDIM. Enraf-Nonius, Delft, The Netherlands.]); data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: NRCVAX96 and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Comment top

The majority of structurally determined phthalimidine systems are either N-substituted or have a hydroxy substituent at the 3-position (McNab et al., 1997; Mukherjee et al., 2000). The title compound, (I), synthesized from L-leucine and ortho-phthaldehyde (Allin et al., 1996), forms part of a structural study of phthalimidines (Brady et al., 1998; Gallagher et al., 2000; Gallagher & Brady, 2000; Gallagher & Murphy, 2001).

The molecular structure of (I) is depicted in Fig. 1 (S configuration) and selected dimensions are given in Table 1. The geometric data are normal (McNab et al., 1997) and in agreement with expected values (Allen, 2002). The five- and six-membered rings of the isoindole group are coplanar [dihedral angle between rings = 1.0 (2)°], and the isoindolinone atom O3 is 0.022 (5) Å from the C4N ring plane; this ring is oriented at 82.5 (5)° to the major orientation of the CCO2 plane (O1A/O2A/C1/C2).

Molecules of (I) exhibit CO2H group disorder about the C—CO2 axis with site occupancies of 0.79 (5):0.21 (5) for the major/minor sites, respectively. Conventional CO2H dimeric hydrogen bonding [R22(8) ring] is not present on symmetry grounds; rather the primary hydrogen bonding as an (···O—H···O—H···)n chain along (010) involving O1A/B—H1A/B···O3i (Table 1) is described by a C(7) motif (Grell et al., 1999). The closest H atoms to the carbonyl O2A/B are at contact distances, e.g. H7···O2Aiii is 2.71 Å, with C7—H7···O2Aiii = 136° (symmetry codes i–iii as in Table 2). Disorder is facilitated on geometric grounds as O2 can rotate about the C1—C2 axis without greatly affecting the O1A/B—H1A/B···O3i interaction distance (Fig. 2).

Combination of the O—H···OCiso C(7) motif with a C(5) motif (from C10—H10A···O3ii) generates a two-dimensional sheet comprising R34(20) rings as C(7)C(5)[R34(20)]; modest (arene)C—H···π(arene) interactions (Nishio, 2004) link these sheets (Fig. 3 and Table 2).

Compound (I) and the L-norvaline derivative, (II), C13H15NO3, (2S)-2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)pentanoic acid (Gallagher & Brady, 2000), both crystallize in space group P212121 with similar dimensions. The corresponding atom coordinates and molecular conformations are comparable and hence the crystal structures are isomorphous. Molecules of (I) and (II) differ in their respective alkyl chains with the (CH3)2CHCH2– group in (I) occupying a similar volume as the disordered CH3CH2CH2– group in (II). The solid-state (KBr disk) CO stretching vibrations are similar, 1736, 1638 cm−1 in (I) and 1730, 1649 cm−1 in (II) highlighting the analogous environments of both CO groups in (I) and (II).

Experimental top

The title compound (I) was prepared by the overnight reaction of L-Leucine and o-phthalaldehyde in refluxing CH3CN under N2 (Allin et al., 1996). Filtration of the hot solution and subsequent slow cooling of the filtrate allowed the isolation of block-like colourless crystals. M.p. 485–487 K (uncorrected).

Refinement top

In the absence of significant anomalous dispersion effects, Friedel equivalents were merged prior to the final refinement cycles The absolute structure can be inferred from the known absolute configuration of the L-leucine starting material. H atoms were treated as riding atoms using the SHELXL97 (Sheldrick, 1997) defaults [at 294 (1) K], with C—H distances from 0.93 to 0.98 Å and O—H = 0.82 Å, and with Uiso(H) from 1.2 to 1.5 times Ueq(C,O).

Computing details top

Data collection: CAD-4 (Enraf–Nonius, 1992); cell refinement: SET4 and CELDIM (Enraf–Nonius, 1992); data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme; displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.
[Figure 2] Fig. 2. A view of (I), with atoms depicted as their van der Waals spheres: with C7 (C—H···Oiii contact) and C8 [C—H···π(arene)iii] labels.
[Figure 3] Fig. 3. A view of the C(7)C(5)[R34(20)] sheet in (I) with unit cell (symmetry codes as in Table 2); H atoms not involved in hydrogen bonding have been omitted for clarity.
(2S)-4-Methyl-2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)pentanoic acid top
Crystal data top
C14H17NO3IR (νCO, cm-1): 1736, 1638 (KBr).
Mr = 247.29Dx = 1.237 Mg m3
Orthorhombic, P212121Melting point: 486 K
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 5.8790 (5) ÅCell parameters from 25 reflections
b = 12.5223 (16) Åθ = 15.0–25.0°
c = 18.029 (3) ŵ = 0.09 mm1
V = 1327.3 (3) Å3T = 294 K
Z = 4Block, colourless
F(000) = 5280.35 × 0.25 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.053
Radiation source: X-ray tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 66
ω–2θ scansk = 1414
2394 measured reflectionsl = 2121
1373 independent reflections3 standard reflections every 120 min
889 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0312P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1373 reflectionsΔρmax = 0.13 e Å3
185 parametersΔρmin = 0.13 e Å3
36 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C14H17NO3V = 1327.3 (3) Å3
Mr = 247.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8790 (5) ŵ = 0.09 mm1
b = 12.5223 (16) ÅT = 294 K
c = 18.029 (3) Å0.35 × 0.25 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.053
2394 measured reflections3 standard reflections every 120 min
1373 independent reflections intensity decay: 1%
889 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.04436 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.13 e Å3
1373 reflectionsΔρmin = 0.13 e Å3
185 parameters
Special details top

Experimental. ? #Insert any special details here.

Geometry. Mean plane data ex-SHELXL97 for molecule (I) ############################################

As detailed in the comment text section.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.648 (3)0.4641 (5)0.8185 (5)0.059 (3)0.79 (5)
O2A0.667 (4)0.4445 (9)0.6954 (4)0.074 (3)0.79 (5)
O1B0.582 (8)0.459 (3)0.807 (2)0.059 (10)0.21 (5)
O2B0.752 (8)0.458 (3)0.7002 (18)0.066 (10)0.21 (5)
O30.5705 (4)0.14460 (18)0.70543 (13)0.0517 (8)
N10.8834 (5)0.2520 (2)0.70881 (13)0.0380 (7)
C10.7067 (7)0.4140 (3)0.75684 (19)0.0457 (10)
C20.8176 (6)0.3080 (2)0.77582 (16)0.0392 (9)
C30.7532 (6)0.1753 (2)0.67839 (18)0.0371 (9)
C40.8679 (6)0.1403 (2)0.61054 (17)0.0370 (9)
C50.8039 (7)0.0641 (3)0.55912 (18)0.0527 (11)
C60.9450 (8)0.0476 (3)0.4992 (2)0.0605 (12)
C71.1438 (8)0.1045 (3)0.4917 (2)0.0593 (11)
C81.2086 (6)0.1802 (3)0.54341 (18)0.0495 (10)
C91.0656 (6)0.1982 (3)0.60280 (17)0.0387 (9)
C101.0864 (6)0.2761 (2)0.66548 (17)0.0432 (9)
C111.0083 (7)0.3177 (3)0.83211 (19)0.0481 (10)
C121.1179 (8)0.2129 (3)0.8559 (2)0.0552 (11)
C131.2949 (8)0.2351 (4)0.9156 (2)0.0842 (15)
C140.9461 (8)0.1313 (3)0.8821 (2)0.0753 (13)
H1A0.59760.52340.80820.071*0.79 (5)
H2A0.47700.49090.78710.071*0.21 (5)
H20.69930.26430.79930.047*
H50.67010.02530.56480.063*
H60.90540.00260.46350.073*
H71.23670.09170.45090.071*
H81.34420.21780.53830.059*
H10A1.22390.26400.69400.052*
H10B1.08500.34920.64770.052*
H11A0.94900.35300.87590.058*
H11B1.12560.36340.81140.058*
H121.19700.18300.81280.066*
H13A1.40200.28690.89770.126*
H13B1.37350.17020.92760.126*
H13C1.22090.26220.95920.126*
H14A0.83690.11850.84360.113*
H14B0.86970.15780.92540.113*
H14C1.02280.06580.89400.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.079 (6)0.047 (3)0.051 (3)0.035 (3)0.012 (4)0.008 (3)
O2A0.103 (8)0.075 (4)0.044 (3)0.039 (4)0.002 (3)0.006 (3)
O1B0.045 (16)0.102 (17)0.031 (11)0.004 (12)0.013 (12)0.028 (11)
O2B0.076 (16)0.061 (11)0.062 (13)0.013 (11)0.025 (10)0.027 (10)
O30.0407 (17)0.0489 (15)0.0655 (17)0.0112 (14)0.0112 (15)0.0048 (13)
N10.0326 (17)0.0406 (15)0.0408 (16)0.0046 (16)0.0052 (15)0.0090 (14)
C10.049 (3)0.045 (2)0.043 (2)0.001 (2)0.002 (2)0.003 (2)
C20.039 (2)0.0374 (19)0.0408 (18)0.000 (2)0.0040 (19)0.0032 (17)
C30.035 (2)0.0294 (18)0.047 (2)0.0018 (19)0.0004 (19)0.0021 (16)
C40.040 (2)0.0315 (17)0.0400 (18)0.005 (2)0.002 (2)0.0026 (16)
C50.059 (3)0.040 (2)0.059 (2)0.001 (2)0.001 (2)0.0060 (19)
C60.074 (3)0.052 (2)0.055 (3)0.007 (3)0.002 (3)0.020 (2)
C70.067 (3)0.060 (2)0.051 (2)0.015 (3)0.011 (2)0.010 (2)
C80.041 (2)0.056 (2)0.051 (2)0.003 (2)0.008 (2)0.001 (2)
C90.037 (2)0.0373 (19)0.0418 (19)0.003 (2)0.0011 (19)0.0009 (17)
C100.038 (2)0.044 (2)0.0479 (19)0.007 (2)0.002 (2)0.0012 (16)
C110.051 (3)0.045 (2)0.048 (2)0.009 (2)0.002 (2)0.0040 (18)
C120.059 (3)0.054 (2)0.053 (2)0.019 (3)0.005 (2)0.0045 (19)
C130.062 (3)0.117 (4)0.073 (3)0.021 (3)0.019 (3)0.015 (3)
C140.083 (3)0.062 (3)0.081 (3)0.011 (3)0.006 (3)0.018 (2)
Geometric parameters (Å, º) top
O1A—C11.323 (7)O2B—C11.193 (19)
O2A—C11.194 (7)O1A—H1A0.8200
O3—C31.241 (4)O1B—H2A0.8200
N1—C21.449 (4)C2—H20.9800
N1—C31.345 (4)C5—H50.9300
N1—C101.458 (4)C6—H60.9300
C1—C21.518 (4)C7—H70.9300
C2—C111.517 (4)C8—H80.9300
C3—C41.464 (4)C10—H10A0.9700
C4—C91.377 (5)C10—H10B0.9700
C4—C51.383 (4)C11—H11A0.9700
C5—C61.377 (5)C11—H11B0.9700
C6—C71.375 (5)C12—H120.9800
C7—C81.384 (4)C13—H13A0.9600
C8—C91.380 (4)C13—H13B0.9600
C9—C101.498 (4)C13—H13C0.9600
C11—C121.524 (4)C14—H14A0.9600
C12—C141.513 (5)C14—H14B0.9600
C12—C131.523 (5)C14—H14C0.9600
O1B—C11.292 (19)
C2—N1—C3122.2 (3)C1—C2—H2106.3
C2—N1—C10124.4 (3)C6—C5—H5121.1
C3—N1—C10113.3 (3)C4—C5—H5121.1
O1A—C1—O2A125.2 (6)C7—C6—H6119.6
O1B—C1—O2B121.6 (18)C5—C6—H6119.6
O2A—C1—C2124.9 (5)C6—C7—H7119.3
O2B—C1—C2120.2 (16)C8—C7—H7119.3
O1A—C1—C2109.8 (5)C9—C8—H8121.1
O1B—C1—C2117.8 (13)C7—C8—H8121.1
N1—C2—C1110.5 (3)N1—C10—H10A111.4
N1—C2—C11113.5 (3)C9—C10—H10A111.4
C1—C2—C11113.4 (3)N1—C10—H10B111.4
O3—C3—N1123.6 (3)C9—C10—H10B111.4
O3—C3—C4129.4 (3)H10A—C10—H10B109.3
N1—C3—C4107.0 (3)C2—C11—H11A108.4
C3—C4—C5129.9 (3)C12—C11—H11A108.4
C3—C4—C9108.4 (3)C2—C11—H11B108.4
C5—C4—C9121.7 (3)C12—C11—H11B108.4
C4—C5—C6117.7 (4)H11A—C11—H11B107.5
C5—C6—C7120.8 (4)C14—C12—H12107.8
C6—C7—C8121.5 (4)C13—C12—H12107.8
C7—C8—C9117.8 (3)C11—C12—H12107.8
C4—C9—C8120.5 (3)C12—C13—H13A109.5
C4—C9—C10109.6 (3)C12—C13—H13B109.5
C8—C9—C10129.9 (3)H13A—C13—H13B109.5
N1—C10—C9101.7 (3)C12—C13—H13C109.5
C2—C11—C12115.6 (3)H13A—C13—H13C109.5
C11—C12—C13109.3 (3)H13B—C13—H13C109.5
C11—C12—C14112.8 (3)C12—C14—H14A109.5
C13—C12—C14111.0 (3)C12—C14—H14B109.5
C1—O1A—H1A109.5H14A—C14—H14B109.5
C1—O1B—H2A109.5C12—C14—H14C109.5
N1—C2—H2106.3H14A—C14—H14C109.5
C11—C2—H2106.3H14B—C14—H14C109.5
C3—N1—C2—C11133.9 (3)C9—C4—C5—C60.0 (5)
C3—N1—C2—C197.4 (4)C3—C4—C5—C6179.5 (3)
O3—C3—N1—C21.6 (5)C4—C5—C6—C70.7 (5)
O1A—C1—C2—C1151.2 (9)C5—C6—C7—C80.3 (6)
C10—N1—C2—C1149.7 (4)C6—C7—C8—C90.8 (5)
C10—N1—C2—C179.0 (4)C5—C4—C9—C81.1 (5)
O2B—C1—C2—N126 (3)C3—C4—C9—C8179.3 (3)
O2A—C1—C2—N14.0 (14)C5—C4—C9—C10178.5 (3)
O1B—C1—C2—N1161 (3)C3—C4—C9—C101.1 (4)
O1A—C1—C2—N1179.9 (8)C7—C8—C9—C41.4 (5)
O2B—C1—C2—C11102 (3)C7—C8—C9—C10178.0 (3)
O2A—C1—C2—C11132.8 (13)C3—N1—C10—C91.7 (3)
O1B—C1—C2—C1171 (3)C2—N1—C10—C9178.3 (3)
C10—N1—C3—O3178.3 (3)C4—C9—C10—N11.6 (3)
C2—N1—C3—C4177.8 (3)C8—C9—C10—N1178.9 (3)
C10—N1—C3—C41.1 (3)N1—C2—C11—C1255.7 (4)
O3—C3—C4—C9179.4 (3)C1—C2—C11—C12177.2 (3)
N1—C3—C4—C90.0 (3)C2—C11—C12—C1452.5 (4)
O3—C3—C4—C50.2 (6)C2—C11—C12—C13176.5 (3)
N1—C3—C4—C5179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3i0.821.832.634 (9)168
C10—H10A···O3ii0.972.543.366 (4)144
C8—H8···Cg1iii0.932.743.473 (4)137
C2—H2···O30.982.382.812 (4)106
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H17NO3
Mr247.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)5.8790 (5), 12.5223 (16), 18.029 (3)
V3)1327.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2394, 1373, 889
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.080, 1.00
No. of reflections1373
No. of parameters185
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CAD-4 (Enraf–Nonius, 1992), SET4 and CELDIM (Enraf–Nonius, 1992), DATRD2 in NRCVAX96 (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), NRCVAX96 and SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003), SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998).

Selected torsion angles (º) top
C3—N1—C2—C11133.9 (3)O3—C3—N1—C21.6 (5)
C3—N1—C2—C197.4 (4)O1A—C1—C2—C1151.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3i0.821.832.634 (9)168
C10—H10A···O3ii0.972.543.366 (4)144
C8—H8···Cg1iii0.932.743.473 (4)137
C2—H2···O30.982.382.812 (4)106
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

JFG thanks Dublin City University, Forbairt (International Collaboration Grants) and the Royal Irish Academy for funding research visits to the University of Guelph, Canada, from 1995 to 1998. Professor George Ferguson is thanked for use of his diffractometer and computer system.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals
First citationAllin, S. M., Hodkinson, C. C. & Taj, N. (1996). Synlett, pp. 781–782.  CrossRef
First citationBrady, F., Gallagher, J. F. & Kenny, P. T. M. (1998). Acta Cryst. C54, 1523–1525.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
First citationEnraf–Nonius (1992). CAD-4, SET4 and CELDIM. Enraf–Nonius, Delft, The Netherlands.
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals
First citationGallagher, J. F. & Brady, F. (2000). Acta Cryst. C56, 619–622.  CrossRef CAS IUCr Journals
First citationGallagher, J. F., Brady, F. & Murphy, C. (2000). Acta Cryst. C56, 365–368.  CrossRef CAS IUCr Journals
First citationGallagher, J. F. & Murphy, C. (2001). Acta Cryst. E57, o1227–o1229.  Web of Science CSD CrossRef IUCr Journals
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals
First citationMcNab, H., Parsons, S. & Shannon, D. A. (1997). Acta Cryst. C53, 1098–1099.  CSD CrossRef CAS Web of Science IUCr Journals
First citationMukherjee, A. K., Guha, S., Khan, M. W., Kundu, N. G. & Helliwell, M. (2000). Acta Cryst. C56, 85–87.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds