metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­cadmium(II)]-μ-2,2′-bi­pyridine-6,6′-di­carboxyl­ato] dihydrate]

CROSSMARK_Color_square_no_text.svg

aMain Building, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: knightjc@cardiff.ac.uk

(Received 11 October 2006; accepted 3 November 2006; online 15 November 2006)

The title hydrated 2,2′-bipyridine-6,6′-dicarboxyl­ate–cadmium(II) complex, {[Cd(C12H2N2O4)(H2O)2]·2H2O}n, crystallizes with eight oxygen-bridged monomer units in the unit cell. The divalent cadmium ion is seven-coordinate, and the coordination polyhedron can best be described as slightly distorted penta­gonal–bipyramidal.

Comment

The title compound, (I)[link], has been synthesized as part of a study investigating complex stability. Specifically, the research is part of initial investigations towards generating GdIII-based contrast agents for applications in magnetic resonance imaging (MRI), where overall complex stability is crucial in preventing dissociation in vivo, due to the well documented inter­ference of Gd3+ in biological processes (Cacheris, 1990[Cacheris, W. P. (1990). Magn. Reson. Imaging, 8, 467-481.]).

[Scheme 1]

The research aims to elucidate structural features that contribute significantly to overall stability. A comprehensive series of transition metals has been considered, providing an insight into competition reactions which may compromise the effectiveness of the ability of the ligands to coordinate to the Gd3+ ion and neutralize its potential toxicity (Caravan, 1999[Caravan, P. (1999). Chem. Rev. 99, 2293-2352.]).

In this complex, the Cd atom is located at the centre of a distorted penta­gonal bipyramid of seven coordinating atoms (five O atoms and two N atoms; Fig. 1[link]). One of these donor atoms (O4i) originates from another symmetry-related complex (x − [{1\over 2}], [{1\over 2}] − y, z). The bond lengths are comparable to those of similar polymeric cadmium-based complexes (Deloume & Loiseleur, 1974[Deloume, J.-P. & Loiseleur, H. (1974). Acta Cryst. B30, 607-609.]). The bridging behaviour results in the formation of a polymer, which extends in a zigzag fashion (see Fig. 2[link]).

The donor atoms O4i and O5 are located in the axial positions, with N1, N2, O1, O3 and O6 in the equatorial plane. The deviation of the equatorial angles N1—Cd1—N2, N2—Cd1—O3, O3—Cd1—O6, O6—Cd1—O1, O1—Cd1—N1 (Table 1[link]) from the theoretical average angle of 72° can be explained by the narrow bite angle resulting from the coordination of the rigid tetra­dentate ligand. While the bridging carboxyl­ate group lies almost perpendicular to the tetra­dentate ligand at 88.75 (13)°, the axial water mol­ecule appears to lean away from the more sterically demanding ligand, tending towards the equatorial water donor at a more acute angle of 82.08 (12)°.

The oxygen-bridged polymer is formed via coordination of one of the carbonyl O atoms (O4i) to the cadmium in an axial orientation at an average angle of 90.10° to the penta­gonal plane. The mol­ecular packing is layered, with inter­molecular π-stacking between bipyridine rings (N1/C1–C5 and N2/C6–C10) at a centroid–centroid distance of 3.267 Å. The equatorially coordinating water mol­ecule (O6) is hydrogen bonded to a solvent water mol­ecule (O8), which in turn is bonded to a second solvent water mol­ecule (O7) which is hydrogen bonded to the axially coordinating water (O5) (see Fig. 3[link]). All significant hydrogen bonds are listed in Table 2[link].

[Figure 1]
Figure 1
Perspective view of the asymmetric unit, expanded to complete the Cd coordination, showing the atom numbering. Displacement ellipsoids are shown at the 50% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: (i) x − [{1\over 2}], [{1\over 2}] − y, z.]
[Figure 2]
Figure 2
Fragment of the title structure, showing an oxygen-bridged chain extended in a zigzag fashion along the c axis. The dashed line indicates a hydrogen bond.
[Figure 3]
Figure 3
The mol­ecular packing projected on the bc plane showing hydrogen bonds (dashed lines) holding the layered chains together in the crystal structure.

Experimental

To an aqueous solution (5 ml water) of 2,2-bipyridine-6,6-dicarboxyl­ate disodium salt (0.05 mol) was added an aqueous solution (5 ml water) of cadmium(II) perchlorate (0.05 mol) and the solution was stirred continuously at room temperature for 5 h. A white precipitate was collected via filtration and redissolved in the minimum amount of hot deionized water. Slow evaporation of the solution yielded well defined crystals suitable for X-ray diffraction. 1H NMR (D2O): 8.48 (d, 2H, J = 9.63 Hz, py-H1), 8.16 (t, 2H, J = 9.75 Hz, py-H2), 8.08 (d, 2H, J = 7.60 Hz, py-H3).

Crystal data
  • [Cd(C12H2N2O4)(H2O)2]·2H2O

  • Mr = 422.63

  • Orthorhombic, P c a b

  • a = 8.665 (5) Å

  • b = 17.392 (5) Å

  • c = 18.812 (5) Å

  • V = 2835 (2) Å3

  • Z = 8

  • Dx = 1.999 Mg m−3

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.52 × 0.4 × 0.22 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.492, Tmax = 0.722

  • 13837 measured reflections

  • 3234 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.04

  • 3234 reflections

  • 208 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0704P)2 + 1.3489P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Cd1 2.388 (4)
N2—Cd1 2.418 (4)
O1—Cd1 2.413 (3)
O3—Cd1 2.423 (4)
O4—Cd1 2.332 (4)
O5—Cd1 2.287 (3)
O6—Cd1 2.336 (4)
O5—Cd1—O4 164.37 (12)
O5—Cd1—O6 82.08 (12)
O4—Cd1—O6 85.52 (13)
O5—Cd1—N1 91.00 (13)
O4—Cd1—N1 94.87 (13)
O6—Cd1—N1 149.28 (13)
O5—Cd1—O1 80.18 (12)
O4—Cd1—O1 88.70 (13)
O6—Cd1—O1 81.88 (12)
N1—Cd1—O1 67.44 (13)
O5—Cd1—N2 102.44 (13)
O4—Cd1—N2 93.18 (13)
O6—Cd1—N2 144.24 (13)
N1—Cd1—N2 66.47 (14)
O1—Cd1—N2 133.86 (12)
O5—Cd1—O3 98.34 (13)
O4—Cd1—O3 88.24 (13)
O6—Cd1—O3 77.80 (12)
N1—Cd1—O3 132.91 (13)
O1—Cd1—O3 159.62 (12)
N2—Cd1—O3 66.44 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4i 0.85 2.26 3.055 (5) 156
O7—H7B⋯O5ii 0.87 1.88 2.729 (5) 167
O8—H8A⋯O6iii 0.88 2.02 2.814 (5) 150
O8—H8B⋯O7iv 0.86 2.00 2.816 (6) 158
Symmetry codes: (i) -x+2, -y, -z; (ii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) -x+1, -y, -z.

The carbon bound H atoms were placed in calculated positions using a riding model with Uiso(H) = 1.2Ueq(C) and C—H = 0.95. The solvent water H atoms were located and refined with Uiso(H) = 1.2Ueq(O)]; however, the H atoms on the coordinating water mol­ecules could not be found at geometrically sensible positions and were not included in the refinement.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

catena-Poly[[[diaquacadmium(II)]-µ-2,2'-bipyridine-6,6'-dicarboxylato] dihydrate] top
Crystal data top
[Cd(C12H2N2O4)(H2O)2]·2H2OF(000) = 1664.0
Mr = 422.63Dx = 1.999 Mg m3
Orthorhombic, PcabMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2bc 2acCell parameters from 24536 reflections
a = 8.665 (5) Åθ = 2.9–27.5°
b = 17.392 (5) ŵ = 1.59 mm1
c = 18.812 (5) ÅT = 150 K
V = 2835 (2) Å3Block, colourless
Z = 80.52 × 0.4 × 0.22 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2349 reflections with I > 2σ(I)
φ and ω scansRint = 0.092
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
θmax = 27.5°, θmin = 3.2°
Tmin = 0.492, Tmax = 0.722h = 1111
13837 measured reflectionsk = 1522
3234 independent reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0704P)2 + 1.3489P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.49 e Å3
3234 reflectionsΔρmin = 0.53 e Å3
208 parameters
Special details top

Experimental. 1H NMR (D2O): 8.48 (d, 2H, J = 9.63?Hz, py-H1), 8.16 (t, 2H, J = 9.75?Hz, py-H2), 8.08 (d, 2H, J = 7.60?Hz, py-H3). IR (KBr) cm-1: 1617.02 (–C=O), 1591.95, 1574.59, 1421.28, 1384.64, 1267.97, 1144.55, 1111.76, 1087.66, 1018.23, 909.272, 770.423.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8416 (5)0.0338 (3)0.0556 (3)0.0178 (11)
C20.8675 (6)0.0807 (3)0.0025 (3)0.0199 (11)
H20.93260.12440.00170.024*
C30.7986 (6)0.0636 (3)0.0662 (3)0.0224 (12)
H30.81590.09510.10670.027*
C40.7035 (5)0.0003 (3)0.0706 (3)0.0200 (11)
H40.65510.01350.11430.024*
C50.6802 (5)0.0447 (3)0.0106 (3)0.0179 (11)
C60.5794 (5)0.1142 (3)0.0097 (3)0.0168 (11)
C70.5030 (6)0.1419 (3)0.0701 (3)0.0221 (11)
H50.51320.11640.11450.027*
C80.4132 (6)0.2067 (3)0.0641 (3)0.0251 (12)
H80.36030.22640.10430.030*
C90.4004 (6)0.2431 (3)0.0014 (3)0.0201 (11)
H70.33640.28700.00680.024*
C100.4827 (5)0.2142 (3)0.0590 (3)0.0174 (11)
C110.9164 (5)0.0482 (3)0.1272 (3)0.0181 (11)
C120.4806 (6)0.2505 (3)0.1310 (3)0.0174 (11)
N10.7503 (5)0.0284 (2)0.0518 (2)0.0166 (9)
N20.5693 (5)0.1500 (2)0.0531 (2)0.0177 (9)
O10.8860 (4)0.0007 (2)0.17608 (17)0.0217 (8)
O21.0017 (4)0.10573 (19)0.1324 (2)0.0240 (8)
O30.5496 (4)0.2156 (2)0.18009 (18)0.0259 (8)
O40.9154 (4)0.1849 (2)0.13790 (19)0.0245 (8)
O50.5412 (4)0.01180 (19)0.19987 (17)0.0212 (8)
O60.7508 (4)0.1238 (2)0.27733 (19)0.0225 (8)
O70.8528 (5)0.1242 (2)0.2466 (2)0.0403 (11)
H7A0.93370.14270.22770.048*
H7B0.87620.07760.25930.048*
O80.3706 (4)0.2275 (2)0.29834 (19)0.0292 (9)
H8A0.33400.27310.30890.035*
H8B0.29740.20570.27480.035*
Cd10.70612 (4)0.103047 (19)0.156370 (18)0.01591 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.013 (2)0.013 (3)0.028 (3)0.003 (2)0.002 (2)0.003 (2)
C20.021 (3)0.008 (2)0.031 (3)0.000 (2)0.003 (2)0.003 (2)
C30.032 (3)0.014 (3)0.022 (3)0.000 (2)0.001 (2)0.004 (2)
C40.022 (3)0.018 (3)0.020 (3)0.005 (2)0.002 (2)0.001 (2)
C50.017 (2)0.012 (3)0.025 (3)0.004 (2)0.000 (2)0.000 (2)
C60.016 (2)0.014 (3)0.021 (3)0.0046 (19)0.002 (2)0.004 (2)
C70.030 (3)0.017 (3)0.020 (3)0.001 (2)0.002 (2)0.001 (2)
C80.025 (3)0.027 (3)0.024 (3)0.006 (2)0.005 (2)0.008 (2)
C90.019 (2)0.016 (3)0.025 (3)0.001 (2)0.001 (2)0.005 (2)
C100.017 (2)0.008 (2)0.026 (3)0.002 (2)0.002 (2)0.000 (2)
C110.013 (2)0.014 (3)0.028 (3)0.004 (2)0.000 (2)0.003 (2)
C120.019 (2)0.009 (2)0.024 (3)0.001 (2)0.002 (2)0.001 (2)
N10.017 (2)0.013 (2)0.020 (2)0.0026 (18)0.0001 (16)0.0021 (18)
N20.021 (2)0.009 (2)0.023 (2)0.0003 (18)0.0023 (17)0.0006 (17)
O10.0254 (19)0.0185 (19)0.0211 (17)0.0056 (17)0.0025 (15)0.0029 (15)
O20.026 (2)0.016 (2)0.030 (2)0.0057 (16)0.0009 (16)0.0006 (16)
O30.035 (2)0.019 (2)0.0242 (19)0.0089 (17)0.0019 (16)0.0007 (16)
O40.0254 (19)0.0131 (19)0.035 (2)0.0065 (16)0.0008 (16)0.0008 (16)
O50.0236 (18)0.0172 (18)0.0228 (18)0.0057 (15)0.0001 (15)0.0017 (15)
O60.0289 (19)0.0156 (18)0.023 (2)0.0027 (16)0.0033 (15)0.0012 (16)
O70.040 (2)0.019 (2)0.061 (3)0.002 (2)0.016 (2)0.017 (2)
O80.035 (2)0.018 (2)0.035 (2)0.0018 (18)0.0004 (18)0.0021 (17)
Cd10.0193 (2)0.0107 (2)0.0177 (2)0.00014 (14)0.00005 (14)0.00005 (14)
Geometric parameters (Å, º) top
C1—N11.342 (6)C10—N21.350 (6)
C1—C21.381 (7)C10—C121.494 (7)
C1—C111.515 (7)C11—O21.247 (6)
C2—C31.371 (7)C11—O11.264 (6)
C2—H20.9500C12—O31.256 (6)
C3—C41.386 (7)C12—O4i1.265 (6)
C3—H30.9500N1—Cd12.388 (4)
C4—C51.383 (7)N2—Cd12.418 (4)
C4—H40.9500O1—Cd12.413 (3)
C5—N11.351 (6)O3—Cd12.423 (4)
C5—C61.492 (7)O4—C12ii1.265 (6)
C6—N21.340 (6)O4—Cd12.332 (4)
C6—C71.400 (7)O5—Cd12.287 (3)
C7—C81.373 (7)O6—Cd12.336 (4)
C7—H50.9500O7—H7A0.8490
C8—C91.389 (7)O7—H7B0.8691
C8—H80.9500O8—H8A0.8762
C9—C101.390 (7)O8—H8B0.8617
C9—H70.9500
N1—C1—C2122.0 (4)O3—C12—C10117.2 (4)
N1—C1—C11115.6 (4)O4i—C12—C10118.3 (5)
C2—C1—C11122.4 (4)C1—N1—C5118.7 (4)
C3—C2—C1119.5 (5)C1—N1—Cd1119.3 (3)
C3—C2—H2120.3C5—N1—Cd1122.0 (3)
C1—C2—H2120.3C6—N2—C10119.6 (4)
C2—C3—C4119.0 (5)C6—N2—Cd1121.3 (3)
C2—C3—H3120.5C10—N2—Cd1119.1 (3)
C4—C3—H3120.5C11—O1—Cd1120.8 (3)
C3—C4—C5119.0 (5)C12—O3—Cd1121.4 (3)
C3—C4—H4120.5C12ii—O4—Cd1154.9 (3)
C5—C4—H4120.5H7A—O7—H7B106.1
N1—C5—C4121.8 (5)H8A—O8—H8B104.4
N1—C5—C6115.1 (4)O5—Cd1—O4164.37 (12)
C4—C5—C6123.1 (5)O5—Cd1—O682.08 (12)
N2—C6—C7121.7 (4)O4—Cd1—O685.52 (13)
N2—C6—C5115.1 (4)O5—Cd1—N191.00 (13)
C7—C6—C5123.2 (5)O4—Cd1—N194.87 (13)
C8—C7—C6118.9 (5)O6—Cd1—N1149.28 (13)
C8—C7—H5120.5O5—Cd1—O180.18 (12)
C6—C7—H5120.5O4—Cd1—O188.70 (13)
C7—C8—C9119.5 (5)O6—Cd1—O181.88 (12)
C7—C8—H8120.3N1—Cd1—O167.44 (13)
C9—C8—H8120.3O5—Cd1—N2102.44 (13)
C8—C9—C10119.0 (5)O4—Cd1—N293.18 (13)
C8—C9—H7120.5O6—Cd1—N2144.24 (13)
C10—C9—H7120.5N1—Cd1—N266.47 (14)
N2—C10—C9121.3 (4)O1—Cd1—N2133.86 (12)
N2—C10—C12115.5 (4)O5—Cd1—O398.34 (13)
C9—C10—C12123.2 (5)O4—Cd1—O388.24 (13)
O2—C11—O1126.1 (5)O6—Cd1—O377.80 (12)
O2—C11—C1117.2 (4)N1—Cd1—O3132.91 (13)
O1—C11—C1116.7 (4)O1—Cd1—O3159.62 (12)
O3—C12—O4i124.5 (5)N2—Cd1—O366.44 (12)
N1—C1—C2—C30.1 (8)C10—C12—O3—Cd17.5 (6)
C11—C1—C2—C3178.7 (4)C12ii—O4—Cd1—O5122.0 (8)
C1—C2—C3—C40.4 (7)C12ii—O4—Cd1—O684.5 (8)
C2—C3—C4—C50.4 (7)C12ii—O4—Cd1—N1126.3 (8)
C3—C4—C5—N11.5 (7)C12ii—O4—Cd1—O1166.4 (8)
C3—C4—C5—C6179.6 (4)C12ii—O4—Cd1—N259.7 (8)
N1—C5—C6—N21.4 (6)C12ii—O4—Cd1—O36.6 (8)
C4—C5—C6—N2179.6 (4)C1—N1—Cd1—O575.5 (4)
N1—C5—C6—C7177.1 (4)C5—N1—Cd1—O5101.3 (4)
C4—C5—C6—C71.9 (7)C1—N1—Cd1—O490.0 (4)
N2—C6—C7—C81.3 (7)C5—N1—Cd1—O493.2 (4)
C5—C6—C7—C8179.7 (5)C1—N1—Cd1—O60.6 (5)
C6—C7—C8—C90.1 (8)C5—N1—Cd1—O6177.4 (3)
C7—C8—C9—C101.9 (8)C1—N1—Cd1—O13.4 (3)
C8—C9—C10—N22.8 (7)C5—N1—Cd1—O1179.7 (4)
C8—C9—C10—C12178.1 (5)C1—N1—Cd1—N2178.7 (4)
N1—C1—C11—O2179.8 (4)C5—N1—Cd1—N21.8 (3)
C2—C1—C11—O21.3 (7)C1—N1—Cd1—O3177.9 (3)
N1—C1—C11—O10.0 (6)C5—N1—Cd1—O31.0 (4)
C2—C1—C11—O1178.9 (4)C11—O1—Cd1—O591.6 (3)
N2—C10—C12—O34.8 (6)C11—O1—Cd1—O499.4 (4)
C9—C10—C12—O3174.4 (5)C11—O1—Cd1—O6174.9 (4)
N2—C10—C12—O4i172.5 (4)C11—O1—Cd1—N13.6 (3)
C9—C10—C12—O4i8.3 (7)C11—O1—Cd1—N26.2 (4)
C2—C1—N1—C50.9 (7)C11—O1—Cd1—O3179.2 (4)
C11—C1—N1—C5179.9 (4)C6—N2—Cd1—O584.6 (4)
C2—C1—N1—Cd1177.9 (4)C10—N2—Cd1—O596.3 (3)
C11—C1—N1—Cd13.2 (5)C6—N2—Cd1—O494.9 (4)
C4—C5—N1—C11.7 (7)C10—N2—Cd1—O484.2 (3)
C6—C5—N1—C1179.3 (4)C6—N2—Cd1—O6178.3 (3)
C4—C5—N1—Cd1178.6 (3)C10—N2—Cd1—O62.5 (5)
C6—C5—N1—Cd12.4 (5)C6—N2—Cd1—N11.0 (3)
C7—C6—N2—C100.4 (7)C10—N2—Cd1—N1178.1 (4)
C5—C6—N2—C10178.9 (4)C6—N2—Cd1—O13.6 (4)
C7—C6—N2—Cd1178.7 (4)C10—N2—Cd1—O1175.5 (3)
C5—C6—N2—Cd10.2 (5)C6—N2—Cd1—O3178.4 (4)
C9—C10—N2—C61.6 (7)C10—N2—Cd1—O32.5 (3)
C12—C10—N2—C6179.2 (4)C12—O3—Cd1—O5105.5 (4)
C9—C10—N2—Cd1179.2 (4)C12—O3—Cd1—O488.8 (4)
C12—C10—N2—Cd10.1 (5)C12—O3—Cd1—O6174.6 (4)
O2—C11—O1—Cd1176.6 (4)C12—O3—Cd1—N16.3 (4)
C1—C11—O1—Cd13.3 (5)C12—O3—Cd1—O1170.3 (4)
O4i—C12—O3—Cd1169.6 (4)C12—O3—Cd1—N25.5 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.852.263.055 (5)156
O7—H7B···O5iv0.871.882.729 (5)167
O8—H8A···O6i0.882.022.814 (5)150
O8—H8B···O7v0.862.002.816 (6)158
Symmetry codes: (i) x1/2, y+1/2, z; (iii) x+2, y, z; (iv) x+3/2, y, z1/2; (v) x+1, y, z.
 

Acknowledgements

This project was supported by the MRC (research grant No. G0300261).

References

First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCacheris, W. P. (1990). Magn. Reson. Imaging, 8, 467–481.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCaravan, P. (1999). Chem. Rev. 99, 2293–2352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeloume, J.-P. & Loiseleur, H. (1974). Acta Cryst. B30, 607–609.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds