organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4,6,7,8,9,10-Octa­hydro­pyrimido[1,2-a]azepin-1-ium 2-cyano-1-(2,6-di­methylanilino)-2-(phenyl­sulfonyl)ethene­thiol­ate

aSTC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Blyukhera ave., Kharkiv 61002, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

(Received 22 November 2007; accepted 4 December 2007; online 12 December 2007)

In the title compound, C9H17N2+·C17H15N2O2S2, the Csp2—N bonds in the tetra­hydro­pyrimidine ring of the cation are delocalized. The negative charge is localized on the S atom of the thione group. Cations and anions are linked by N—H⋯S inter­molecular hydrogen bonds.

Related literature

For related literature, see: Bürgi & Dunitz (1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]); Fadda et al. (2000[Fadda, A. A., Refat, H. M. & Zaki, M. E. A. (2000). Molecules. 5, 701-709.]); Dorwald (2000[Dorwald, F. Z. (2000). USA Patent 6 136 984.]); Lindeman et al. (2003[Lindeman, S. V., Hecht, J. & Kochi, J. K. (2003). J. Am. Chem. Soc. 125, 11597-11606.]); Perez et al. (2004[Perez, E. R., Santos, R. H. A., Gambardella, M. T. P., de Macedo, L. G. M., Rogrigues-Filho, U. P., Launay, J.-C. & Franco, D. W. (2004). J. Org. Chem. 69, 8005-8011.]); Zefirov et al. (1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-154.]).

[Scheme 1]

Experimental

Crystal data
  • C9H17N2+·C17H15N2O2S2

  • Mr = 496.68

  • Triclinic, [P \overline 1]

  • a = 8.3278 (5) Å

  • b = 11.348 (4) Å

  • c = 13.661 (3) Å

  • α = 104.03 (2)°

  • β = 92.517 (9)°

  • γ = 90.635 (12)°

  • V = 1250.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: none

  • 11732 measured reflections

  • 4319 independent reflections

  • 3564 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.10

  • 4319 reflections

  • 317 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

S1—O1 1.4285 (12)
S1—O2 1.4413 (13)
S1—C1 1.7291 (16)
S2—C2 1.7037 (16)
N3—C23 1.308 (2)
N4—C23 1.305 (2)
C1—C2 1.411 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.86 (2) 1.98 (2) 2.7091 (19) 143 (2)
N4—H4N⋯S2i 0.82 (2) 2.45 (2) 3.2335 (19) 161 (2)
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.8. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.8. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL-Plus. PC Version 5.1. Bruker AXS, Madison Wisconsin, USA.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: XP (Siemens, 1998[Siemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

The S,N-acetaleketenes are very efficient reagents for synthesis of the sulfur-containing heterocycles. However, synthesis and isolation of these compounds from the reaction mixture are difficult enough (Fadda, Refat Hala & Zaki, 2000; Florencio, 2000). Therefore information about crystal structure of these compounds is very limited. In this paper we report the molecular and crystal structure of the salt of the α-nitryl-α-phenylsulfonylketene S,N-(2,6-dimethylphenyl)-acetal with 1,8-Diaza-bicyclo[5,4,0]undec-7-ene. The N3—C23 and N4—C23 bonds of the cation have very close lengths (Table 1) which significantly differ from their mean values 1.355 Å and 1.279 Å (Bürgi & Dunitz, 1994), respectively. Similar deformation of these bonds was observed earlier in the protonated octahydropyrimidoazepines (Perez et al., 2004; Lindeman et al., 2003). The azepine ring of the cation adopts a chair conformation. The C18, C19, C21 and C22 atoms lie in the plane within 0.01 Å. Deviations of the C20, N3, C23 atoms from this plane are 0.65 Å, -1.08 Å and -1.03 Å, respectively. The tetrahydropyrimidine ring adopts conformation which is an intermediate between sofa and half-chair (the puckering parameters (Zefirov et al., 1990) are S=0.68, θ=42.0 °, ψ=19.8 °). Deviations of the C25 and C26 atoms from the mean-square plane of the remaining atoms of the ring are -0.76 Å and -0.23 Å, respectively. The value of the C2—S2 bond in anion is shorter than the mean value for Csp2—S bond (1.751 Å) and is longer as compared with Csp2?S bond (1.671 Å). This indicates that the negative charge is localized on the S2 atom. The C2, C1, N1, S1, S2 and C11 atoms of organic anion lie in the plane within 0.02 Å. The aromatic ring of the phenylsulfoxide substituent is orthogonal to the C1—C2 bond and is turned relatively the C1—S1 bond (the C12—S1—C1—C2 and C1—S1—C12—C17 torsion angles are 105.4 (1) ° and 112.7 (1)°, respectively). Formation of the N1—H1N···O2 intramolecular hydrogen bond (H···O 1.99 Å, N—H···O 144 °) causes almost coplanar arrangement of the S1—O2 and C1—C2 bonds (the O2—S1—C1—C2 torsion angle is -9.3 (2) °) and it leads to some elongation of these bonds as compared to mean values 1.436 Å for the S=O and 1.331 Å for the C=C bonds, and shortening of the C1—S1 bond (mean value is 1.779 Å). In the crystal phase the cations and anions are bonded by the N4—H4n···S2i intermolecular hydrogen bond (i) x, 1 + y, z; H···S 2.41 Å, N—H···S 160°).

Related literature top

For related literature, see: Bürgi & Dunitz (1994); Fadda et al. (2000); Florencio (2000); Lindeman et al. (2003); Perez et al. (2004); Zefirov et al. (1990).

Experimental top

The reaction was carried out in the methanolic solution of 1,8-diaza-bicyclo[5,4,0]undec-7-ene (1,66 mmol) with heating (about 50 °C), in which arylsulfonylacetonitrile (1,66 mmol) and arylisothiocyanate (1,66 mmol) were dissolved. The solution was mixed during 1.5 h. At the end of synthesis the reacting mixture was cooled and salt was crystallized from a solution.

Refinement top

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding model approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.The hydrogen atoms which take part in formation of hydrogen bonds were refined in isotropic approximation.

Structure description top

The S,N-acetaleketenes are very efficient reagents for synthesis of the sulfur-containing heterocycles. However, synthesis and isolation of these compounds from the reaction mixture are difficult enough (Fadda, Refat Hala & Zaki, 2000; Florencio, 2000). Therefore information about crystal structure of these compounds is very limited. In this paper we report the molecular and crystal structure of the salt of the α-nitryl-α-phenylsulfonylketene S,N-(2,6-dimethylphenyl)-acetal with 1,8-Diaza-bicyclo[5,4,0]undec-7-ene. The N3—C23 and N4—C23 bonds of the cation have very close lengths (Table 1) which significantly differ from their mean values 1.355 Å and 1.279 Å (Bürgi & Dunitz, 1994), respectively. Similar deformation of these bonds was observed earlier in the protonated octahydropyrimidoazepines (Perez et al., 2004; Lindeman et al., 2003). The azepine ring of the cation adopts a chair conformation. The C18, C19, C21 and C22 atoms lie in the plane within 0.01 Å. Deviations of the C20, N3, C23 atoms from this plane are 0.65 Å, -1.08 Å and -1.03 Å, respectively. The tetrahydropyrimidine ring adopts conformation which is an intermediate between sofa and half-chair (the puckering parameters (Zefirov et al., 1990) are S=0.68, θ=42.0 °, ψ=19.8 °). Deviations of the C25 and C26 atoms from the mean-square plane of the remaining atoms of the ring are -0.76 Å and -0.23 Å, respectively. The value of the C2—S2 bond in anion is shorter than the mean value for Csp2—S bond (1.751 Å) and is longer as compared with Csp2?S bond (1.671 Å). This indicates that the negative charge is localized on the S2 atom. The C2, C1, N1, S1, S2 and C11 atoms of organic anion lie in the plane within 0.02 Å. The aromatic ring of the phenylsulfoxide substituent is orthogonal to the C1—C2 bond and is turned relatively the C1—S1 bond (the C12—S1—C1—C2 and C1—S1—C12—C17 torsion angles are 105.4 (1) ° and 112.7 (1)°, respectively). Formation of the N1—H1N···O2 intramolecular hydrogen bond (H···O 1.99 Å, N—H···O 144 °) causes almost coplanar arrangement of the S1—O2 and C1—C2 bonds (the O2—S1—C1—C2 torsion angle is -9.3 (2) °) and it leads to some elongation of these bonds as compared to mean values 1.436 Å for the S=O and 1.331 Å for the C=C bonds, and shortening of the C1—S1 bond (mean value is 1.779 Å). In the crystal phase the cations and anions are bonded by the N4—H4n···S2i intermolecular hydrogen bond (i) x, 1 + y, z; H···S 2.41 Å, N—H···S 160°).

For related literature, see: Bürgi & Dunitz (1994); Fadda et al. (2000); Florencio (2000); Lindeman et al. (2003); Perez et al. (2004); Zefirov et al. (1990).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering scheme. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
2,3,4,6,7,8,9,10-Octahydropyrimido[1,2-a]azepin-1-ium 2-cyano-1-(2,6-dimethylanilino)-2-(phenylsulfonyl)ethenethiolate top
Crystal data top
C9H17N2+·C17H15N2O2S2Z = 2
Mr = 496.68F(000) = 528
Triclinic, P1Dx = 1.319 Mg m3
a = 8.3278 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.348 (4) ÅCell parameters from 9472 reflections
c = 13.661 (3) Åθ = 2.8–31.9°
α = 104.03 (2)°µ = 0.24 mm1
β = 92.517 (9)°T = 293 K
γ = 90.635 (12)°Block, colourless
V = 1250.9 (5) Å30.20 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3564 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 16.1827 pixels mm-1h = 99
ω–scansk = 1313
11732 measured reflectionsl = 1616
4319 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3755P]
where P = (Fo2 + 2Fc2)/3
4319 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H17N2+·C17H15N2O2S2γ = 90.635 (12)°
Mr = 496.68V = 1250.9 (5) Å3
Triclinic, P1Z = 2
a = 8.3278 (5) ÅMo Kα radiation
b = 11.348 (4) ŵ = 0.24 mm1
c = 13.661 (3) ÅT = 293 K
α = 104.03 (2)°0.20 × 0.20 × 0.20 mm
β = 92.517 (9)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3564 reflections with I > 2σ(I)
11732 measured reflectionsRint = 0.014
4319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.33 e Å3
4319 reflectionsΔρmin = 0.26 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12739 (5)0.23234 (3)0.07779 (3)0.03153 (12)
S20.32290 (6)0.09686 (4)0.32967 (3)0.04391 (14)
O10.21822 (14)0.32333 (11)0.04679 (9)0.0437 (3)
O20.10480 (15)0.11538 (10)0.00763 (9)0.0420 (3)
N10.17889 (17)0.00391 (12)0.15248 (11)0.0365 (3)
H1N0.136 (2)0.0021 (17)0.0957 (16)0.045 (5)*
N20.2919 (2)0.41319 (14)0.31254 (12)0.0506 (4)
N30.40259 (16)0.72438 (12)0.50300 (10)0.0363 (3)
N40.42004 (19)0.85309 (15)0.39899 (13)0.0459 (4)
H4N0.376 (3)0.904 (2)0.3749 (16)0.057 (6)*
C10.21102 (18)0.21136 (14)0.19027 (12)0.0309 (3)
C20.23091 (17)0.09922 (14)0.21630 (12)0.0303 (3)
C30.20953 (19)0.12349 (14)0.16308 (12)0.0323 (3)
C40.3526 (2)0.17697 (15)0.12811 (13)0.0382 (4)
C50.3722 (3)0.29728 (17)0.12940 (15)0.0524 (5)
H50.46600.33600.10620.063*
C60.2562 (3)0.35999 (17)0.16407 (17)0.0586 (6)
H60.27130.44120.16370.070*
C70.1188 (3)0.30538 (17)0.19914 (15)0.0532 (5)
H70.04200.34920.22390.064*
C80.0913 (2)0.18553 (16)0.19868 (13)0.0393 (4)
C90.0614 (2)0.1257 (2)0.23623 (17)0.0623 (6)
H9C0.12190.17880.26650.093*
H9B0.12390.10880.18070.093*
H9A0.03610.05110.28550.093*
C100.4806 (2)0.1070 (2)0.09221 (17)0.0587 (5)
H10C0.55940.16190.05910.088*
H10B0.53110.04950.14880.088*
H10A0.43370.06460.04560.088*
C110.25701 (19)0.32106 (14)0.25980 (12)0.0337 (4)
C120.06628 (19)0.29086 (15)0.10429 (12)0.0343 (4)
C130.1846 (2)0.21876 (18)0.12817 (14)0.0472 (4)
H130.16360.13920.13060.057*
C140.3353 (2)0.2659 (2)0.14860 (16)0.0600 (6)
H140.41580.21810.16570.072*
C150.3663 (3)0.3824 (2)0.14384 (17)0.0665 (6)
H150.46790.41360.15730.080*
C160.2487 (3)0.4526 (2)0.11951 (19)0.0653 (6)
H160.27060.53190.11660.078*
C170.0964 (2)0.40779 (17)0.09902 (15)0.0473 (4)
H170.01630.45600.08200.057*
C180.3354 (2)0.69195 (18)0.59082 (14)0.0473 (4)
H18B0.32270.76560.64330.057*
H18A0.41100.64140.61700.057*
C190.1752 (2)0.6252 (2)0.56735 (18)0.0589 (5)
H19B0.17870.56670.50270.071*
H19A0.15770.58060.61830.071*
C200.0358 (2)0.7076 (2)0.56372 (19)0.0656 (6)
H20A0.02820.76240.62990.079*
H20B0.06240.65850.54920.079*
C210.0472 (2)0.7822 (2)0.48615 (18)0.0639 (6)
H21B0.05020.82830.48650.077*
H21A0.05150.72710.41990.077*
C220.1902 (2)0.86958 (18)0.50166 (17)0.0547 (5)
H22B0.16660.93220.46620.066*
H22A0.20400.90880.57300.066*
C230.3450 (2)0.81263 (15)0.46655 (13)0.0376 (4)
C240.5760 (2)0.80974 (19)0.36486 (16)0.0527 (5)
H24B0.66040.85440.41050.063*
H24A0.59100.82210.29800.063*
C250.5840 (2)0.67836 (19)0.36216 (15)0.0529 (5)
H25B0.69140.65000.34600.063*
H25A0.50910.63290.30980.063*
C260.5433 (2)0.65656 (16)0.46223 (14)0.0429 (4)
H26B0.52230.57040.45450.051*
H26A0.63470.68050.50970.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0346 (2)0.0303 (2)0.0314 (2)0.00208 (15)0.00147 (16)0.01090 (16)
S20.0605 (3)0.0321 (2)0.0387 (3)0.0009 (2)0.0147 (2)0.01085 (18)
O10.0424 (6)0.0452 (7)0.0508 (7)0.0001 (5)0.0073 (6)0.0248 (6)
O20.0575 (7)0.0361 (6)0.0312 (6)0.0053 (5)0.0030 (5)0.0065 (5)
N10.0487 (8)0.0268 (7)0.0335 (8)0.0009 (6)0.0098 (7)0.0083 (6)
N20.0681 (11)0.0335 (8)0.0479 (9)0.0050 (7)0.0077 (8)0.0076 (7)
N30.0370 (7)0.0378 (8)0.0365 (8)0.0020 (6)0.0005 (6)0.0143 (6)
N40.0464 (9)0.0440 (9)0.0553 (10)0.0043 (7)0.0041 (7)0.0271 (8)
C10.0332 (8)0.0278 (8)0.0323 (8)0.0011 (6)0.0026 (6)0.0093 (7)
C20.0283 (7)0.0293 (8)0.0338 (8)0.0014 (6)0.0003 (6)0.0085 (7)
C30.0404 (9)0.0257 (8)0.0303 (8)0.0013 (6)0.0055 (7)0.0073 (6)
C40.0399 (9)0.0380 (9)0.0353 (9)0.0024 (7)0.0031 (7)0.0067 (7)
C50.0583 (12)0.0405 (10)0.0526 (12)0.0158 (9)0.0086 (9)0.0014 (9)
C60.0874 (16)0.0262 (9)0.0608 (13)0.0007 (10)0.0164 (12)0.0114 (9)
C70.0717 (13)0.0409 (10)0.0488 (11)0.0194 (10)0.0084 (10)0.0174 (9)
C80.0444 (9)0.0403 (9)0.0327 (9)0.0070 (7)0.0024 (7)0.0086 (7)
C90.0500 (11)0.0808 (15)0.0576 (13)0.0012 (11)0.0125 (10)0.0184 (12)
C100.0486 (11)0.0661 (13)0.0597 (13)0.0044 (10)0.0123 (10)0.0107 (11)
C110.0370 (8)0.0302 (9)0.0356 (9)0.0019 (7)0.0024 (7)0.0122 (7)
C120.0326 (8)0.0403 (9)0.0295 (8)0.0017 (7)0.0024 (6)0.0080 (7)
C130.0432 (10)0.0556 (11)0.0466 (11)0.0027 (8)0.0015 (8)0.0199 (9)
C140.0379 (10)0.0952 (18)0.0475 (11)0.0059 (11)0.0051 (9)0.0184 (11)
C150.0423 (11)0.0912 (18)0.0594 (14)0.0203 (12)0.0024 (10)0.0045 (12)
C160.0546 (12)0.0571 (13)0.0788 (16)0.0213 (10)0.0019 (11)0.0063 (12)
C170.0441 (10)0.0400 (10)0.0564 (12)0.0035 (8)0.0029 (9)0.0103 (9)
C180.0533 (11)0.0528 (11)0.0413 (10)0.0029 (9)0.0040 (8)0.0220 (9)
C190.0607 (12)0.0579 (13)0.0649 (13)0.0064 (10)0.0129 (10)0.0266 (11)
C200.0470 (11)0.0824 (16)0.0721 (15)0.0043 (11)0.0142 (11)0.0263 (13)
C210.0391 (10)0.0882 (16)0.0709 (15)0.0131 (10)0.0090 (10)0.0305 (13)
C220.0573 (12)0.0495 (11)0.0635 (13)0.0199 (9)0.0147 (10)0.0232 (10)
C230.0400 (9)0.0339 (9)0.0399 (9)0.0001 (7)0.0008 (7)0.0113 (7)
C240.0401 (10)0.0677 (13)0.0576 (12)0.0005 (9)0.0076 (9)0.0284 (11)
C250.0489 (11)0.0609 (12)0.0489 (11)0.0122 (9)0.0076 (9)0.0121 (10)
C260.0446 (10)0.0385 (9)0.0465 (10)0.0094 (8)0.0007 (8)0.0122 (8)
Geometric parameters (Å, º) top
S1—O11.4285 (12)C12—C171.371 (2)
S1—O21.4413 (13)C12—C131.373 (2)
S1—C11.7291 (16)C13—C141.383 (3)
S1—C121.7697 (16)C13—H130.9300
S2—C21.7037 (16)C14—C151.366 (3)
N1—C21.334 (2)C14—H140.9300
N1—C31.424 (2)C15—C161.358 (3)
N1—H1N0.86 (2)C15—H150.9300
N2—C111.143 (2)C16—C171.387 (3)
N3—C231.308 (2)C16—H160.9300
N3—C261.465 (2)C17—H170.9300
N3—C181.469 (2)C18—C191.509 (3)
N4—C231.305 (2)C18—H18B0.9700
N4—C241.450 (2)C18—H18A0.9700
N4—H4N0.82 (2)C19—C201.505 (3)
C1—C111.408 (2)C19—H19B0.9700
C1—C21.411 (2)C19—H19A0.9700
C3—C81.377 (2)C20—C211.514 (3)
C3—C41.393 (2)C20—H20A0.9700
C4—C51.381 (3)C20—H20B0.9700
C4—C101.491 (3)C21—C221.515 (3)
C5—C61.361 (3)C21—H21B0.9700
C5—H50.9300C21—H21A0.9700
C6—C71.358 (3)C22—C231.494 (2)
C6—H60.9300C22—H22B0.9700
C7—C81.383 (3)C22—H22A0.9700
C7—H70.9300C24—C251.485 (3)
C8—C91.500 (3)C24—H24B0.9700
C9—H9C0.9600C24—H24A0.9700
C9—H9B0.9600C25—C261.499 (3)
C9—H9A0.9600C25—H25B0.9700
C10—H10C0.9600C25—H25A0.9700
C10—H10B0.9600C26—H26B0.9700
C10—H10A0.9600C26—H26A0.9700
O1—S1—O2117.84 (8)C16—C15—C14120.04 (19)
O1—S1—C1109.46 (8)C16—C15—H15120.0
O2—S1—C1108.65 (7)C14—C15—H15120.0
O1—S1—C12107.00 (8)C15—C16—C17120.9 (2)
O2—S1—C12106.90 (8)C15—C16—H16119.5
C1—S1—C12106.39 (8)C17—C16—H16119.5
C2—N1—C3125.95 (14)C12—C17—C16118.62 (19)
C2—N1—H1N116.6 (13)C12—C17—H17120.7
C3—N1—H1N116.7 (13)C16—C17—H17120.7
C23—N3—C26122.01 (14)N3—C18—C19113.53 (16)
C23—N3—C18121.92 (15)N3—C18—H18B108.9
C26—N3—C18115.99 (14)C19—C18—H18B108.9
C23—N4—C24122.62 (16)N3—C18—H18A108.9
C23—N4—H4N118.0 (15)C19—C18—H18A108.9
C24—N4—H4N119.4 (15)H18B—C18—H18A107.7
C11—C1—C2120.44 (14)C20—C19—C18113.49 (18)
C11—C1—S1113.16 (11)C20—C19—H19B108.9
C2—C1—S1126.38 (12)C18—C19—H19B108.9
N1—C2—C1120.26 (14)C20—C19—H19A108.9
N1—C2—S2120.37 (12)C18—C19—H19A108.9
C1—C2—S2119.37 (12)H19B—C19—H19A107.7
C8—C3—C4122.55 (15)C19—C20—C21114.37 (18)
C8—C3—N1118.90 (15)C19—C20—H20A108.7
C4—C3—N1118.28 (15)C21—C20—H20A108.7
C5—C4—C3117.24 (17)C19—C20—H20B108.7
C5—C4—C10121.19 (18)C21—C20—H20B108.7
C3—C4—C10121.56 (16)H20A—C20—H20B107.6
C6—C5—C4120.93 (19)C20—C21—C22115.35 (19)
C6—C5—H5119.5C20—C21—H21B108.4
C4—C5—H5119.5C22—C21—H21B108.4
C7—C6—C5120.74 (18)C20—C21—H21A108.4
C7—C6—H6119.6C22—C21—H21A108.4
C5—C6—H6119.6H21B—C21—H21A107.5
C6—C7—C8121.06 (19)C23—C22—C21114.77 (17)
C6—C7—H7119.5C23—C22—H22B108.6
C8—C7—H7119.5C21—C22—H22B108.6
C3—C8—C7117.46 (17)C23—C22—H22A108.6
C3—C8—C9121.48 (17)C21—C22—H22A108.6
C7—C8—C9121.06 (18)H22B—C22—H22A107.6
C8—C9—H9C109.5N4—C23—N3121.38 (16)
C8—C9—H9B109.5N4—C23—C22118.27 (16)
H9C—C9—H9B109.5N3—C23—C22120.34 (16)
C8—C9—H9A109.5N4—C24—C25108.70 (16)
H9C—C9—H9A109.5N4—C24—H24B110.0
H9B—C9—H9A109.5C25—C24—H24B110.0
C4—C10—H10C109.5N4—C24—H24A110.0
C4—C10—H10B109.5C25—C24—H24A110.0
H10C—C10—H10B109.5H24B—C24—H24A108.3
C4—C10—H10A109.5C24—C25—C26110.45 (17)
H10C—C10—H10A109.5C24—C25—H25B109.6
H10B—C10—H10A109.5C26—C25—H25B109.6
N2—C11—C1176.46 (17)C24—C25—H25A109.6
C17—C12—C13120.95 (17)C26—C25—H25A109.6
C17—C12—S1119.06 (13)H25B—C25—H25A108.1
C13—C12—S1119.98 (14)N3—C26—C25112.07 (14)
C12—C13—C14119.24 (19)N3—C26—H26B109.2
C12—C13—H13120.4C25—C26—H26B109.2
C14—C13—H13120.4N3—C26—H26A109.2
C15—C14—C13120.2 (2)C25—C26—H26A109.2
C15—C14—H14119.9H26B—C26—H26A107.9
C13—C14—H14119.9
O1—S1—C1—C1142.43 (14)O1—S1—C12—C13174.72 (14)
O2—S1—C1—C11172.37 (11)O2—S1—C12—C1347.62 (16)
C12—S1—C1—C1172.86 (13)C1—S1—C12—C1368.34 (16)
O1—S1—C1—C2139.31 (14)C17—C12—C13—C141.0 (3)
O2—S1—C1—C29.36 (17)S1—C12—C13—C14179.96 (14)
C12—S1—C1—C2105.41 (15)C12—C13—C14—C150.8 (3)
C3—N1—C2—C1171.24 (15)C13—C14—C15—C160.4 (3)
C3—N1—C2—S28.4 (2)C14—C15—C16—C170.1 (4)
C11—C1—C2—N1176.19 (14)C13—C12—C17—C160.8 (3)
S1—C1—C2—N12.0 (2)S1—C12—C17—C16179.74 (15)
C11—C1—C2—S24.2 (2)C15—C16—C17—C120.3 (3)
S1—C1—C2—S2177.69 (9)C23—N3—C18—C1974.2 (2)
C2—N1—C3—C8101.1 (2)C26—N3—C18—C19109.05 (18)
C2—N1—C3—C484.8 (2)N3—C18—C19—C2080.1 (2)
C8—C3—C4—C50.6 (2)C18—C19—C20—C2159.1 (3)
N1—C3—C4—C5173.36 (15)C19—C20—C21—C2261.7 (3)
C8—C3—C4—C10178.51 (17)C20—C21—C22—C2379.5 (2)
N1—C3—C4—C107.6 (2)C24—N4—C23—N34.3 (3)
C3—C4—C5—C60.4 (3)C24—N4—C23—C22175.81 (18)
C10—C4—C5—C6178.72 (19)C26—N3—C23—N47.3 (3)
C4—C5—C6—C70.6 (3)C18—N3—C23—N4169.31 (17)
C5—C6—C7—C81.4 (3)C26—N3—C23—C22172.61 (16)
C4—C3—C8—C70.2 (2)C18—N3—C23—C2210.8 (3)
N1—C3—C8—C7174.06 (16)C21—C22—C23—N4122.0 (2)
C4—C3—C8—C9179.79 (17)C21—C22—C23—N357.8 (3)
N1—C3—C8—C96.3 (2)C23—N4—C24—C2535.4 (3)
C6—C7—C8—C31.2 (3)N4—C24—C25—C2653.5 (2)
C6—C7—C8—C9179.24 (18)C23—N3—C26—C2514.2 (2)
O1—S1—C12—C174.27 (16)C18—N3—C26—C25169.07 (16)
O2—S1—C12—C17131.37 (14)C24—C25—C26—N344.5 (2)
C1—S1—C12—C17112.67 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.86 (2)1.98 (2)2.7091 (19)143 (2)
N4—H4N···S2i0.82 (2)2.45 (2)3.2335 (19)161 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H17N2+·C17H15N2O2S2
Mr496.68
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3278 (5), 11.348 (4), 13.661 (3)
α, β, γ (°)104.03 (2), 92.517 (9), 90.635 (12)
V3)1250.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11732, 4319, 3564
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.10
No. of reflections4319
No. of parameters317
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXTL (Sheldrick, 1998), XP (Siemens, 1998).

Selected bond lengths (Å) top
S1—O11.4285 (12)N3—C231.308 (2)
S1—O21.4413 (13)N4—C231.305 (2)
S1—C11.7291 (16)C1—C21.411 (2)
S2—C21.7037 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.86 (2)1.98 (2)2.7091 (19)143 (2)
N4—H4N···S2i0.82 (2)2.45 (2)3.2335 (19)161 (2)
Symmetry code: (i) x, y+1, z.
 

References

First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationFadda, A. A., Refat, H. M. & Zaki, M. E. A. (2000). Molecules. 5, 701–709.  CrossRef CAS Google Scholar
First citationDorwald, F. Z. (2000). USA Patent 6 136 984.  Google Scholar
First citationLindeman, S. V., Hecht, J. & Kochi, J. K. (2003). J. Am. Chem. Soc. 125, 11597–11606.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.8. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPerez, E. R., Santos, R. H. A., Gambardella, M. T. P., de Macedo, L. G. M., Rogrigues-Filho, U. P., Launay, J.-C. & Franco, D. W. (2004). J. Org. Chem. 69, 8005–8011.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL-Plus. PC Version 5.1. Bruker AXS, Madison Wisconsin, USA.  Google Scholar
First citationSiemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.  Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–154.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds