organic compounds
6,11-Dihydroxynaphthacene-5,12-dione
aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and bDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
*Correspondence e-mail: tomura@ims.ac.jp
The molecule of the title compound, C18H10O4, is centrosymmetric and planar. A long phenolic O—H bond is observed [1.19 (9) Å], which is involved in an intramolecular hydrogen bond between the phenolic and quinonoid O atoms. The molecules pack in a herringbone pattern and are linked to each other via intermolecular C—H⋯O hydrogen bonds (2.73–2.77 Å).
Related literature
The et al., 2007). For studies of naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), see: Fehlmann & Nigli (1965); Cradwick & Hall (1971); Herbstein et al. (1985); Rubio et al. (1985); Sarkhel et al. (2001); Savko et al. (2007). For background on intramolecular hydrogen bonds, see: Gilli et al. (1989); Bertolasi et al. (1991); Gilli et al. (1993); Steiner & Saenger (1994). For background on intermolecular hydrogen bonds, see: Taylor & Kennard (1982); Jagarlapudi & Desiraju (1987); Biradha et al. (1993); Batchelor et al. (2000). For background on resonance structures, see: Cradwick & Hall (1971); Shiau et al. (1980).
of the rhenium complex including the title compound has been reported (SathiyendiranExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807063726/gw2022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063726/gw2022Isup2.hkl
The title compound (I) was commercially available. Red crystals of (I) suitable for X-ray analysis were grown from a chloroform solution.
The H atom bonded to the phenolic O atom was located in a difference map and refined isotropically. Other H atoms were positioned geometrically refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).
Organic molecules containing naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) skeleton have been the attractive subject of structural investigations (Fehlmann & Nigli, 1965; Cradwick & Hall, 1971; Herbstein et al., 1985; Rubio et al., 1985; Sarkhel et al., 2001; Savko et al., 2007). The title compound, (I) (Fig. 1), is π-extended naphthazarin and its molecular and crystal structures are described here.
The molecule of (I) is centrosymmetric and planar, with an r.m.s deviation of 0.0098 Å from the least-squares plane for the fitted non-H atoms. The molecular structure is similar to that of naphthazarin. The symmetry of the carbon skeleton of (I) is close to D2 h (Table 1). The long phenolic O2—H2 bond [1.19 (9) Å] constitutes an intramolecular hydrogen bond between the phenolic O2 and quinonoid O1 atoms (Gilli et al., 1989; Bertolasi et al., 1991; Gilli et al., 1993; Steiner & Saenger, 1994). These facts imply that the structure of (I) can be interpreted not as 1,4- nor 1,5-quinone but as resonance between two zwitterion contributors, as shown in Scheme 1 (Cradwick & Hall, 1971; Shiau et al., 1980).
In the
the molecules form a herringbone-type stacking along the b axis, where the distance between the molecular planes is 3.42 Å (Fig. 2). The packing mode is similar to that characteristic of aromatic hydrocarbon atoms. The intermolecular C—H···O hydrogen bonds (Taylor & Kennard, 1982; Jagarlapudi & Desiraju, 1987; Biradha et al., 1993; Batchelor et al., 2000) are found between the herringbone-type stackings (Table 2). Similar C—H···O hydrogen bonds (2.54–3.01 Å) were observed in the of naphthazarin (Cradwick & Hall, 1971).The
of the rhenium complex including the title compound has been reported (Sathiyendiran et al., 2007). For studies of naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), see: Fehlmann & Nigli (1965); Cradwick & Hall (1971); Herbstein et al. (1985); Rubio et al. (1985); Sarkhel et al. (2001); Savko et al. (2007). For background on intramolecular hydrogen bonds, see: Gilli et al. (1989); Bertolasi et al. (1991); Gilli et al. (1993); Steiner & Saenger (1994). For background on intermolecular hydrogen bonds, see: Taylor & Kennard (1982); Jagarlapudi & Desiraju (1987); Biradha et al. (1993); Batchelor et al. (2000). For background on resonance structures, see: Cradwick & Hall (1971); Shiau et al. (1980). [Please check text added to place references in context]Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C18H10O4 | F(000) = 300 |
Mr = 290.26 | Dx = 1.555 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 928 reflections |
a = 8.85 (2) Å | θ = 3.1–27.5° |
b = 3.750 (8) Å | µ = 0.11 mm−1 |
c = 18.74 (4) Å | T = 173 K |
β = 94.55 (3)° | Prism, red |
V = 620 (2) Å3 | 0.29 × 0.07 × 0.03 mm |
Z = 2 |
Rigaku Mercury CCD diffractometer | 668 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.087 |
Graphite Monochromator monochromator | θmax = 27.5°, θmin = 3.1° |
Detector resolution: 14.6199 pixels mm-1 | h = −9→11 |
φ and ω scans | k = −4→3 |
5026 measured reflections | l = −19→24 |
1347 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.114 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.354 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.1532P)2 + 1.2875P] where P = (Fo2 + 2Fc2)/3 |
1347 reflections | (Δ/σ)max = 0.053 |
104 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C18H10O4 | V = 620 (2) Å3 |
Mr = 290.26 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.85 (2) Å | µ = 0.11 mm−1 |
b = 3.750 (8) Å | T = 173 K |
c = 18.74 (4) Å | 0.29 × 0.07 × 0.03 mm |
β = 94.55 (3)° |
Rigaku Mercury CCD diffractometer | 668 reflections with I > 2σ(I) |
5026 measured reflections | Rint = 0.087 |
1347 independent reflections |
R[F2 > 2σ(F2)] = 0.114 | 0 restraints |
wR(F2) = 0.354 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.52 e Å−3 |
1347 reflections | Δρmin = −0.32 e Å−3 |
104 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3137 (5) | 0.1246 (12) | 0.4518 (2) | 0.0438 (12) | |
O2 | 0.1298 (5) | −0.1563 (12) | 0.3591 (2) | 0.0426 (12) | |
H2 | 0.248 (10) | −0.03 (3) | 0.378 (5) | 0.09 (3)* | |
C1 | 0.2384 (6) | 0.2682 (14) | 0.5696 (3) | 0.0317 (13) | |
C2 | 0.1249 (6) | 0.2760 (13) | 0.6171 (3) | 0.0290 (12) | |
C3 | 0.1583 (7) | 0.4134 (15) | 0.6871 (3) | 0.0363 (14) | |
H3 | 0.0823 | 0.4198 | 0.7201 | 0.044* | |
C4 | 0.3022 (7) | 0.5375 (15) | 0.7068 (3) | 0.0381 (15) | |
H4 | 0.3247 | 0.6318 | 0.7535 | 0.046* | |
C5 | 0.4162 (7) | 0.5264 (15) | 0.6586 (3) | 0.0403 (15) | |
H5 | 0.5151 | 0.6117 | 0.6728 | 0.048* | |
C6 | 0.3839 (7) | 0.3917 (14) | 0.5910 (3) | 0.0371 (14) | |
H6 | 0.4611 | 0.3823 | 0.5586 | 0.045* | |
C7 | 0.2079 (6) | 0.1277 (14) | 0.4965 (3) | 0.0294 (12) | |
C8 | 0.0599 (6) | −0.0051 (14) | 0.4744 (3) | 0.0312 (13) | |
C9 | 0.0278 (7) | −0.1452 (13) | 0.4050 (3) | 0.0308 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.034 (2) | 0.052 (3) | 0.046 (3) | −0.011 (2) | 0.0070 (18) | −0.004 (2) |
O2 | 0.042 (3) | 0.048 (3) | 0.041 (2) | 0.000 (2) | 0.0186 (19) | −0.0051 (19) |
C1 | 0.027 (3) | 0.025 (3) | 0.043 (3) | 0.003 (2) | 0.002 (2) | −0.001 (2) |
C2 | 0.028 (3) | 0.024 (3) | 0.034 (3) | 0.000 (2) | −0.005 (2) | 0.001 (2) |
C3 | 0.049 (4) | 0.028 (3) | 0.031 (3) | −0.005 (3) | −0.003 (2) | 0.004 (2) |
C4 | 0.063 (4) | 0.027 (3) | 0.023 (3) | −0.001 (3) | −0.008 (3) | 0.000 (2) |
C5 | 0.042 (3) | 0.031 (3) | 0.045 (3) | −0.001 (3) | −0.011 (3) | 0.002 (3) |
C6 | 0.038 (3) | 0.022 (3) | 0.052 (4) | −0.004 (2) | 0.004 (3) | 0.005 (2) |
C7 | 0.021 (3) | 0.030 (3) | 0.037 (3) | −0.001 (2) | 0.005 (2) | 0.002 (2) |
C8 | 0.036 (3) | 0.031 (3) | 0.025 (3) | 0.001 (2) | −0.006 (2) | 0.012 (2) |
C9 | 0.044 (3) | 0.021 (2) | 0.028 (3) | −0.002 (2) | 0.002 (2) | −0.002 (2) |
O1—C7 | 1.304 (6) | C4—C5 | 1.407 (9) |
O2—C9 | 1.296 (7) | C4—H4 | 0.9500 |
O2—H2 | 1.19 (9) | C5—C6 | 1.373 (8) |
C1—C2 | 1.395 (8) | C5—H5 | 0.9500 |
C1—C6 | 1.398 (8) | C6—H6 | 0.9500 |
C1—C7 | 1.472 (8) | C7—C8 | 1.432 (8) |
C2—C3 | 1.418 (8) | C8—C9 | 1.410 (7) |
C2—C9i | 1.467 (8) | C8—C8i | 1.486 (11) |
C3—C4 | 1.378 (9) | C9—C2i | 1.467 (8) |
C3—H3 | 0.9500 | ||
C7—O1—H2 | 110 (3) | C6—C5—H5 | 120.1 |
C9—O2—H2 | 115 (4) | C4—C5—H5 | 120.1 |
C2—C1—C6 | 120.2 (5) | C5—C6—C1 | 120.4 (6) |
C2—C1—C7 | 120.9 (5) | C5—C6—H6 | 119.8 |
C6—C1—C7 | 118.9 (5) | C1—C6—H6 | 119.8 |
C1—C2—C3 | 119.4 (5) | O1—C7—C8 | 119.9 (5) |
C1—C2—C9i | 120.4 (5) | O1—C7—C1 | 120.8 (5) |
C3—C2—C9i | 120.2 (5) | C8—C7—C1 | 119.3 (5) |
C2—C3—C4 | 119.4 (5) | C9—C8—C7 | 120.6 (5) |
C2—C3—H3 | 120.3 | C9—C8—C8i | 120.2 (6) |
C4—C3—H3 | 120.3 | C7—C8—C8i | 119.2 (6) |
C3—C4—C5 | 120.8 (5) | O2—C9—C8 | 121.6 (5) |
C3—C4—H4 | 119.6 | O2—C9—C2i | 118.4 (5) |
C5—C4—H4 | 119.6 | C8—C9—C2i | 119.9 (5) |
C6—C5—C4 | 119.7 (6) | ||
C6—C1—C2—C3 | 0.6 (8) | C6—C1—C7—O1 | −1.4 (8) |
C7—C1—C2—C3 | −180.0 (5) | C2—C1—C7—C8 | −0.5 (8) |
C6—C1—C2—C9i | −179.7 (5) | C6—C1—C7—C8 | 178.9 (5) |
C7—C1—C2—C9i | −0.3 (8) | O1—C7—C8—C9 | 1.1 (7) |
C1—C2—C3—C4 | 0.2 (7) | C1—C7—C8—C9 | −179.3 (5) |
C9i—C2—C3—C4 | −179.5 (5) | O1—C7—C8—C8i | −179.1 (6) |
C2—C3—C4—C5 | −0.6 (8) | C1—C7—C8—C8i | 0.6 (8) |
C3—C4—C5—C6 | 0.3 (8) | C7—C8—C9—O2 | −0.5 (8) |
C4—C5—C6—C1 | 0.5 (8) | C8i—C8—C9—O2 | 179.7 (6) |
C2—C1—C6—C5 | −0.9 (8) | C7—C8—C9—C2i | −179.2 (5) |
C7—C1—C6—C5 | 179.6 (5) | C8i—C8—C9—C2i | 1.0 (8) |
C2—C1—C7—O1 | 179.2 (5) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 1.19 (9) | 1.56 (9) | 2.516 (7) | 132 (6) |
C6—H6···O1ii | 0.95 | 2.77 | 3.449 (9) | 129 |
C6—H6···O1iii | 0.95 | 2.74 | 3.382 (9) | 126 |
C3—H3···O2iv | 0.95 | 2.75 | 3.378 (10) | 124 |
C4—H4···O2iv | 0.95 | 2.73 | 3.371 (9) | 126 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H10O4 |
Mr | 290.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 8.85 (2), 3.750 (8), 18.74 (4) |
β (°) | 94.55 (3) |
V (Å3) | 620 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.29 × 0.07 × 0.03 |
Data collection | |
Diffractometer | Rigaku Mercury CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5026, 1347, 668 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.114, 0.354, 0.99 |
No. of reflections | 1347 |
No. of parameters | 104 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.52, −0.32 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).
O1—C7 | 1.304 (6) | C3—C4 | 1.378 (9) |
O2—C9 | 1.296 (7) | C4—C5 | 1.407 (9) |
O2—H2 | 1.19 (9) | C5—C6 | 1.373 (8) |
C1—C2 | 1.395 (8) | C7—C8 | 1.432 (8) |
C1—C6 | 1.398 (8) | C8—C9 | 1.410 (7) |
C1—C7 | 1.472 (8) | C8—C8i | 1.486 (11) |
C2—C3 | 1.418 (8) | C9—C2i | 1.467 (8) |
C2—C9i | 1.467 (8) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 1.19 (9) | 1.56 (9) | 2.516 (7) | 132 (6) |
C6—H6···O1ii | 0.95 | 2.77 | 3.449 (9) | 128.9 |
C6—H6···O1iii | 0.95 | 2.74 | 3.382 (9) | 125.8 |
C3—H3···O2iv | 0.95 | 2.75 | 3.378 (10) | 124.1 |
C4—H4···O2iv | 0.95 | 2.73 | 3.371 (9) | 125.6 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by Grants-in-Aid (Nos. 17750037 and 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.
References
Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839–848. Web of Science CSD CrossRef CAS Google Scholar
Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925. CSD CrossRef CAS Web of Science Google Scholar
Biradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. & Desiraju, G. R. (1993). J. Chem. Soc. Chem. Commun. pp. 1473–1474. CrossRef Web of Science Google Scholar
Cradwick, P. D. & Hall, D. (1971). Acta Cryst. B27, 1990–1997. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Fehlmann, M. & Nigli, A. (1965). Helv. Chim. Acta, 48, 305–308. CSD CrossRef CAS Web of Science Google Scholar
Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028. CrossRef CAS Web of Science Google Scholar
Gilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564–576. CrossRef CAS Web of Science IUCr Journals Google Scholar
Herbstein, F. H., Kapon, M., Reisner, G. M., Lehman, M. S., Kress, R. B., Wilson, R. B., Shiau, W.-I., Duesler, E. N., Paul, I. C. & Curtin, D. Y. (1985). Proc. R. Soc. London Ser. A, 399, 295–319. CrossRef CAS Google Scholar
Jagarlapudi, A. R. P. & Desiraju, G. R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1195–1202. Google Scholar
Molecular Structure Corporation & Rigaku (2000). TEXSAN. Version 1.11. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Molecular Structure Corporation & Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Rubio, P., Florencio, F., García-Blanco, S. & Rodriguez, J. G. (1985). Acta Cryst. C41, 1797–1799. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sarkhel, S., Shefali, Mathad, V. T., Raj, K., Bhaduri, A. P., Maulik, P. R., Broder, C. K. & Howard, J. A. K. (2001). Acta Cryst. C57, 1199–1200. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sathiyendiran, M., Chang, C.-H., Chuang, C.-H., Luo, T.-T., Wen, Y.-S. & Lu, K.-L. (2007). Dalton Trans. pp. 1872–1874. Web of Science CSD CrossRef Google Scholar
Savko, M., Kaščáková, S., Mojzeš, P., Jancura, D., Miškovský, P. & Uličný, J. (2007). J. Mol. Struct. THEOCHEM, 803, 79–87. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shiau, W.-I., Duesler, E. N., Paul, I. C., Curtin, D. Y., Blann, W. G. & Fyfe, C. A. (1980). J. Am. Chem. Soc. 102, 4546–4548. CSD CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348–357. CrossRef CAS Web of Science IUCr Journals Google Scholar
Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic molecules containing naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) skeleton have been the attractive subject of structural investigations (Fehlmann & Nigli, 1965; Cradwick & Hall, 1971; Herbstein et al., 1985; Rubio et al., 1985; Sarkhel et al., 2001; Savko et al., 2007). The title compound, (I) (Fig. 1), is π-extended naphthazarin and its molecular and crystal structures are described here.
The molecule of (I) is centrosymmetric and planar, with an r.m.s deviation of 0.0098 Å from the least-squares plane for the fitted non-H atoms. The molecular structure is similar to that of naphthazarin. The symmetry of the carbon skeleton of (I) is close to D2 h (Table 1). The long phenolic O2—H2 bond [1.19 (9) Å] constitutes an intramolecular hydrogen bond between the phenolic O2 and quinonoid O1 atoms (Gilli et al., 1989; Bertolasi et al., 1991; Gilli et al., 1993; Steiner & Saenger, 1994). These facts imply that the structure of (I) can be interpreted not as 1,4- nor 1,5-quinone but as resonance between two zwitterion contributors, as shown in Scheme 1 (Cradwick & Hall, 1971; Shiau et al., 1980).
In the crystal structure, the molecules form a herringbone-type stacking along the b axis, where the distance between the molecular planes is 3.42 Å (Fig. 2). The packing mode is similar to that characteristic of aromatic hydrocarbon atoms. The intermolecular C—H···O hydrogen bonds (Taylor & Kennard, 1982; Jagarlapudi & Desiraju, 1987; Biradha et al., 1993; Batchelor et al., 2000) are found between the herringbone-type stackings (Table 2). Similar C—H···O hydrogen bonds (2.54–3.01 Å) were observed in the crystal structure of naphthazarin (Cradwick & Hall, 1971).