organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Meth­­oxy-3-(4-methyl­benzyl­­idene)-6-(prop-1-en­yl)chroman-4-one

aDepartment of Chemistry, Presidency College, Chennai 600 005, India, bDepartment of Chemistry, Valliammai Engineering College, Kattankulathur, Chennai, India, cDepartment of Physics, Presidency College, Chennai 600 005, India, and dDepartment of Chemistry, National Dong Hwa University, Shou-feng, Hualien 974, Taiwan
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 9 November 2007; accepted 20 November 2007; online 6 December 2007)

In the title compound, C21H20O3, the tolyl ring makes a dihedral angle of 31.11 (6)° with the benzene ring of the chromanone unit. The pyrone ring adopts a half-chair conformation. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O inter­action and the crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions and a C—H⋯π inter­action.

Related literature

For related lituerature, see: Puviarasan et al. (1998[Puviarasan, K., Govindasamy, L., Velmurugan, D., Shanmuga Sundara Raj, S., Shanmuga Sundaram, M., Raghunathan, R. & Fun, H.-K. (1998). Acta Cryst. C54, 961-963.]); Tillekeratne et al. (2001[Tillekeratne, L. M., Sherette, A., Grossman, P., Hupe, L., Hupe, D. & Hudson, R. A. (2001). Bioorg. Med. Chem. Lett. 11, 2763-2764.]); Nissa et al. (2001[Nissa, M. N., Rajakannan, V., Kim, M.-J. & Velmurugan, D. (2001). Acta Cryst. E57, o1230-o1232.]); Kang et al. (2004[Kang, J.-G., Shin, S.-Y., Kim, M.-J., Bajpai, V., Maheshwari, D. K. & Kang, S.-C. (2004). J. Antibiot. 57, 11, 726-731.]); Wu, Xu, Wan et al. (2005[Wu, H., Xu, Z., Wan, Y., Liang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, o1692-o1693.]); Wu, Xu, Zhou et al. (2005[Wu, H., Xu, Z., Zhou, J. & Liang, Y.-M. (2005). Acta Cryst. E61, o1095-o1096.]); Schollmeyer et al. (2005[Schollmeyer, D., Kammerer, B., Peifer, C. & Laufer, S. (2005). Acta Cryst. E61, o868-0869.]); Suresh et al. (2007[Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20O3

  • Mr = 320.37

  • Monoclinic, P 21 /n

  • a = 6.8550 (5) Å

  • b = 11.6264 (8) Å

  • c = 20.9669 (14) Å

  • β = 96.947 (1)°

  • V = 1658.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.18 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.995

  • 17310 measured reflections

  • 2941 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.05

  • 2941 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11/C14–C17/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 2.39 2.784 (2) 106
C7—H7C⋯O2i 0.96 2.57 3.512 (4) 166
C10—H10B⋯O2ii 0.97 2.46 3.246 (4) 138
C21—H21BCgiii 0.96 2.86 3.722 (2) 150
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chromanone moiety present in the title compound consisting of the pyrone ring and benzene ring plays an important role in many areas of medicines such as inhibition of HIV replication (Tillekeratne et al., 2001). The naturally occurring classes of compounds to which they belong, the benzylidene chroman-4-ones, have identified as a potential source of new anti-fungal agents (Kang et al., 2004).

The geometric parameters in the title compound agree with the reported values of similar structure (Puviarasan et al., 1998; Wu, Xu, Wan et al., 2005; Wu, Xu, Zhou et al., 2005; Schollmeyer et al., 2005; Nissa et al., 2001; Suresh et al., 2007). The methylphenyl ring makes a dihedral angle of 31.11 (6)° with the benzene ring of the chromanone unit.

The molecular structure is stabilized by a weak intramolecular C—H···O interaction and the crystal packing is stabilized by weak intermolecular C—H···O interactions and a C—H···π interaction involving the C11/C14—C17/C12 (Centroid Cg) ring.

Related literature top

For related lituerature, see: Puviarasan et al. (1998); Tillekeratne et al. (2001); Nissa et al. (2001); Kang et al. (2004); Wu, Xu, Wan et al. (2005); Wu, Xu, Zhou et al. (2005); Schollmeyer et al. (2005); Suresh et al. (2007). Cg is the centroid of the C11/C14–C17/C12 ring.

Experimental top

Baylis-Hillman reaction of p-tolualdehyde with methyl acrylate afforded methyl-3-hydroxy-3-(p-tolyl-)-2-methyene propanoate, which was converted to methyl-(2,2)–2-bromomethyl-3-(p-tolyl)-prop-2-enoate on treatment with hydrobromic acid in presence of concentrated sulfuric acid. The product was treated with isoeugenol in presence of potassium carbonate and acetone to give methyl-3-(p-tolyl)-2-(2-methoxy-4-prop-1-enyl)-phenoxy methyl-prop-2-enoate, which was hydrolysed by alkali solution to give the prop-2-enoic acid. This acid was cyclized with trifluoro acetic anhydride in dichloromethane to yield 3-(4-methyl)benzylidine-6-prop-1-enyl-8-methoxyhroman-4-one.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

The chromanone moiety present in the title compound consisting of the pyrone ring and benzene ring plays an important role in many areas of medicines such as inhibition of HIV replication (Tillekeratne et al., 2001). The naturally occurring classes of compounds to which they belong, the benzylidene chroman-4-ones, have identified as a potential source of new anti-fungal agents (Kang et al., 2004).

The geometric parameters in the title compound agree with the reported values of similar structure (Puviarasan et al., 1998; Wu, Xu, Wan et al., 2005; Wu, Xu, Zhou et al., 2005; Schollmeyer et al., 2005; Nissa et al., 2001; Suresh et al., 2007). The methylphenyl ring makes a dihedral angle of 31.11 (6)° with the benzene ring of the chromanone unit.

The molecular structure is stabilized by a weak intramolecular C—H···O interaction and the crystal packing is stabilized by weak intermolecular C—H···O interactions and a C—H···π interaction involving the C11/C14—C17/C12 (Centroid Cg) ring.

For related lituerature, see: Puviarasan et al. (1998); Tillekeratne et al. (2001); Nissa et al. (2001); Kang et al. (2004); Wu, Xu, Wan et al. (2005); Wu, Xu, Zhou et al. (2005); Schollmeyer et al. (2005); Suresh et al. (2007). Cg is the centroid of the C11/C14–C17/C12 ring.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A partial packing diagram of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
8-Methoxy-3-(4-methylbenzylidene)-6-(prop-1-enyl)chroman-4-one top
Crystal data top
C21H20O3Z = 4
Mr = 320.37F(000) = 680
Monoclinic, P21/nDx = 1.283 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.8550 (5) Åθ = 1.9–27.2°
b = 11.6264 (8) ŵ = 0.09 mm1
c = 20.9669 (14) ÅT = 293 K
β = 96.947 (1)°Prism, yellow
V = 1658.8 (2) Å30.18 × 0.11 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2941 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scanθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.984, Tmax = 0.995k = 1313
17310 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.331P]
where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max = 0.006
220 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H20O3V = 1658.8 (2) Å3
Mr = 320.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8550 (5) ŵ = 0.09 mm1
b = 11.6264 (8) ÅT = 293 K
c = 20.9669 (14) Å0.18 × 0.11 × 0.06 mm
β = 96.947 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2941 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2054 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.995Rint = 0.039
17310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2941 reflectionsΔρmin = 0.16 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72176 (17)0.14365 (10)0.15211 (6)0.0560 (4)
C110.5481 (2)0.19760 (14)0.13450 (8)0.0431 (4)
O30.45043 (19)0.02250 (10)0.08579 (7)0.0622 (4)
O20.66403 (19)0.48556 (10)0.18481 (7)0.0616 (4)
C170.3351 (3)0.36251 (16)0.12538 (8)0.0484 (5)
H170.31310.43910.13520.058*
C120.5149 (2)0.31169 (14)0.14850 (8)0.0431 (4)
C140.4016 (3)0.13375 (14)0.09710 (9)0.0467 (4)
C130.6739 (2)0.38058 (14)0.18298 (8)0.0439 (4)
C90.8458 (2)0.31532 (14)0.21405 (8)0.0429 (4)
C150.2262 (3)0.18653 (16)0.07531 (9)0.0519 (5)
H150.12860.14420.05110.062*
C160.1906 (3)0.30248 (16)0.08862 (9)0.0498 (5)
C80.9929 (2)0.37410 (15)0.24703 (8)0.0461 (4)
H80.97490.45340.24680.055*
C190.0062 (3)0.36065 (18)0.06302 (10)0.0593 (5)
H190.00810.43550.07740.071*
C11.1769 (2)0.33551 (15)0.28342 (8)0.0436 (4)
C200.1372 (3)0.32230 (19)0.02369 (10)0.0652 (6)
H200.12600.24730.00920.078*
C100.8380 (3)0.18735 (15)0.20825 (10)0.0562 (5)
H10A0.97110.15880.20870.067*
H10B0.78660.15650.24580.067*
C21.3272 (3)0.41550 (16)0.29596 (9)0.0545 (5)
H21.30650.49060.28140.065*
C41.5439 (3)0.27688 (17)0.35240 (9)0.0506 (5)
C31.5067 (3)0.38657 (17)0.32947 (9)0.0568 (5)
H31.60420.44230.33660.068*
C61.2140 (3)0.22494 (16)0.30760 (9)0.0532 (5)
H61.11640.16910.30120.064*
C51.3935 (3)0.19739 (17)0.34087 (10)0.0575 (5)
H51.41440.12270.35610.069*
C210.3191 (3)0.3854 (2)0.00093 (11)0.0740 (7)
H21A0.31290.46220.01600.111*
H21B0.43100.34640.01220.111*
H21C0.33090.38840.04700.111*
C71.7370 (3)0.2454 (2)0.39040 (10)0.0685 (6)
H7A1.72150.24230.43530.103*
H7B1.83390.30220.38350.103*
H7C1.77880.17160.37660.103*
C180.3117 (3)0.04441 (18)0.04568 (11)0.0714 (6)
H18A0.19100.04870.06450.107*
H18B0.36290.12050.04140.107*
H18C0.28750.00920.00410.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0484 (7)0.0417 (7)0.0717 (9)0.0082 (6)0.0177 (6)0.0105 (6)
C110.0403 (9)0.0413 (10)0.0459 (10)0.0016 (7)0.0016 (8)0.0025 (7)
O30.0573 (8)0.0466 (8)0.0776 (10)0.0033 (6)0.0127 (7)0.0133 (7)
O20.0621 (8)0.0375 (7)0.0800 (10)0.0054 (6)0.0125 (7)0.0039 (6)
C170.0456 (10)0.0472 (10)0.0509 (11)0.0076 (8)0.0001 (9)0.0037 (8)
C120.0412 (9)0.0423 (10)0.0445 (10)0.0036 (7)0.0003 (8)0.0010 (7)
C140.0478 (10)0.0407 (10)0.0503 (10)0.0017 (8)0.0006 (8)0.0019 (8)
C130.0445 (10)0.0387 (10)0.0474 (10)0.0027 (7)0.0010 (8)0.0017 (8)
C90.0424 (10)0.0386 (9)0.0462 (10)0.0010 (7)0.0005 (8)0.0009 (7)
C150.0420 (10)0.0592 (12)0.0517 (11)0.0058 (9)0.0056 (8)0.0034 (9)
C160.0427 (10)0.0560 (11)0.0494 (10)0.0043 (8)0.0005 (8)0.0014 (8)
C80.0466 (11)0.0395 (9)0.0512 (10)0.0006 (8)0.0015 (8)0.0011 (8)
C190.0462 (11)0.0651 (13)0.0639 (13)0.0047 (9)0.0046 (10)0.0083 (10)
C10.0400 (9)0.0448 (10)0.0447 (10)0.0033 (8)0.0004 (8)0.0017 (8)
C200.0523 (12)0.0696 (13)0.0702 (14)0.0056 (10)0.0074 (10)0.0053 (11)
C100.0514 (11)0.0419 (10)0.0685 (13)0.0005 (8)0.0197 (10)0.0022 (9)
C20.0533 (11)0.0458 (10)0.0620 (12)0.0098 (9)0.0036 (9)0.0048 (9)
C40.0388 (10)0.0624 (12)0.0496 (11)0.0015 (9)0.0014 (8)0.0043 (9)
C30.0450 (11)0.0589 (12)0.0643 (12)0.0164 (9)0.0016 (9)0.0006 (10)
C60.0446 (10)0.0469 (10)0.0643 (12)0.0085 (8)0.0086 (9)0.0046 (9)
C50.0515 (11)0.0480 (11)0.0688 (13)0.0012 (9)0.0091 (10)0.0063 (9)
C210.0482 (12)0.0975 (17)0.0734 (15)0.0099 (11)0.0044 (11)0.0110 (13)
C70.0460 (11)0.0862 (16)0.0692 (14)0.0021 (10)0.0093 (10)0.0048 (12)
C180.0684 (14)0.0598 (13)0.0821 (16)0.0118 (11)0.0073 (12)0.0215 (11)
Geometric parameters (Å, º) top
O1—C111.3567 (19)C1—C61.394 (2)
O1—C101.432 (2)C20—C211.484 (3)
C11—C121.383 (2)C20—H200.9300
C11—C141.408 (2)C10—H10A0.9700
O3—C141.364 (2)C10—H10B0.9700
O3—C181.422 (2)C2—C31.383 (3)
O2—C131.2232 (19)C2—H20.9300
C17—C161.370 (2)C4—C31.376 (3)
C17—C121.400 (2)C4—C51.384 (3)
C17—H170.9300C4—C71.505 (2)
C12—C131.470 (2)C3—H30.9300
C14—C151.378 (2)C6—C51.377 (2)
C13—C91.484 (2)C6—H60.9300
C9—C81.339 (2)C5—H50.9300
C9—C101.493 (2)C21—H21A0.9600
C15—C161.404 (3)C21—H21B0.9600
C15—H150.9300C21—H21C0.9600
C16—C191.476 (2)C7—H7A0.9600
C8—C11.464 (2)C7—H7B0.9600
C8—H80.9300C7—H7C0.9600
C19—C201.284 (3)C18—H18A0.9600
C19—H190.9300C18—H18B0.9600
C1—C21.389 (2)C18—H18C0.9600
C11—O1—C10116.25 (14)O1—C10—H10A108.4
O1—C11—C12123.15 (15)C9—C10—H10A108.4
O1—C11—C14116.80 (15)O1—C10—H10B108.4
C12—C11—C14119.95 (15)C9—C10—H10B108.4
C14—O3—C18117.44 (14)H10A—C10—H10B107.5
C16—C17—C12121.75 (17)C3—C2—C1121.84 (17)
C16—C17—H17119.1C3—C2—H2119.1
C12—C17—H17119.1C1—C2—H2119.1
C11—C12—C17119.46 (15)C3—C4—C5117.07 (17)
C11—C12—C13119.72 (15)C3—C4—C7121.62 (17)
C17—C12—C13120.65 (15)C5—C4—C7121.27 (18)
O3—C14—C15125.96 (16)C4—C3—C2121.27 (17)
O3—C14—C11115.04 (15)C4—C3—H3119.4
C15—C14—C11119.00 (16)C2—C3—H3119.4
O2—C13—C12121.22 (15)C5—C6—C1120.76 (17)
O2—C13—C9122.71 (15)C5—C6—H6119.6
C12—C13—C9116.06 (14)C1—C6—H6119.6
C8—C9—C13118.29 (15)C6—C5—C4122.31 (18)
C8—C9—C10124.61 (15)C6—C5—H5118.8
C13—C9—C10117.05 (14)C4—C5—H5118.8
C14—C15—C16121.81 (16)C20—C21—H21A109.5
C14—C15—H15119.1C20—C21—H21B109.5
C16—C15—H15119.1H21A—C21—H21B109.5
C17—C16—C15118.03 (16)C20—C21—H21C109.5
C17—C16—C19120.01 (17)H21A—C21—H21C109.5
C15—C16—C19121.95 (16)H21B—C21—H21C109.5
C9—C8—C1131.33 (16)C4—C7—H7A109.5
C9—C8—H8114.3C4—C7—H7B109.5
C1—C8—H8114.3H7A—C7—H7B109.5
C20—C19—C16129.0 (2)C4—C7—H7C109.5
C20—C19—H19115.5H7A—C7—H7C109.5
C16—C19—H19115.5H7B—C7—H7C109.5
C2—C1—C6116.74 (16)O3—C18—H18A109.5
C2—C1—C8117.80 (16)O3—C18—H18B109.5
C6—C1—C8125.46 (15)H18A—C18—H18B109.5
C19—C20—C21126.7 (2)O3—C18—H18C109.5
C19—C20—H20116.7H18A—C18—H18C109.5
C21—C20—H20116.7H18B—C18—H18C109.5
O1—C10—C9115.55 (14)
C10—O1—C11—C1227.3 (2)C12—C17—C16—C151.0 (3)
C10—O1—C11—C14156.35 (16)C12—C17—C16—C19177.52 (17)
O1—C11—C12—C17176.39 (16)C14—C15—C16—C171.2 (3)
C14—C11—C12—C170.2 (3)C14—C15—C16—C19177.31 (18)
O1—C11—C12—C131.2 (3)C13—C9—C8—C1178.65 (17)
C14—C11—C12—C13174.98 (16)C10—C9—C8—C11.2 (3)
C16—C17—C12—C110.6 (3)C17—C16—C19—C20173.4 (2)
C16—C17—C12—C13174.58 (17)C15—C16—C19—C205.1 (3)
C18—O3—C14—C152.8 (3)C9—C8—C1—C2160.54 (19)
C18—O3—C14—C11177.03 (17)C9—C8—C1—C620.4 (3)
O1—C11—C14—O33.0 (2)C16—C19—C20—C21179.4 (2)
C12—C11—C14—O3179.47 (16)C11—O1—C10—C941.3 (2)
O1—C11—C14—C15176.79 (16)C8—C9—C10—O1154.41 (17)
C12—C11—C14—C150.4 (3)C13—C9—C10—O128.1 (2)
C11—C12—C13—O2165.08 (18)C6—C1—C2—C31.5 (3)
C17—C12—C13—O210.0 (3)C8—C1—C2—C3179.40 (17)
C11—C12—C13—C914.0 (2)C5—C4—C3—C20.5 (3)
C17—C12—C13—C9170.86 (16)C7—C4—C3—C2178.38 (18)
O2—C13—C9—C82.1 (3)C1—C2—C3—C40.5 (3)
C12—C13—C9—C8178.81 (16)C2—C1—C6—C51.5 (3)
O2—C13—C9—C10179.76 (18)C8—C1—C6—C5179.48 (18)
C12—C13—C9—C101.2 (2)C1—C6—C5—C40.5 (3)
O3—C14—C15—C16178.93 (18)C3—C4—C5—C60.5 (3)
C11—C14—C15—C160.9 (3)C7—C4—C5—C6178.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.392.784 (2)106
C7—H7C···O2i0.962.573.512 (4)166
C10—H10B···O2ii0.972.463.246 (4)138
C21—H21B···Cgiii0.962.863.722 (2)150
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H20O3
Mr320.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.8550 (5), 11.6264 (8), 20.9669 (14)
β (°) 96.947 (1)
V3)1658.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.11 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
17310, 2941, 2054
Rint0.039
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.05
No. of reflections2941
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.392.784 (2)106
C7—H7C···O2i0.962.573.512 (4)166
C10—H10B···O2ii0.972.463.246 (4)138
C21—H21B···Cgiii0.962.863.722 (2)150
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1, y, z.
 

References

First citationBruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, J.-G., Shin, S.-Y., Kim, M.-J., Bajpai, V., Maheshwari, D. K. & Kang, S.-C. (2004). J. Antibiot. 57, 11, 726–731.  Google Scholar
First citationNissa, M. N., Rajakannan, V., Kim, M.-J. & Velmurugan, D. (2001). Acta Cryst. E57, o1230–o1232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPuviarasan, K., Govindasamy, L., Velmurugan, D., Shanmuga Sundara Raj, S., Shanmuga Sundaram, M., Raghunathan, R. & Fun, H.-K. (1998). Acta Cryst. C54, 961–963.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchollmeyer, D., Kammerer, B., Peifer, C. & Laufer, S. (2005). Acta Cryst. E61, o868–0869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTillekeratne, L. M., Sherette, A., Grossman, P., Hupe, L., Hupe, D. & Hudson, R. A. (2001). Bioorg. Med. Chem. Lett. 11, 2763–2764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, H., Xu, Z., Wan, Y., Liang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, o1692–o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, H., Xu, Z., Zhou, J. & Liang, Y.-M. (2005). Acta Cryst. E61, o1095–o1096.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds