organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro­quinuclidinium chloride

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 February 2008; accepted 21 April 2008; online 26 April 2008)

The cation of the title compound, C7H13ClN+·Cl, forms a linear hydrogen bond to the chloride anion. The cation is disordered about a mirror plane.

Related literature

For isomeric 4-chloro­quinuclidinium chloride, see: Kurahashi et al. (1980[Kurahashi, M., Engel, P. & Nowacki, W. (1980). Z. Kristallogr. 152, 147-156.]), which also reports the parent quinuclidinium chloride.

[Scheme 1]

Experimental

Crystal data
  • C7H13ClN+·Cl

  • Mr = 182.10

  • Orthorhombic, P n m a

  • a = 9.379 (1) Å

  • b = 8.067 (1) Å

  • c = 11.482 (2) Å

  • V = 868.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100 (2) K

  • 0.15 × 0.08 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.872, Tmax = 1.000 (expected range = 0.855–0.980)

  • 5307 measured reflections

  • 1068 independent reflections

  • 856 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.02

  • 1068 reflections

  • 82 parameters

  • 58 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.88 (1) 2.13 (1) 3.008 (3) 175 (4)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

4-Chloroquinuclidinium chloride features an N–H···Cl hydrogen bond between the cation and anion. The N–C and C–C bonds are somewhat shorter than those in the unsubstituted salt, and this has been attributed to the electron-withdrawing effect of the chlorine substituent (Kurahashi et al., 1980). The present isomeric compound (Scheme I) is expected to show this feature; however, owing to disorder, the effect cannot be unambiguously observed even at low temperature. The cation forms a linear hydrogen bond [N–H···Cl 3.008 (3) Å] to the chloride; the cation is disordered about a mirror plane (Fig. 1).

Related literature top

For isomeric 4-chloroquinuclidinium chloride, see: Kurahashi et al. (1980), which also reports the parent quinuclidinium chloride.

Experimental top

The commercially available compound was a crystalline. A large block was cut into a smaller specimen.

Refinement top

The cation is disordered about a mirror plane in the carbon atoms except C1 atom. The N1 and C1 atoms, which lie on this symmetry element, were refined with their normal half occupancies. The other carbon atoms were refined with half occupancies, subject to N–C being restrained to 1.49±0.01 Å and C–C to 1.54±0.01 Å. Additionally, the 1,3-related distances were restrained from 2.43±0.01 Å, to 2.47±0.01 Å as well as 2.52±-0.01 Å. The anisotropic temperature factors of the disordered carbon were restrained to be nearly isotropic but the N–H distance was restrained to 0.88±0.01 Å.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The ammonium H-atom was located in a difference Fourier map, and was refined with an N–H distance restraint of 0.88±0.01 Å; its temperature factor was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the two independent molecules of 2-chloroquinuclidinium chloride at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The dashed lines denote the hydrogen bond.
3-Chloroquinuclidinium chloride top
Crystal data top
C7H13ClN+·ClF(000) = 392
Mr = 182.10Dx = 1.408 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 909 reflections
a = 9.379 (1) Åθ = 3.1–22.9°
b = 8.067 (1) ŵ = 0.68 mm1
c = 11.482 (2) ÅT = 100 K
V = 868.7 (2) Å3Block, colorless
Z = 40.15 × 0.08 × 0.03 mm
Data collection top
Bruker SMART APEX
diffractometer
1068 independent reflections
Radiation source: fine-focus sealed tube856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 128
Tmin = 0.872, Tmax = 1.000k = 1010
5307 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.8408P]
where P = (Fo2 + 2Fc2)/3
1068 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.31 e Å3
58 restraintsΔρmin = 0.57 e Å3
Crystal data top
C7H13ClN+·ClV = 868.7 (2) Å3
Mr = 182.10Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.379 (1) ŵ = 0.68 mm1
b = 8.067 (1) ÅT = 100 K
c = 11.482 (2) Å0.15 × 0.08 × 0.03 mm
Data collection top
Bruker SMART APEX
diffractometer
1068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
856 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 1.000Rint = 0.047
5307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03958 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
1068 reflectionsΔρmin = 0.57 e Å3
82 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.69230 (8)0.25000.57828 (7)0.0218 (2)
Cl20.10483 (11)0.25000.30411 (8)0.0374 (3)
N10.3718 (3)0.25000.5682 (2)0.0190 (6)
H10.4648 (12)0.25000.576 (3)0.035 (12)*
C10.3382 (3)0.25000.4416 (3)0.0331 (9)
H1A0.40920.18320.39830.040*0.50
H1B0.33970.36450.41060.040*0.50
C20.1846 (4)0.1722 (5)0.4282 (3)0.0184 (9)0.50
H20.19470.04950.41940.022*
C30.2957 (7)0.3924 (13)0.6253 (9)0.0204 (17)0.50
H3A0.33970.49880.60190.024*0.50
H3B0.30130.38250.71110.024*0.50
C40.1402 (5)0.3855 (6)0.5851 (5)0.0212 (11)0.50
H4A0.12480.46530.52090.025*0.50
H4B0.07630.41590.65030.025*0.50
C50.3285 (7)0.0917 (13)0.6251 (10)0.024 (2)0.50
H5A0.36980.08570.70430.029*0.50
H5B0.36510.00340.57950.029*0.50
C60.1650 (5)0.0823 (7)0.6325 (4)0.0244 (12)0.50
H6A0.13230.11110.71200.029*0.50
H6B0.13160.03100.61390.029*0.50
C70.1058 (4)0.2079 (5)0.5430 (4)0.0205 (12)0.50
H70.00070.19310.53300.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0157 (4)0.0284 (4)0.0212 (4)0.0000.0006 (3)0.000
Cl20.0340 (5)0.0546 (6)0.0236 (5)0.0000.0111 (4)0.000
N10.0145 (13)0.0241 (13)0.0184 (14)0.0000.0020 (10)0.000
C10.0176 (17)0.064 (3)0.0182 (19)0.0000.0006 (13)0.000
C20.019 (2)0.0171 (19)0.019 (2)0.0018 (17)0.0032 (16)0.0013 (17)
C30.019 (3)0.017 (3)0.025 (3)0.004 (3)0.008 (3)0.004 (2)
C40.015 (2)0.022 (3)0.026 (3)0.004 (2)0.004 (2)0.006 (2)
C50.017 (3)0.019 (3)0.036 (4)0.000 (3)0.007 (3)0.001 (3)
C60.028 (3)0.026 (3)0.019 (3)0.003 (2)0.002 (2)0.004 (2)
C70.0108 (17)0.030 (4)0.021 (2)0.0037 (16)0.0014 (15)0.0070 (18)
Geometric parameters (Å, º) top
Cl2—C21.727 (4)C3—H3B0.9900
N1—C51.491 (7)C4—C71.546 (6)
N1—C11.488 (4)C4—H4A0.9900
N1—C31.502 (7)C4—H4B0.9900
N1—H10.88 (1)C5—C61.538 (7)
C1—C21.579 (4)C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C6—C71.546 (5)
C2—C71.539 (5)C6—H6A0.9900
C2—H21.0000C6—H6B0.9900
C3—C41.531 (7)C7—H71.0000
C3—H3A0.9900
C5—N1—C1111.7 (5)C3—C4—C7109.1 (4)
C5—N1—C3109.5 (3)C3—C4—H4A109.9
C1—N1—C3109.0 (4)C7—C4—H4A109.9
C5—N1—H1103.1 (13)C3—C4—H4B109.9
C1—N1—H1108 (3)C7—C4—H4B109.9
C3—N1—H1115.3 (14)H4A—C4—H4B108.3
N1—C1—C2106.8 (2)N1—C5—C6109.8 (5)
N1—C1—H1A110.4N1—C5—H5A109.7
C2—C1—H1A110.4C6—C5—H5A109.7
N1—C1—H1B110.4N1—C5—H5B109.7
C2—C1—H1B110.4C6—C5—H5B109.7
H1A—C1—H1B108.6H5A—C5—H5B108.2
C7—C2—C1106.3 (3)C5—C6—C7106.8 (4)
C7—C2—Cl2115.5 (3)C5—C6—H6A110.4
C1—C2—Cl2109.4 (2)C7—C6—H6A110.4
C7—C2—H2108.5C5—C6—H6B110.4
C1—C2—H2108.5C7—C6—H6B110.4
Cl2—C2—H2108.5H6A—C6—H6B108.6
N1—C3—C4107.1 (4)C2—C7—C4109.9 (3)
N1—C3—H3A110.3C2—C7—C6106.0 (3)
C4—C3—H3A110.3C4—C7—C6108.9 (3)
N1—C3—H3B110.3C2—C7—H7110.6
C4—C3—H3B110.3C4—C7—H7110.6
H3A—C3—H3B108.6C6—C7—H7110.6
C5—N1—C1—C242.7 (4)N1—C5—C6—C718.9 (10)
C3—N1—C1—C278.5 (4)C1—C2—C7—C440.7 (4)
N1—C1—C2—C727.3 (3)Cl2—C2—C7—C480.8 (4)
N1—C1—C2—Cl2152.63 (17)C1—C2—C7—C676.9 (4)
C5—N1—C3—C473.4 (6)Cl2—C2—C7—C6161.6 (3)
C1—N1—C3—C449.1 (8)C3—C4—C7—C270.0 (6)
N1—C3—C4—C721.4 (9)C3—C4—C7—C645.7 (6)
C1—N1—C5—C671.2 (9)C5—C6—C7—C249.6 (7)
C3—N1—C5—C649.7 (7)C5—C6—C7—C468.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.13 (1)3.008 (3)175 (4)

Experimental details

Crystal data
Chemical formulaC7H13ClN+·Cl
Mr182.10
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)9.379 (1), 8.067 (1), 11.482 (2)
V3)868.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.15 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.872, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5307, 1068, 856
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.02
No. of reflections1068
No. of parameters82
No. of restraints58
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.13 (1)3.008 (3)175 (4)
 

Acknowledgements

We thank the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKurahashi, M., Engel, P. & Nowacki, W. (1980). Z. Kristallogr. 152, 147–156.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds