organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­chloro­phen­yl)-3-(4-methyl­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 April 2008; accepted 19 April 2008; online 30 April 2008)

The mol­ecule of the title compound, C16H12Cl2O, adopts an E configuration. The dihedral angle between the two benzene rings is 42.09 (5)°. In the crystal structure, mol­ecules are linked into a three-dimensional framework by weak C—H⋯O inter­actions and by C—H⋯π inter­actions involving the methyl­phenyl ring.

Related literature

For related literature, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Gu et al. (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118-091120.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]); Patil, Teh et al. (2007[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122-o2123.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2O

  • Mr = 291.16

  • Orthorhombic, P b c a

  • a = 12.54850 (1) Å

  • b = 7.47750 (1) Å

  • c = 28.7764 (3) Å

  • V = 2700.13 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.39 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.914

  • 50054 measured reflections

  • 7296 independent reflections

  • 4995 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.148

  • S = 1.07

  • 7296 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.55 3.4352 (15) 159
C8—H8⋯O1ii 0.93 2.55 3.1995 (14) 127
C11—H11⋯Cg1iii 0.93 2.81 3.5611 (13) 139
C14—H14⋯Cg1iv 0.93 2.93 3.7066 (13) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C10–C15 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone derivatives have been studied extensively owing to their fascinating, technologically relevant nonlinear optical properties (Gu et al., 2008; Agrinskaya et al., 1999; Patil et al., 2006; Patil, Dharmaprakash et al., 2007; Patil, Teh et al., 2007).

The title molecule exhibits an E configuration with respect to the C8C9 double bond [1.3424 (14) Å]; the C7—C8—-C9—-C10 torsion angle is 179.61 (11)°. The dihedral angle between the two benzene rings is 42.09 (5)°. The bond lengths and angles in the title molecule have normal values.

The crystal structure is stabilized by weak C—H···O intermolecular hydrogen bonding interactions (Table 1), which link the molecules into a three-dimensional framework (Fig. 2). In addition weak C—H..π interactions involving the C10—C15 benzene ring (centroid Cg1) is observed.

Related literature top

For related literature, see: Agrinskaya et al. (1999); Gu et al. (2008); Patil et al. (2006); Patil, Dharmaprakash et al. (2007); Patil, Teh et al. (2007). Cg1 is the centroid of the C10–C15 benzene ring.

Experimental top

The title compound was synthesized by the condensation of p-tolualdehyde (0.01 mol) with 2,4-dichloroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 2 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was collected by filtration and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

H atoms were positioned geometrically [C-H = 0.93 (aromatic) or 0.96 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines.
1-(2,4-Dichlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C16H12Cl2OF(000) = 1200
Mr = 291.16Dx = 1.432 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9639 reflections
a = 12.54850 (1) Åθ = 2.8–34.6°
b = 7.47750 (1) ŵ = 0.47 mm1
c = 28.7764 (3) ÅT = 100 K
V = 2700.13 (3) Å3Block, colourless
Z = 80.47 × 0.39 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7296 independent reflections
Radiation source: fine-focus sealed tube4995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 37.9°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.811, Tmax = 0.914k = 1212
50054 measured reflectionsl = 4849
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.078P)2 + 0.0443P]
where P = (Fo2 + 2Fc2)/3
7296 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C16H12Cl2OV = 2700.13 (3) Å3
Mr = 291.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.54850 (1) ŵ = 0.47 mm1
b = 7.47750 (1) ÅT = 100 K
c = 28.7764 (3) Å0.47 × 0.39 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4995 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.914Rint = 0.052
50054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.07Δρmax = 0.64 e Å3
7296 reflectionsΔρmin = 0.53 e Å3
173 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46470 (2)0.76088 (4)0.057148 (10)0.02125 (8)
Cl20.36980 (3)0.56187 (5)0.116828 (9)0.02538 (9)
O10.13288 (7)0.72551 (12)0.08499 (3)0.02032 (17)
C10.37202 (9)0.67308 (15)0.01850 (4)0.0158 (2)
C20.40554 (10)0.64861 (15)0.02709 (4)0.0177 (2)
H20.47590.66960.03560.021*
C30.33080 (10)0.59184 (15)0.05947 (4)0.0177 (2)
C40.22518 (9)0.56292 (16)0.04764 (4)0.0183 (2)
H40.17600.52650.06990.022*
C50.19470 (9)0.58948 (15)0.00210 (4)0.0173 (2)
H50.12380.57150.00600.021*
C60.26690 (9)0.64245 (14)0.03220 (3)0.01531 (19)
C70.22310 (9)0.66606 (15)0.08060 (4)0.0165 (2)
C80.28861 (9)0.60913 (15)0.12039 (4)0.0168 (2)
H80.35120.54580.11510.020*
C90.25956 (10)0.64712 (15)0.16419 (4)0.0168 (2)
H90.19620.71000.16800.020*
C100.31720 (9)0.59981 (15)0.20655 (4)0.01556 (19)
C110.27256 (10)0.64353 (15)0.24970 (4)0.0179 (2)
H110.20750.70310.25080.021*
C120.32405 (10)0.59919 (16)0.29076 (4)0.0189 (2)
H120.29290.62940.31900.023*
C130.42150 (10)0.51030 (16)0.29039 (4)0.0182 (2)
C140.46702 (9)0.46835 (16)0.24731 (4)0.0185 (2)
H140.53250.41020.24630.022*
C150.41598 (9)0.51215 (16)0.20617 (4)0.0177 (2)
H150.44760.48310.17790.021*
C160.47564 (11)0.45835 (18)0.33516 (4)0.0251 (3)
H16A0.48020.56080.35520.038*
H16B0.54600.41490.32860.038*
H16C0.43520.36620.35030.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01778 (15)0.02973 (16)0.01623 (13)0.00376 (10)0.00292 (9)0.00163 (10)
Cl20.02586 (17)0.03750 (18)0.01277 (12)0.00235 (12)0.00091 (10)0.00154 (10)
O10.0168 (4)0.0256 (4)0.0185 (4)0.0022 (3)0.0001 (3)0.0017 (3)
C10.0158 (5)0.0171 (5)0.0145 (4)0.0009 (4)0.0025 (4)0.0003 (3)
C20.0158 (5)0.0216 (5)0.0157 (4)0.0016 (4)0.0004 (4)0.0001 (4)
C30.0213 (6)0.0200 (5)0.0117 (4)0.0020 (4)0.0010 (4)0.0007 (3)
C40.0183 (5)0.0210 (5)0.0156 (4)0.0001 (4)0.0043 (4)0.0007 (4)
C50.0166 (5)0.0198 (5)0.0154 (4)0.0007 (4)0.0014 (4)0.0005 (4)
C60.0177 (5)0.0155 (4)0.0127 (4)0.0013 (4)0.0010 (4)0.0012 (3)
C70.0191 (5)0.0152 (4)0.0153 (4)0.0006 (4)0.0005 (4)0.0008 (3)
C80.0188 (5)0.0172 (5)0.0144 (4)0.0018 (4)0.0001 (4)0.0001 (3)
C90.0170 (5)0.0173 (5)0.0159 (4)0.0006 (4)0.0003 (4)0.0001 (3)
C100.0177 (5)0.0163 (4)0.0127 (4)0.0004 (4)0.0012 (4)0.0001 (3)
C110.0180 (5)0.0200 (5)0.0156 (4)0.0021 (4)0.0006 (4)0.0008 (4)
C120.0222 (6)0.0218 (5)0.0126 (4)0.0004 (4)0.0013 (4)0.0008 (4)
C130.0204 (6)0.0184 (5)0.0158 (5)0.0024 (4)0.0019 (4)0.0007 (4)
C140.0168 (5)0.0207 (5)0.0179 (5)0.0013 (4)0.0002 (4)0.0001 (4)
C150.0175 (5)0.0209 (5)0.0149 (4)0.0013 (4)0.0009 (4)0.0002 (4)
C160.0284 (7)0.0290 (6)0.0179 (5)0.0016 (5)0.0058 (5)0.0011 (4)
Geometric parameters (Å, º) top
Cl1—C11.7380 (11)C9—C101.4609 (15)
Cl2—C31.7360 (11)C9—H90.93
O1—C71.2228 (14)C10—C111.4008 (15)
C1—C21.3895 (15)C10—C151.4022 (17)
C1—C61.3957 (16)C11—C121.3871 (16)
C2—C31.3887 (16)C11—H110.93
C2—H20.93C12—C131.3919 (18)
C3—C41.3854 (17)C12—H120.93
C4—C51.3795 (15)C13—C141.4006 (16)
C4—H40.93C13—C161.5072 (16)
C5—C61.3971 (15)C14—C151.3855 (16)
C5—H50.93C14—H140.93
C6—C71.5077 (15)C15—H150.93
C7—C81.4725 (15)C16—H16A0.96
C8—C91.3424 (14)C16—H16B0.96
C8—H80.93C16—H16C0.96
C2—C1—C6122.08 (10)C10—C9—H9116.6
C2—C1—Cl1116.83 (9)C11—C10—C15118.00 (10)
C6—C1—Cl1120.90 (8)C11—C10—C9119.02 (10)
C3—C2—C1118.00 (11)C15—C10—C9122.98 (10)
C3—C2—H2121.0C12—C11—C10120.88 (11)
C1—C2—H2121.0C12—C11—H11119.6
C4—C3—C2121.92 (10)C10—C11—H11119.6
C4—C3—Cl2118.90 (9)C11—C12—C13121.12 (10)
C2—C3—Cl2119.15 (10)C11—C12—H12119.4
C5—C4—C3118.45 (10)C13—C12—H12119.4
C5—C4—H4120.8C12—C13—C14118.17 (10)
C3—C4—H4120.8C12—C13—C16120.83 (10)
C4—C5—C6122.15 (11)C14—C13—C16120.99 (11)
C4—C5—H5118.9C15—C14—C13121.00 (11)
C6—C5—H5118.9C15—C14—H14119.5
C1—C6—C5117.38 (10)C13—C14—H14119.5
C1—C6—C7125.90 (10)C14—C15—C10120.83 (10)
C5—C6—C7116.70 (10)C14—C15—H15119.6
O1—C7—C8122.79 (10)C10—C15—H15119.6
O1—C7—C6118.40 (10)C13—C16—H16A109.5
C8—C7—C6118.75 (10)C13—C16—H16B109.5
C9—C8—C7121.15 (11)H16A—C16—H16B109.5
C9—C8—H8119.4C13—C16—H16C109.5
C7—C8—H8119.4H16A—C16—H16C109.5
C8—C9—C10126.71 (11)H16B—C16—H16C109.5
C8—C9—H9116.6
C6—C1—C2—C30.00 (17)C5—C6—C7—C8141.55 (11)
Cl1—C1—C2—C3175.09 (9)O1—C7—C8—C911.25 (18)
C1—C2—C3—C41.20 (17)C6—C7—C8—C9171.61 (10)
C1—C2—C3—Cl2179.44 (9)C7—C8—C9—C10179.61 (11)
C2—C3—C4—C50.88 (17)C8—C9—C10—C11177.16 (12)
Cl2—C3—C4—C5179.12 (9)C8—C9—C10—C152.91 (19)
C3—C4—C5—C60.67 (17)C15—C10—C11—C120.83 (17)
C2—C1—C6—C51.44 (17)C9—C10—C11—C12179.24 (11)
Cl1—C1—C6—C5173.45 (9)C10—C11—C12—C130.09 (19)
C2—C1—C6—C7179.70 (10)C11—C12—C13—C140.69 (18)
Cl1—C1—C6—C74.80 (16)C11—C12—C13—C16178.42 (11)
C4—C5—C6—C11.79 (17)C12—C13—C14—C150.73 (18)
C4—C5—C6—C7179.80 (10)C16—C13—C14—C15178.38 (11)
C1—C6—C7—O1142.55 (12)C13—C14—C15—C100.01 (18)
C5—C6—C7—O135.72 (15)C11—C10—C15—C140.79 (17)
C1—C6—C7—C840.19 (15)C9—C10—C15—C14179.29 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.553.4352 (15)159
C8—H8···O1ii0.932.553.1995 (14)127
C11—H11···Cg1iii0.932.813.5611 (13)139
C14—H14···Cg1iv0.932.933.7066 (13)142
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12Cl2O
Mr291.16
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.54850 (1), 7.47750 (1), 28.7764 (3)
V3)2700.13 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.47 × 0.39 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.811, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
50054, 7296, 4995
Rint0.052
(sin θ/λ)max1)0.864
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.148, 1.07
No. of reflections7296
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.53

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.553.4352 (15)159
C8—H8···O1ii0.932.553.1995 (14)127
C11—H11···Cg1iii0.932.813.5611 (13)139
C14—H14···Cg1iv0.932.933.7066 (13)142
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for the award of a post-doctoral research fellowship. PSP thanks the DRDO, Government of India, for a Senior Research Fellowship (SRF). This work is also supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118–091120.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds