organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-cyclo­hexyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bDepartment für Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 22 March 2008; accepted 26 March 2008; online 2 April 2008)

In the title mol­ecule, C13H15Cl2NO, the cyclohexane ring adopts a chair conformation. The aromatic ring plane is oriented with respect to the N/O/C plane at a dihedral angle of 51.88 (7)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the [010] direction.

Related literature

For related literature, see: Makino et al. (2001[Makino, S., Suzuki, N., Nakanishi, E. & Tsuji, T. (2001). Synlett, pp. 333-336.], 2003[Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389-392.]); Ho et al. (2002[Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501-1506.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L. M., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]); Jackson et al. (1994[Jackson, S., Degrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220-3230.]); Capdeville et al. (2002[Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, J. (2002). Nat. Rev. Drug. Discov. 1, 493-502.]); Manley et al. (2002[Manley, P. W., Furet, P., Bold, G., Brüggen, J., Mestan, J., Meyer, T., Schnell, C. R., Wood, J., Haberey, M., Huth, A., Krüger, M., Menrad, A., Ottow, E., Seidelmann, D., Siemeister, G. & Thierauch, K.-H. (2002). J. Med. Chem. 45, 5687-5693.]); Igawa et al. (1999[Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.]); Jones & Kuś (2004[Jones, P. G. & Kuś, P. (2004). Acta Cryst. E60, o1299-o1300.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15Cl2NO

  • Mr = 272.16

  • Monoclinic, C 2/c

  • a = 26.135 (3) Å

  • b = 4.9144 (6) Å

  • c = 20.449 (2) Å

  • β = 90.167 (3)°

  • V = 2626.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 120 (2) K

  • 0.48 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.945

  • 10950 measured reflections

  • 3141 independent reflections

  • 2389 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.02

  • 3141 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.88 1.95 2.796 (3) 161
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), quinazoline-2,4-diones (Makino et al., 2001), benzodiazepine-2,5-diones (Ho et al., 2002) and 2,3-disubstituted-3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficancy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville et al., 2002). Pyridylmethyl containing benzanilides are vascular endothelial growth factor receptor and tyrosine kinase inhibitor (Manley et al., 2002). Furthermore, benzamides have been reported to have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999). We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. Ring A (C1–C6) is not planar, having total puckering amplitude, QT, of 0.575 (3) Å. It adopts chair conformation [ϕ = -177.97 (2)° and θ = 176.74 (3)°] (Cremer & Pople, 1975). Ring B (C8–C13) is, of course, planar and it is oriented with respect to the (N1/O1/C7) plane at a dihedral angle of 51.88 (7)°. The N1—C7—C8—C9 torsion angle is -130.16 (18)°. In N-cyclohexyl-4-(methoxycarbonyl)benzamide (Jones & Kuś, 2004), the corresponding torsion angles are reported as -17.9 (2)° and -45.2 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [010] direction (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Makino et al. (2001, 2003); Ho et al. (2002); Zhichkin et al. (2007); Jackson et al. (1994); Capdeville et al. (2002); Manley et al. (2002); Igawa et al. (1999); Jones & Kuś (2004). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 2,4-dichlorobenzoyl chloride (65.7 mmol), cyclohexyl amine (86.9 mmol) and pyridine (20 ml) was left at 298 K for 15 h. Then, water (100 ml) was added and the resulting precipitates were collected. Recrystallization of the precipitates from benzene gave the title compound (yield; 75%).

Refinement top

H atoms were positioned geometrically, with N—H = 0.88 Å (for NH) and C—H = 0.95, 0.99 and 1.00 Å for aromatic, methylene and methine H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H-atoms not involved in hydrogen bonding are omitted for clarity.
2,4-Dichloro-N-cyclohexylbenzamide top
Crystal data top
C13H15Cl2NOF(000) = 1136
Mr = 272.16Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 978 reflections
a = 26.135 (3) Åθ = 2.5–25.9°
b = 4.9144 (6) ŵ = 0.48 mm1
c = 20.449 (2) ÅT = 120 K
β = 90.167 (3)°Prism, colorless
V = 2626.4 (5) Å30.48 × 0.17 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
3141 independent reflections
Radiation source: sealed tube2389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3434
Tmin = 0.803, Tmax = 0.945k = 66
10950 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7836P]
where P = (Fo2 + 2Fc2)/3
3141 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H15Cl2NOV = 2626.4 (5) Å3
Mr = 272.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.135 (3) ŵ = 0.48 mm1
b = 4.9144 (6) ÅT = 120 K
c = 20.449 (2) Å0.48 × 0.17 × 0.12 mm
β = 90.167 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3141 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2389 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.945Rint = 0.041
10950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3141 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.55602 (2)0.84379 (11)0.19724 (2)0.03406 (16)
Cl20.683870 (19)0.21813 (13)0.05939 (3)0.04287 (18)
O10.45551 (5)0.8154 (2)0.11531 (7)0.0276 (3)
N10.43595 (6)0.3718 (3)0.12891 (8)0.0251 (4)
H1B0.44810.20490.13030.030*
C10.38119 (6)0.4124 (4)0.13939 (10)0.0246 (4)
H1A0.37430.61260.14030.029*
C20.35016 (7)0.2882 (5)0.08417 (9)0.0309 (5)
H2A0.35680.09010.08210.037*
H2B0.36070.36980.04210.037*
C30.29284 (8)0.3379 (5)0.09487 (10)0.0375 (5)
H3A0.28580.53560.09270.045*
H3B0.27310.24800.05950.045*
C40.27550 (7)0.2290 (5)0.16035 (10)0.0333 (5)
H4A0.27800.02800.16020.040*
H4B0.23920.27840.16730.040*
C50.30768 (8)0.3422 (5)0.21592 (10)0.0382 (5)
H5A0.29730.25480.25750.046*
H5B0.30140.54010.22000.046*
C60.36460 (7)0.2927 (5)0.20447 (9)0.0317 (5)
H6A0.38470.37690.24030.038*
H6B0.37150.09460.20480.038*
C70.46841 (7)0.5748 (4)0.11741 (8)0.0193 (4)
C80.52252 (6)0.4894 (3)0.10407 (8)0.0179 (4)
C90.56448 (7)0.6043 (4)0.13615 (8)0.0214 (4)
C100.61389 (7)0.5236 (4)0.12231 (9)0.0256 (4)
H10A0.64210.60310.14470.031*
C110.62169 (7)0.3258 (4)0.07559 (9)0.0256 (4)
C120.58138 (7)0.2087 (4)0.04197 (9)0.0247 (4)
H12A0.58730.07400.00960.030*
C130.53219 (7)0.2924 (4)0.05662 (9)0.0213 (4)
H13A0.50420.21340.03370.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0376 (3)0.0338 (3)0.0307 (3)0.0036 (2)0.0058 (2)0.0119 (2)
Cl20.0182 (2)0.0630 (4)0.0474 (3)0.0106 (2)0.0028 (2)0.0024 (3)
O10.0274 (7)0.0119 (7)0.0436 (8)0.0027 (5)0.0016 (6)0.0005 (6)
N10.0181 (8)0.0111 (7)0.0463 (10)0.0031 (6)0.0046 (7)0.0003 (7)
C10.0170 (8)0.0140 (9)0.0428 (11)0.0028 (7)0.0061 (8)0.0019 (8)
C20.0229 (10)0.0470 (13)0.0229 (10)0.0073 (9)0.0017 (8)0.0067 (9)
C30.0219 (10)0.0570 (15)0.0335 (11)0.0077 (10)0.0015 (9)0.0059 (10)
C40.0191 (9)0.0394 (13)0.0413 (12)0.0002 (9)0.0046 (8)0.0033 (10)
C50.0295 (11)0.0534 (15)0.0318 (11)0.0005 (10)0.0091 (9)0.0050 (10)
C60.0243 (10)0.0472 (14)0.0237 (9)0.0002 (9)0.0003 (8)0.0091 (9)
C70.0220 (9)0.0160 (9)0.0199 (8)0.0007 (7)0.0008 (7)0.0017 (7)
C80.0202 (8)0.0142 (8)0.0195 (8)0.0000 (7)0.0002 (7)0.0041 (7)
C90.0254 (9)0.0178 (9)0.0209 (8)0.0027 (7)0.0007 (7)0.0025 (7)
C100.0207 (9)0.0320 (11)0.0242 (9)0.0058 (8)0.0045 (7)0.0053 (8)
C110.0170 (9)0.0342 (11)0.0256 (9)0.0044 (8)0.0023 (7)0.0070 (8)
C120.0239 (9)0.0269 (11)0.0235 (9)0.0047 (8)0.0016 (7)0.0003 (8)
C130.0190 (9)0.0206 (10)0.0244 (9)0.0006 (7)0.0021 (7)0.0008 (7)
Geometric parameters (Å, º) top
Cl1—C91.7310 (19)C4—H4B0.9900
Cl2—C111.7419 (19)C5—C61.526 (3)
O1—C71.231 (2)C5—H5A0.9900
N1—C71.331 (2)C5—H5B0.9900
N1—C11.461 (2)C6—H6A0.9900
N1—H1B0.8800C6—H6B0.9900
C1—C21.517 (3)C7—C81.501 (2)
C1—C61.519 (3)C8—C131.394 (2)
C1—H1A1.0000C8—C91.396 (2)
C2—C31.534 (3)C9—C101.381 (3)
C2—H2A0.9900C10—C111.378 (3)
C2—H2B0.9900C10—H10A0.9500
C3—C41.513 (3)C11—C121.382 (3)
C3—H3A0.9900C12—C131.383 (3)
C3—H3B0.9900C12—H12A0.9500
C4—C51.518 (3)C13—H13A0.9500
C4—H4A0.9900
C7—N1—C1123.28 (15)C4—C5—H5B109.3
C7—N1—H1B118.4C6—C5—H5B109.3
C1—N1—H1B118.4H5A—C5—H5B108.0
N1—C1—C2110.95 (16)C1—C6—C5110.70 (17)
N1—C1—C6110.96 (16)C1—C6—H6A109.5
C2—C1—C6110.05 (15)C5—C6—H6A109.5
N1—C1—H1A108.3C1—C6—H6B109.5
C2—C1—H1A108.3C5—C6—H6B109.5
C6—C1—H1A108.3H6A—C6—H6B108.1
C1—C2—C3110.49 (17)O1—C7—N1123.48 (16)
C1—C2—H2A109.6O1—C7—C8121.36 (16)
C3—C2—H2A109.6N1—C7—C8115.11 (15)
C1—C2—H2B109.6C13—C8—C9117.66 (16)
C3—C2—H2B109.6C13—C8—C7119.55 (15)
H2A—C2—H2B108.1C9—C8—C7122.76 (15)
C4—C3—C2111.41 (16)C10—C9—C8121.43 (17)
C4—C3—H3A109.3C10—C9—Cl1117.70 (14)
C2—C3—H3A109.3C8—C9—Cl1120.82 (14)
C4—C3—H3B109.3C11—C10—C9119.00 (17)
C2—C3—H3B109.3C11—C10—H10A120.5
H3A—C3—H3B108.0C9—C10—H10A120.5
C3—C4—C5111.50 (18)C10—C11—C12121.64 (17)
C3—C4—H4A109.3C10—C11—Cl2119.08 (14)
C5—C4—H4A109.3C12—C11—Cl2119.28 (15)
C3—C4—H4B109.3C11—C12—C13118.43 (18)
C5—C4—H4B109.3C11—C12—H12A120.8
H4A—C4—H4B108.0C13—C12—H12A120.8
C4—C5—C6111.40 (17)C12—C13—C8121.83 (17)
C4—C5—H5A109.3C12—C13—H13A119.1
C6—C5—H5A109.3C8—C13—H13A119.1
C7—N1—C1—C2113.7 (2)N1—C7—C8—C9130.16 (18)
C7—N1—C1—C6123.64 (19)C13—C8—C9—C101.0 (3)
N1—C1—C2—C3178.66 (16)C7—C8—C9—C10179.29 (16)
C6—C1—C2—C358.1 (2)C13—C8—C9—Cl1178.28 (13)
C1—C2—C3—C456.3 (2)C7—C8—C9—Cl13.4 (2)
C2—C3—C4—C554.1 (3)C8—C9—C10—C110.2 (3)
C3—C4—C5—C654.1 (3)Cl1—C9—C10—C11177.62 (14)
N1—C1—C6—C5178.53 (16)C9—C10—C11—C120.6 (3)
C2—C1—C6—C558.3 (2)C9—C10—C11—Cl2178.55 (14)
C4—C5—C6—C156.2 (2)C10—C11—C12—C130.7 (3)
C1—N1—C7—O10.9 (3)Cl2—C11—C12—C13178.49 (14)
C1—N1—C7—C8176.58 (16)C11—C12—C13—C80.1 (3)
O1—C7—C8—C13126.00 (18)C9—C8—C13—C120.9 (3)
N1—C7—C8—C1351.5 (2)C7—C8—C13—C12179.29 (17)
O1—C7—C8—C952.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.881.952.796 (3)161
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H15Cl2NO
Mr272.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)26.135 (3), 4.9144 (6), 20.449 (2)
β (°) 90.167 (3)
V3)2626.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.48 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.803, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
10950, 3141, 2389
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.02
No. of reflections3141
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
C7—C81.501 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.881.952.796 (3)161.00
Symmetry code: (i) x, y1, z.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-i-Azam University, Islamabad.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapdeville, R., Buchdunger, E., Zimmermann, J. & Matter, J. (2002). Nat. Rev. Drug. Discov. 1, 493–502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHo, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.  CrossRef CAS Google Scholar
First citationIgawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.  Google Scholar
First citationJackson, S., Degrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220–3230.  CSD CrossRef CAS Web of Science Google Scholar
First citationJones, P. G. & Kuś, P. (2004). Acta Cryst. E60, o1299–o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMakino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389–392.  CAS Google Scholar
First citationMakino, S., Suzuki, N., Nakanishi, E. & Tsuji, T. (2001). Synlett, pp. 333–336.  Google Scholar
First citationManley, P. W., Furet, P., Bold, G., Brüggen, J., Mestan, J., Meyer, T., Schnell, C. R., Wood, J., Haberey, M., Huth, A., Krüger, M., Menrad, A., Ottow, E., Seidelmann, D., Siemeister, G. & Thierauch, K.-H. (2002). J. Med. Chem. 45, 5687–5693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L. M., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds