supplementary materials


sg2225 scheme

Acta Cryst. (2008). E64, m718-m719    [ doi:10.1107/S1600536808011161 ]

Dichloridobis(2-{1-[2-(1H-indol-3-yl)ethyliminio]ethyl}phenolate-[kappa]O)zinc(II)-2-{1-[2-(1H-indol-3-yl)ethyliminio]ethyl}phenolate (1/2)

H. M. Ali, M. I. Mohamed Mustafa, M. R. Rizal and S. W. Ng

Abstract top

In the mononuclear complex molecule of the title compond, [ZnCl2(C18H18N2O)2]·2C18H18N2O, the Zn atom, which lies on a twofold rotation axis, is coordinated by phenolate O atoms in a tetrahedral coordination geometry. The coordinated Schiff base uses its indole NH donor site to form a hydrogen bond to the negatively charged phenolate O atom of the uncoordinated zwitterionic Schiff base. There is an intramolecular N-H...O hydrogen bond in the coordinated and uncoordinated Schiff bases. The indole NH site of the uncoordinated Schiff base does not engage in a hydrogen-bond interaction. The CH2-CH2 group in the uncoordinated Schiff base is disordered equally over two positions.

Comment top

The reaction of zinc acetate with 2-[2-(1H-indol-3-yl)ethyliminomethy]phenol, a neutral Schiff base (Rodriguez et al., 1987) furnishes the expected zinc complex with the deprotonated ligand in which the deprotonated ligand N,O-chelates to the metal center (Chen et al., 2007). Similarly, the reaction of zinc acetate with the 4-methyl substituted Schiff base (the methyl substituent is para to the negatively-charged phenoxy group) affords the corresponding tetrahdral zinc compound; the structure of the Schiff base itself is not known.

On the other hand, the 4-methyl substituted Schiff base of 2-[2-(1H-indol-3-yl)ethylimino-1-ethy]phenol exists in the zwitterionic form; the presence of methyl group on the imino –C=N– double-bond probably induces charge separation (Ali et al., 2007). 2-[2-(1H-Indol-3-yl)ethylimino-1-ethy]phenol in the title cocrystal is a zwitterionic species; it coordinates to zinc chloride, so that the coordination geometry at the metal center is an Cl2O2Zn tetraheron. The compound crystallizes as a cocrystal (Scheme I, Fig. 1). Both the coordinated and free zwitterionis have an intramolecular N···O hydrogen bond. The coordinated Schiff base uses its N–Hindolyl donor site to form a hydrogen bond to the negatively-charged phenolato-O atom of the free Schiff base. The N–Hindolyl site of the free Schiff base does not engage in a hydrogen-bonding interaction.

Related literature top

For a related neutral Schiff base, see: Rodriguez et al. (1987). F for a related but zwitterionic Schiff base, see: Ali et al. (20070. For zinc derivatives of such deprotonated Schiff bases, see: Ali et al. (2008); Chen et al. (2007).

Experimental top

The Schiff base was synthesized by condensing 2-(1H-indol-3-yl)ethylamine with 2-hydroxyacetophenone. The compound (0.50 g, 1.79 mmol) and zinc chloride (1.21 g, 0.89 mol) were heated in ethanol (10 ml) for an hour along with a small quantity (0.02 g) of sodium hydride. The compound was recrystallized from ethanol.

Refinement top

The ethylene linkage in the free Schiff base is disordered over two position; these were arbitrarily assigned 0.5 site occupancies; the temperature factors of the primed atoms were set to those of the unprimed atoms. The N3–C27 and N3–C27' were restrained to within 0.01 Å of each other; the four C–C bonds were restrained to 1.50±0.01 Å.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The amino H-atoms were located in a difference Fourier map, and were refined with an N–H distance restraint of 0.86±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of ZnCl2(C18H18N2O)2.2C18H18N2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radiius. The symmetry-related zwitterionic Schiff base is not shown. Dashed lines denote hydrogen bonds. The mononuclear molecule lies on a twofold rotation axis.
Dichloridobis(2-{1-[2-(1H-indol-3-yl)ethyliminio]ethyl}phenolate- κO)zinc(II)–2-{1-[2-(1H-indol-3-yl)ethyliminio]ethyl}phenolate (1/2) top
Crystal data top
[ZnCl2(C18H18N2O)2]·2C18H18N2OF000 = 1312
Mr = 1249.65Dx = 1.325 Mg m3
Monoclinic, C2Mo Kα radiation
λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 8552 reflections
a = 25.8073 (4) Åθ = 2.4–23.8º
b = 9.1754 (1) ŵ = 0.54 mm1
c = 14.3265 (2) ÅT = 295 (2) K
β = 112.566 (1)ºIrregular block, yellow
V = 3132.67 (7) Å30.10 × 0.06 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
7190 independent reflections
Radiation source: fine-focus sealed tube6008 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 295(2) Kθmax = 27.5º
φ and ω scansθmin = 1.5º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 33→32
Tmin = 0.866, Tmax = 0.974k = 11→11
36333 measured reflectionsl = 18→18
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of
independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037  w = 1/[σ2(Fo2) + (0.0481P)2 + 0.6205P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.36 e Å3
7190 reflectionsΔρmin = 0.30 e Å3
413 parametersExtinction correction: none
10 restraintsAbsolute structure: Flack (1983), 3669 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.000 (8)
Secondary atom site location: difference Fourier map
Crystal data top
[ZnCl2(C18H18N2O)2]·2C18H18N2OV = 3132.67 (7) Å3
Mr = 1249.65Z = 2
Monoclinic, C2Mo Kα
a = 25.8073 (4) ŵ = 0.54 mm1
b = 9.1754 (1) ÅT = 295 (2) K
c = 14.3265 (2) Å0.10 × 0.06 × 0.05 mm
β = 112.566 (1)º
Data collection top
Bruker SMART APEXII
diffractometer
7190 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6008 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.974Rint = 0.039
36333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.36 e Å3
S = 1.00Δρmin = 0.30 e Å3
7190 reflectionsAbsolute structure: Flack (1983), 3669 Friedel pairs
413 parametersFlack parameter: 0.000 (8)
10 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50003 (3)0.00000.03995 (10)
Cl10.42528 (3)0.63088 (6)0.09253 (5)0.05459 (17)
O10.48035 (7)0.36059 (16)0.08739 (12)0.0449 (4)
O20.42302 (10)0.7684 (3)0.31515 (19)0.0846 (7)
N10.39707 (9)0.1849 (2)0.02989 (16)0.0455 (5)
H1N0.4136 (10)0.2679 (17)0.034 (2)0.055*
N20.34836 (9)0.5756 (2)0.16913 (19)0.0602 (6)
H2N0.3665 (11)0.646 (2)0.2068 (19)0.072*
N30.52785 (12)0.7793 (3)0.3958 (2)0.0850 (9)
H3N0.4975 (11)0.731 (4)0.388 (3)0.102*
N40.67920 (12)0.2805 (3)0.5240 (2)0.0729 (7)
H4N0.6967 (13)0.221 (3)0.5714 (19)0.087*
C10.51286 (10)0.2466 (2)0.12619 (16)0.0387 (5)
C20.57066 (11)0.2636 (3)0.18025 (18)0.0492 (6)
H20.58580.35700.19160.059*
C30.60560 (11)0.1461 (3)0.2170 (2)0.0541 (6)
H30.64380.16110.25250.065*
C40.58430 (10)0.0056 (4)0.20174 (17)0.0552 (6)
H40.60810.07400.22500.066*
C50.52764 (11)0.0147 (3)0.15191 (17)0.0499 (6)
H50.51340.10900.14240.060*
C60.49053 (10)0.1031 (2)0.11484 (16)0.0386 (5)
C70.43083 (10)0.0765 (3)0.06467 (18)0.0424 (6)
C80.40747 (13)0.0742 (3)0.0536 (2)0.0578 (7)
H8A0.36800.06950.03960.087*
H8B0.42620.12740.11510.087*
H8C0.41320.12260.00110.087*
C90.33622 (11)0.1796 (3)0.0260 (2)0.0558 (7)
H9A0.31860.13240.01480.067*
H9B0.32770.12310.08740.067*
C100.31327 (11)0.3332 (3)0.0526 (2)0.0588 (7)
H10A0.33380.38260.08770.071*
H10B0.27420.32780.09840.071*
C110.31755 (10)0.4211 (3)0.03838 (19)0.0480 (6)
C120.35561 (10)0.5266 (3)0.0851 (2)0.0553 (7)
H120.38280.56060.06290.066*
C130.28431 (9)0.4020 (2)0.09671 (18)0.0446 (5)
C140.23988 (10)0.3105 (3)0.0911 (2)0.0571 (7)
H140.22530.24490.03790.069*
C150.21779 (12)0.3177 (4)0.1644 (3)0.0705 (9)
H150.18830.25650.16040.085*
C160.23887 (14)0.4148 (4)0.2439 (3)0.0765 (10)
H160.22310.41770.29240.092*
C170.28259 (11)0.5073 (4)0.2531 (2)0.0671 (7)
H170.29670.57190.30700.081*
C180.30495 (9)0.5006 (3)0.17897 (18)0.0499 (5)
C190.42330 (12)0.9098 (3)0.31308 (19)0.0585 (7)
C200.37283 (12)0.9902 (5)0.2698 (2)0.0741 (9)
H200.33880.94070.24420.089*
C210.37302 (18)1.1387 (5)0.2649 (2)0.0867 (12)
H210.33911.18820.23580.104*
C220.4216 (2)1.2159 (5)0.3016 (3)0.0863 (12)
H220.42101.31700.29740.104*
C230.47149 (15)1.1436 (3)0.3450 (2)0.0668 (8)
H230.50471.19680.37010.080*
C240.47389 (10)0.9900 (4)0.35243 (16)0.0504 (6)
C250.52729 (12)0.9180 (4)0.3974 (2)0.0599 (7)
C260.58061 (12)1.0014 (6)0.4431 (2)0.0827 (9)
H26A0.61180.93770.45330.124*
H26B0.58341.04120.50690.124*
H26C0.58101.07930.39860.124*
C270.5727 (6)0.672 (2)0.4535 (10)0.089 (4)0.50
H27A0.60850.72170.48430.107*0.50
H27B0.56360.62700.50650.107*0.50
C280.5756 (7)0.560 (2)0.3803 (13)0.070 (3)0.50
H28A0.58190.60770.32510.084*0.50
H28B0.54010.50870.35240.084*0.50
C27'0.5826 (6)0.7006 (19)0.4208 (10)0.089 (4)0.50
H27C0.60290.74110.38220.107*0.50
H27D0.60570.71100.49210.107*0.50
C28'0.5698 (6)0.544 (2)0.3950 (14)0.070 (3)0.50
H28C0.55100.53430.32230.084*0.50
H28D0.54460.50930.42570.084*0.50
C290.62217 (12)0.4534 (3)0.4312 (2)0.0615 (7)
C300.63045 (14)0.3544 (4)0.5058 (2)0.0734 (9)
H300.60650.33920.53940.088*
C310.66965 (11)0.4438 (3)0.40353 (18)0.0511 (6)
C320.68572 (11)0.5145 (3)0.33287 (18)0.0600 (7)
H320.66290.58590.29110.072*
C330.73566 (13)0.4775 (4)0.3255 (2)0.0691 (8)
H330.74700.52660.27980.083*
C340.76939 (14)0.3683 (4)0.3852 (3)0.0743 (9)
H340.80280.34470.37820.089*
C350.75462 (13)0.2946 (3)0.4541 (2)0.0708 (9)
H350.77720.22110.49380.085*
C360.70474 (11)0.3333 (3)0.4627 (2)0.0547 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04012 (19)0.02675 (16)0.0496 (2)0.0000.01350 (16)0.000
Cl10.0518 (4)0.0378 (3)0.0632 (4)0.0119 (3)0.0098 (3)0.0003 (3)
O10.0435 (9)0.0329 (7)0.0567 (10)0.0008 (7)0.0175 (8)0.0039 (7)
O20.0729 (15)0.0688 (15)0.0839 (16)0.0066 (12)0.0012 (13)0.0150 (12)
N10.0477 (12)0.0389 (10)0.0508 (12)0.0063 (9)0.0199 (10)0.0071 (9)
N20.0487 (12)0.0463 (12)0.0773 (16)0.0069 (10)0.0150 (12)0.0127 (11)
N30.0659 (17)0.0699 (18)0.0893 (19)0.0228 (14)0.0037 (15)0.0205 (15)
N40.0775 (18)0.0613 (15)0.0666 (17)0.0077 (14)0.0130 (14)0.0143 (13)
C10.0482 (13)0.0333 (11)0.0359 (11)0.0014 (9)0.0176 (10)0.0008 (9)
C20.0507 (14)0.0436 (12)0.0486 (13)0.0034 (11)0.0140 (11)0.0014 (11)
C30.0478 (14)0.0616 (16)0.0481 (14)0.0046 (12)0.0132 (12)0.0063 (12)
C40.0586 (14)0.0498 (13)0.0556 (13)0.0180 (16)0.0203 (11)0.0127 (15)
C50.0703 (16)0.0344 (12)0.0517 (13)0.0056 (13)0.0310 (12)0.0038 (11)
C60.0501 (13)0.0326 (10)0.0379 (11)0.0004 (10)0.0223 (10)0.0021 (9)
C70.0588 (15)0.0348 (12)0.0398 (12)0.0054 (11)0.0257 (11)0.0087 (10)
C80.0727 (19)0.0385 (13)0.0617 (16)0.0087 (13)0.0255 (15)0.0106 (12)
C90.0436 (14)0.0582 (16)0.0607 (16)0.0075 (12)0.0145 (12)0.0154 (13)
C100.0482 (15)0.0677 (17)0.0509 (15)0.0049 (13)0.0084 (12)0.0019 (13)
C110.0375 (12)0.0447 (13)0.0550 (14)0.0059 (10)0.0101 (11)0.0052 (11)
C120.0438 (13)0.0489 (17)0.0743 (17)0.0022 (11)0.0238 (12)0.0045 (13)
C130.0348 (12)0.0366 (11)0.0531 (14)0.0066 (9)0.0066 (10)0.0057 (10)
C140.0355 (13)0.0498 (14)0.0729 (18)0.0018 (11)0.0060 (13)0.0089 (13)
C150.0380 (14)0.075 (2)0.095 (2)0.0076 (14)0.0222 (15)0.0353 (19)
C160.0598 (19)0.102 (3)0.076 (2)0.0266 (19)0.0349 (17)0.031 (2)
C170.0615 (16)0.0736 (18)0.0622 (15)0.0206 (19)0.0192 (13)0.0061 (18)
C180.0412 (11)0.0427 (10)0.0610 (13)0.0091 (13)0.0144 (10)0.0040 (14)
C190.0562 (16)0.0687 (18)0.0448 (14)0.0091 (14)0.0130 (13)0.0077 (13)
C200.0525 (15)0.112 (3)0.0531 (15)0.023 (2)0.0152 (12)0.005 (2)
C210.091 (3)0.113 (3)0.0546 (19)0.056 (3)0.0264 (19)0.016 (2)
C220.125 (4)0.067 (2)0.071 (2)0.039 (2)0.043 (3)0.0180 (18)
C230.085 (2)0.0625 (18)0.0589 (17)0.0018 (16)0.0335 (16)0.0014 (14)
C240.0519 (13)0.0588 (14)0.0414 (11)0.0137 (15)0.0191 (10)0.0012 (13)
C250.0546 (16)0.0717 (18)0.0478 (14)0.0089 (14)0.0134 (12)0.0180 (13)
C260.0597 (17)0.117 (3)0.0654 (17)0.004 (2)0.0172 (14)0.019 (2)
C270.092 (5)0.085 (7)0.060 (8)0.042 (6)0.005 (4)0.012 (5)
C280.062 (3)0.076 (4)0.067 (5)0.018 (3)0.019 (2)0.008 (3)
C27'0.092 (5)0.085 (7)0.060 (8)0.042 (6)0.005 (4)0.012 (5)
C28'0.062 (3)0.076 (4)0.067 (5)0.018 (3)0.019 (2)0.008 (3)
C290.0613 (17)0.0576 (16)0.0543 (15)0.0111 (13)0.0097 (13)0.0100 (12)
C300.070 (2)0.075 (2)0.072 (2)0.0018 (17)0.0247 (17)0.0056 (17)
C310.0500 (14)0.0413 (11)0.0441 (13)0.0061 (11)0.0018 (11)0.0081 (10)
C320.0681 (16)0.0497 (14)0.0455 (12)0.0093 (15)0.0032 (11)0.0018 (13)
C330.0711 (18)0.070 (2)0.0570 (15)0.0006 (16)0.0145 (14)0.0038 (15)
C340.0569 (18)0.079 (2)0.076 (2)0.0046 (16)0.0129 (16)0.0055 (18)
C350.0528 (17)0.0591 (17)0.079 (2)0.0162 (14)0.0013 (15)0.0040 (15)
C360.0544 (16)0.0406 (14)0.0524 (15)0.0036 (12)0.0019 (12)0.0017 (11)
Geometric parameters (Å, °) top
Zn1—O1i1.987 (2)C15—C161.383 (5)
Zn1—O11.987 (2)C15—H150.9300
Zn1—Cl1i2.2260 (6)C16—C171.377 (5)
Zn1—Cl12.2260 (6)C16—H160.9300
O1—C11.323 (3)C17—C181.391 (3)
O2—C191.298 (4)C17—H170.9300
N1—C71.290 (3)C19—C241.414 (4)
N1—C91.464 (3)C19—C201.416 (4)
N1—H1N0.86 (1)C20—C211.365 (6)
N2—C121.363 (4)C20—H200.9300
N2—C181.367 (3)C21—C221.358 (6)
N2—H2N0.86 (1)C21—H210.9300
N3—C251.273 (4)C22—C231.367 (5)
N3—C271.500 (7)C22—H220.9300
N3—C27'1.502 (7)C23—C241.413 (4)
N3—H3N0.87 (1)C23—H230.9300
N4—C301.364 (4)C24—C251.438 (4)
N4—C361.373 (4)C25—C261.489 (5)
N4—H4N0.86 (1)C26—H26A0.9600
C1—C21.401 (3)C26—H26B0.9600
C1—C61.421 (3)C26—H26C0.9600
C2—C31.374 (4)C27—C281.491 (9)
C2—H20.9300C27—H27A0.9700
C3—C41.386 (4)C27—H27B0.9700
C3—H30.9300C28—C291.506 (8)
C4—C51.372 (3)C28—H28A0.9700
C4—H40.9300C28—H28B0.9700
C5—C61.406 (3)C27'—C28'1.485 (9)
C5—H50.9300C27'—H27C0.9700
C6—C71.449 (3)C27'—H27D0.9700
C7—C81.492 (3)C28'—C291.502 (8)
C8—H8A0.9600C28'—H28C0.9700
C8—H8B0.9600C28'—H28D0.9700
C8—H8C0.9600C29—C301.355 (4)
C9—C101.520 (4)C29—C311.428 (4)
C9—H9A0.9700C30—H300.9300
C9—H9B0.9700C31—C321.392 (4)
C10—C111.500 (4)C31—C361.406 (3)
C10—H10A0.9700C32—C331.375 (4)
C10—H10B0.9700C32—H320.9300
C11—C121.358 (3)C33—C341.386 (4)
C11—C131.420 (4)C33—H330.9300
C12—H120.9300C34—C351.365 (5)
C13—C141.398 (3)C34—H340.9300
C13—C181.418 (4)C35—C361.386 (4)
C14—C151.374 (4)C35—H350.9300
C14—H140.9300
O1—Zn1—O1i99.84 (9)N2—C18—C17130.8 (3)
O1—Zn1—Cl1110.51 (5)N2—C18—C13107.3 (2)
O1i—Zn1—Cl1i110.51 (5)C17—C18—C13122.0 (3)
O1—Zn1—Cl1i110.14 (5)O2—C19—C24121.6 (3)
O1i—Zn1—Cl1110.14 (5)O2—C19—C20121.2 (3)
Cl1—Zn1—Cl1i114.72 (3)C24—C19—C20117.2 (3)
C1—O1—Zn1120.01 (14)C21—C20—C19121.5 (4)
C7—N1—C9127.5 (2)C21—C20—H20119.3
C7—N1—H1N114 (2)C19—C20—H20119.3
C9—N1—H1N118 (2)C20—C21—C22121.4 (3)
C12—N2—C18108.7 (2)C20—C21—H21119.3
C12—N2—H2N125 (2)C22—C21—H21119.3
C18—N2—H2N126 (2)C21—C22—C23119.5 (4)
C25—N3—C27130.9 (9)C21—C22—H22120.3
C25—N3—C27'119.5 (9)C23—C22—H22120.3
C27—N3—C27'25.6 (9)C22—C23—C24121.6 (3)
C25—N3—H3N120 (3)C22—C23—H23119.2
C27—N3—H3N102 (3)C24—C23—H23119.2
C27'—N3—H3N121 (3)C19—C24—C23118.8 (3)
C30—N4—C36109.6 (3)C19—C24—C25121.3 (3)
C30—N4—H4N130 (2)C23—C24—C25119.9 (3)
C36—N4—H4N120 (2)N3—C25—C24117.8 (3)
O1—C1—C2120.9 (2)N3—C25—C26120.5 (3)
O1—C1—C6121.4 (2)C24—C25—C26121.7 (3)
C2—C1—C6117.8 (2)C25—C26—H26A109.5
C3—C2—C1121.8 (2)C25—C26—H26B109.5
C3—C2—H2119.1H26A—C26—H26B109.5
C1—C2—H2119.1C25—C26—H26C109.5
C2—C3—C4120.5 (2)H26A—C26—H26C109.5
C2—C3—H3119.8H26B—C26—H26C109.5
C4—C3—H3119.8C28—C27—N3107.4 (8)
C5—C4—C3119.2 (3)C28—C27—H27A110.2
C5—C4—H4120.4N3—C27—H27A110.2
C3—C4—H4120.4C28—C27—H27B110.2
C4—C5—C6121.9 (3)N3—C27—H27B110.2
C4—C5—H5119.1H27A—C27—H27B108.5
C6—C5—H5119.1C27—C28—C29110.8 (10)
C5—C6—C1118.8 (2)C27—C28—H28A109.5
C5—C6—C7119.9 (2)C29—C28—H28A109.5
C1—C6—C7121.3 (2)C27—C28—H28B109.5
N1—C7—C6119.6 (2)C29—C28—H28B109.5
N1—C7—C8119.2 (2)H28A—C28—H28B108.1
C6—C7—C8121.2 (2)C28'—C27'—N3107.8 (10)
C7—C8—H8A109.5C28'—C27'—H27C110.2
C7—C8—H8B109.5N3—C27'—H27C110.2
H8A—C8—H8B109.5C28'—C27'—H27D110.2
C7—C8—H8C109.5N3—C27'—H27D110.2
H8A—C8—H8C109.5H27C—C27'—H27D108.5
H8B—C8—H8C109.5C27'—C28'—C29111.4 (11)
N1—C9—C10109.8 (2)C27'—C28'—H28C109.3
N1—C9—H9A109.7C29—C28'—H28C109.3
C10—C9—H9A109.7C27'—C28'—H28D109.3
N1—C9—H9B109.7C29—C28'—H28D109.3
C10—C9—H9B109.7H28C—C28'—H28D108.0
H9A—C9—H9B108.2C30—C29—C31106.5 (3)
C11—C10—C9112.9 (2)C30—C29—C28132.3 (8)
C11—C10—H10A109.0C31—C29—C28121.1 (8)
C9—C10—H10A109.0C30—C29—C28'119.6 (8)
C11—C10—H10B109.0C31—C29—C28'133.9 (8)
C9—C10—H10B109.0C28—C29—C28'12.8 (15)
H10A—C10—H10B107.8C29—C30—N4109.8 (3)
C12—C11—C13106.5 (2)C29—C30—H30125.1
C12—C11—C10127.6 (3)N4—C30—H30125.1
C13—C11—C10125.8 (2)C32—C31—C36118.1 (3)
C11—C12—N2110.6 (2)C32—C31—C29134.4 (2)
C11—C12—H12124.7C36—C31—C29107.5 (3)
N2—C12—H12124.7C33—C32—C31119.4 (3)
C14—C13—C18118.0 (2)C33—C32—H32120.3
C14—C13—C11135.1 (2)C31—C32—H32120.3
C18—C13—C11106.9 (2)C32—C33—C34121.1 (3)
C15—C14—C13119.9 (3)C32—C33—H33119.5
C15—C14—H14120.0C34—C33—H33119.5
C13—C14—H14120.0C35—C34—C33121.3 (3)
C14—C15—C16120.8 (3)C35—C34—H34119.3
C14—C15—H15119.6C33—C34—H34119.3
C16—C15—H15119.6C34—C35—C36117.6 (3)
C17—C16—C15121.6 (3)C34—C35—H35121.2
C17—C16—H16119.2C36—C35—H35121.2
C15—C16—H16119.2N4—C36—C35131.0 (3)
C16—C17—C18117.7 (3)N4—C36—C31106.5 (2)
C16—C17—H17121.2C35—C36—C31122.5 (3)
C18—C17—H17121.2
O1i—Zn1—O1—C144.94 (13)C21—C22—C23—C240.1 (5)
Cl1i—Zn1—O1—C171.31 (16)O2—C19—C24—C23178.0 (3)
Cl1—Zn1—O1—C1160.91 (14)C20—C19—C24—C231.1 (4)
Zn1—O1—C1—C252.2 (3)O2—C19—C24—C250.6 (4)
Zn1—O1—C1—C6127.91 (18)C20—C19—C24—C25179.7 (2)
O1—C1—C2—C3176.8 (2)C22—C23—C24—C190.6 (4)
C6—C1—C2—C33.3 (4)C22—C23—C24—C25179.2 (3)
C1—C2—C3—C40.2 (4)C27—N3—C25—C24165.0 (6)
C2—C3—C4—C51.9 (4)C27'—N3—C25—C24166.8 (6)
C3—C4—C5—C60.7 (4)C27—N3—C25—C2615.9 (8)
C4—C5—C6—C12.4 (3)C27'—N3—C25—C2612.3 (7)
C4—C5—C6—C7178.6 (2)C19—C24—C25—N33.7 (4)
O1—C1—C6—C5175.8 (2)C23—C24—C25—N3174.9 (3)
C2—C1—C6—C54.3 (3)C19—C24—C25—C26177.3 (2)
O1—C1—C6—C73.1 (3)C23—C24—C25—C264.2 (4)
C2—C1—C6—C7176.7 (2)C25—N3—C27—C28135.0 (9)
C9—N1—C7—C6177.4 (2)C27'—N3—C27—C2863 (3)
C9—N1—C7—C83.4 (4)N3—C27—C28—C29176.6 (14)
C5—C6—C7—N1179.3 (2)C25—N3—C27'—C28'169.8 (9)
C1—C6—C7—N10.3 (3)C27—N3—C27'—C28'66 (4)
C5—C6—C7—C81.5 (4)N3—C27'—C28'—C29171.8 (10)
C1—C6—C7—C8179.5 (2)C27—C28—C29—C3064.7 (16)
C7—N1—C9—C10179.8 (2)C27—C28—C29—C31114.6 (11)
N1—C9—C10—C1167.5 (3)C27—C28—C29—C28'69 (7)
C9—C10—C11—C12102.8 (3)C27'—C28'—C29—C30113.1 (11)
C9—C10—C11—C1372.5 (3)C27'—C28'—C29—C3167.4 (16)
C13—C11—C12—N20.2 (3)C27'—C28'—C29—C2864 (7)
C10—C11—C12—N2176.2 (2)C31—C29—C30—N42.0 (3)
C18—N2—C12—C110.5 (3)C28—C29—C30—N4178.6 (12)
C12—C11—C13—C14178.4 (3)C28'—C29—C30—N4177.6 (10)
C10—C11—C13—C142.3 (4)C36—N4—C30—C291.6 (4)
C12—C11—C13—C180.1 (3)C30—C29—C31—C32179.5 (3)
C10—C11—C13—C18176.0 (2)C28—C29—C31—C321.0 (11)
C18—C13—C14—C150.3 (3)C28'—C29—C31—C320.0 (13)
C11—C13—C14—C15177.8 (3)C30—C29—C31—C361.6 (3)
C13—C14—C15—C160.1 (4)C28—C29—C31—C36178.9 (10)
C14—C15—C16—C170.2 (4)C28'—C29—C31—C36177.9 (12)
C15—C16—C17—C180.3 (4)C36—C31—C32—C332.0 (4)
C12—N2—C18—C17177.8 (3)C29—C31—C32—C33179.8 (3)
C12—N2—C18—C130.5 (3)C31—C32—C33—C341.9 (4)
C16—C17—C18—N2178.6 (3)C32—C33—C34—C350.7 (5)
C16—C17—C18—C130.5 (4)C33—C34—C35—C360.3 (5)
C14—C13—C18—N2179.0 (2)C30—N4—C36—C35179.4 (3)
C11—C13—C18—N20.4 (3)C30—N4—C36—C310.6 (3)
C14—C13—C18—C170.5 (4)C34—C35—C36—N4179.9 (3)
C11—C13—C18—C17178.1 (2)C34—C35—C36—C310.1 (4)
O2—C19—C20—C21178.1 (3)C32—C31—C36—N4179.0 (2)
C24—C19—C20—C210.9 (4)C29—C31—C36—N40.6 (3)
C19—C20—C21—C220.2 (5)C32—C31—C36—C351.1 (4)
C20—C21—C22—C230.3 (5)C29—C31—C36—C35179.4 (3)
Symmetry codes: (i) −x+1, y, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.86 (1)1.81 (2)2.557 (3)144 (3)
N2—H2n···O20.86 (1)2.01 (1)2.851 (3)164 (3)
N3—H3n···O20.87 (1)1.83 (3)2.503 (4)133 (4)
Table 1
Selected geometric parameters (Å, °)
top
Zn1—O11.987 (2)Zn1—Cl12.2260 (6)
O1—Zn1—O1i99.84 (9)O1—Zn1—Cl1i110.14 (5)
O1—Zn1—Cl1110.51 (5)Cl1—Zn1—Cl1i114.72 (3)
Symmetry codes: (i) −x+1, y, −z.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.86 (1)1.81 (2)2.557 (3)144 (3)
N2—H2n···O20.86 (1)2.01 (1)2.851 (3)164 (3)
N3—H3n···O20.87 (1)1.83 (3)2.503 (4)133 (4)
Acknowledgements top

We thank the Science Fund (12–02–03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

references
References top

Ali, H. M., Emmy Maryati, O. & Ng, S. W. (2007). Acta Cryst. E63, o3458–?.

Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m421–?.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J., Xu, X.-Y., Gao, J., Li, Y.-H. & Xu, G.-X. (2007). Chin. J. Struct. Chem. 26, 632–636.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Rodriguez, M. L., Medina de la Rosa, E., Gili, P., Zarza, P. M., Reyes, M. G. M., Medina, A. & Díaz González, M. C. (1987). Acta Cryst. C43, 134–136.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2008). publCIF. In preparation.