supplementary materials


Acta Cryst. (2008). E64, o1995    [ doi:10.1107/S1600536808029607 ]

N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

S.-J. Peng and H.-Y. Hou

Abstract top

The title compound, C14H12BrN3O3, was prepared by reaction of 5-bromo-3-methoxysalicylaldehyde and isonicotinohydrazide in methanol. The molecule is not planar and adopts a trans configuration with respect to the C=N bond. There is an intramolecular O-H...N hydrogen bond in the molecule. The dihedral angle between the benzene and pyridine rings is 12.2 (2)°. In the crystal structure, molecules are linked through intermolecular N-H...N hydrogen bonds, forming chains running along the c-axis direction.

Comment top

Hydrazones derived from the reactions of aldehydes with hydrazides show potential biological properties (El-Tabl et al., 2008; Chen et al., 2008; Alvarez et al., 2008; Ventura & Martins, 2008; Kalinowski et al., 2008). In the last few years, a large number of hydrazones have been reported (Peng & Hou, 2008; Shan et al., 2008; Fun et al., 2008; Yehye et al., 2008; Ejsmont et al., 2008). As a continuation of our work in this area (Peng & Hou, 2008) we report here the crystal structure of the title compound, (I), Fig. 1.

In the molecule of the title compound (I) the C7N1 length of 1.275 (3) Å indicates a typical CN bond. The molecule exists in a trans configuration with respect to the methylidene unit (C7N1), as observed in other similar compounds (Han et al., 2006; Lu et al., 2008). There is an intramolecular O—H···N hydrogen bond in the molecule. The dihedral angle between the benzene and pyridine rings is 12.2 (2)°, indicating the molecule is not planar. The bond lengths are in normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), forming chains running along the c direction (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For background on the biological properties of hydrazones, see: El-Tabl et al. (2008), Chen et al. (2008); Alvarez et al. (2008); Ventura & Martins (2008);Kalinowski et al. (2008). For related structures, see: Peng & Hou (2008); Shan et al. (2008); Fun et al. (2008); Yehye et al. (2008); Ejsmont et al. (2008),; Han et al. (2006); Lu et al. (2008).

Experimental top

5-Bromo-3-methoxysalicylaldehyde (0.231 g, 1 mmol) was dissolved in methanol (50 ml), then isonicotinohydrazide (0.137 g, 1 mmol) was added slowly to the solution, and the mixture was heated at reflux with continuous stirring for 1 h. The solution was cooled to room temperature, yielding colorless crystallites. Recrystallization from an absolute methanol yielded block-like single crystals of the compound.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å, and with Uiso set at 0.08 Å2. Other H atoms were placed in calculated positions with C—H distances of 0.93–0.96 Å, O—H distance of 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms; the intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines and hydrogen atoms not involved in these interactions have been omitted..
N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide top
Crystal data top
C14H12BrN3O3F(000) = 704
Mr = 350.18Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3223 reflections
a = 7.4937 (9) Åθ = 2.5–29.2°
b = 15.8843 (19) ŵ = 2.98 mm1
c = 11.7994 (14) ÅT = 298 K
β = 99.776 (2)°Block, colorless
V = 1384.1 (3) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3013 independent reflections
Radiation source: fine-focus sealed tube2299 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.587, Tmax = 0.616k = 1720
8003 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.5984P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C14H12BrN3O3V = 1384.1 (3) Å3
Mr = 350.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4937 (9) ŵ = 2.98 mm1
b = 15.8843 (19) ÅT = 298 K
c = 11.7994 (14) Å0.20 × 0.18 × 0.18 mm
β = 99.776 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2299 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.616Rint = 0.023
8003 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.39 e Å3
S = 1.03Δρmin = 0.41 e Å3
3013 reflectionsAbsolute structure: ?
195 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28353 (5)0.417081 (18)1.029574 (19)0.06245 (12)
O10.1144 (2)0.35958 (10)0.51873 (12)0.0457 (4)
H10.15100.39850.48320.069*
O20.0357 (2)0.24186 (10)0.65725 (13)0.0473 (4)
O30.2696 (3)0.49630 (11)0.27412 (14)0.0651 (6)
N10.2592 (2)0.50906 (11)0.49603 (15)0.0366 (4)
N20.3058 (3)0.57618 (11)0.43355 (15)0.0368 (4)
N30.3899 (3)0.77447 (12)0.10697 (16)0.0422 (5)
C10.2305 (3)0.45105 (13)0.67791 (17)0.0322 (5)
C20.1524 (3)0.37588 (13)0.63313 (16)0.0314 (4)
C30.1127 (3)0.31267 (13)0.70889 (17)0.0328 (5)
C40.1548 (3)0.32447 (14)0.82630 (17)0.0352 (5)
H40.13140.28230.87650.042*
C50.2323 (3)0.39986 (14)0.86841 (17)0.0370 (5)
C60.2695 (3)0.46250 (14)0.79697 (17)0.0375 (5)
H60.32080.51270.82740.045*
C70.2776 (3)0.51825 (13)0.60474 (18)0.0376 (5)
H70.32200.56890.63780.045*
C80.3013 (3)0.56400 (14)0.31958 (18)0.0379 (5)
C90.3367 (3)0.64012 (13)0.25079 (17)0.0321 (5)
C100.2656 (3)0.63897 (14)0.13450 (18)0.0408 (5)
H100.19910.59290.10220.049*
C110.2945 (3)0.70697 (15)0.0670 (2)0.0449 (6)
H110.24450.70550.01070.054*
C120.4597 (3)0.77448 (14)0.2190 (2)0.0395 (5)
H120.52870.82070.24840.047*
C130.4358 (3)0.71018 (13)0.29379 (18)0.0350 (5)
H130.48530.71380.37140.042*
C140.0108 (3)0.17267 (14)0.7293 (2)0.0473 (6)
H14A0.12550.15660.77320.071*
H14B0.03970.12610.68280.071*
H14C0.07010.18860.78050.071*
H20.331 (4)0.6240 (12)0.472 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1005 (3)0.0644 (2)0.02233 (13)0.01755 (16)0.01035 (12)0.00145 (11)
O10.0749 (12)0.0384 (9)0.0233 (7)0.0087 (8)0.0068 (7)0.0007 (6)
O20.0711 (11)0.0338 (8)0.0357 (8)0.0121 (8)0.0053 (8)0.0022 (7)
O30.1248 (17)0.0381 (9)0.0351 (9)0.0254 (10)0.0207 (10)0.0054 (8)
N10.0502 (12)0.0317 (10)0.0292 (9)0.0001 (8)0.0104 (8)0.0049 (7)
N20.0560 (12)0.0280 (9)0.0282 (9)0.0011 (9)0.0123 (8)0.0047 (7)
N30.0509 (12)0.0379 (10)0.0394 (10)0.0030 (9)0.0122 (9)0.0087 (8)
C10.0411 (12)0.0296 (10)0.0269 (10)0.0031 (9)0.0082 (9)0.0025 (8)
C20.0386 (12)0.0318 (11)0.0234 (9)0.0049 (9)0.0043 (8)0.0006 (8)
C30.0373 (12)0.0300 (11)0.0313 (10)0.0017 (9)0.0062 (9)0.0005 (9)
C40.0412 (13)0.0364 (12)0.0296 (10)0.0030 (10)0.0105 (9)0.0059 (9)
C50.0477 (13)0.0427 (13)0.0215 (10)0.0004 (10)0.0078 (9)0.0016 (9)
C60.0511 (14)0.0339 (11)0.0279 (10)0.0022 (10)0.0079 (9)0.0036 (9)
C70.0523 (14)0.0302 (11)0.0309 (11)0.0003 (10)0.0089 (10)0.0000 (9)
C80.0502 (14)0.0349 (12)0.0296 (10)0.0024 (10)0.0100 (10)0.0013 (9)
C90.0390 (12)0.0307 (11)0.0290 (10)0.0036 (9)0.0123 (9)0.0016 (8)
C100.0545 (15)0.0368 (12)0.0306 (11)0.0033 (11)0.0059 (10)0.0002 (9)
C110.0582 (16)0.0452 (14)0.0301 (11)0.0021 (12)0.0042 (10)0.0042 (10)
C120.0425 (13)0.0334 (12)0.0437 (12)0.0004 (10)0.0108 (10)0.0014 (10)
C130.0401 (12)0.0361 (12)0.0295 (10)0.0031 (9)0.0080 (9)0.0001 (9)
C140.0624 (16)0.0335 (12)0.0482 (14)0.0057 (11)0.0158 (12)0.0047 (11)
Geometric parameters (Å, °) top
Br1—C51.895 (2)C4—C51.386 (3)
O1—C21.356 (2)C4—H40.9300
O1—H10.8200C5—C61.363 (3)
O2—C31.360 (3)C6—H60.9300
O2—C141.421 (3)C7—H70.9300
O3—C81.207 (3)C8—C91.505 (3)
N1—C71.275 (3)C9—C101.385 (3)
N1—N21.375 (2)C9—C131.386 (3)
N2—C81.353 (3)C10—C111.381 (3)
N2—H20.889 (10)C10—H100.9300
N3—C111.330 (3)C11—H110.9300
N3—C121.336 (3)C12—C131.381 (3)
C1—C21.394 (3)C12—H120.9300
C1—C61.397 (3)C13—H130.9300
C1—C71.454 (3)C14—H14A0.9600
C2—C31.409 (3)C14—H14B0.9600
C3—C41.380 (3)C14—H14C0.9600
C2—O1—H1109.5N1—C7—H7119.4
C3—O2—C14117.41 (17)C1—C7—H7119.4
C7—N1—N2117.18 (18)O3—C8—N2122.6 (2)
C8—N2—N1117.15 (18)O3—C8—C9121.04 (19)
C8—N2—H2127 (2)N2—C8—C9116.37 (18)
N1—N2—H2116 (2)C10—C9—C13117.73 (19)
C11—N3—C12116.57 (19)C10—C9—C8116.78 (19)
C2—C1—C6119.70 (19)C13—C9—C8125.48 (19)
C2—C1—C7122.19 (18)C11—C10—C9119.3 (2)
C6—C1—C7118.10 (19)C11—C10—H10120.4
O1—C2—C1122.99 (18)C9—C10—H10120.4
O1—C2—C3117.65 (18)N3—C11—C10123.6 (2)
C1—C2—C3119.35 (18)N3—C11—H11118.2
O2—C3—C4124.68 (19)C10—C11—H11118.2
O2—C3—C2115.10 (18)N3—C12—C13124.1 (2)
C4—C3—C2120.20 (19)N3—C12—H12118.0
C3—C4—C5119.18 (19)C13—C12—H12118.0
C3—C4—H4120.4C12—C13—C9118.7 (2)
C5—C4—H4120.4C12—C13—H13120.7
C6—C5—C4121.76 (19)C9—C13—H13120.7
C6—C5—Br1119.16 (16)O2—C14—H14A109.5
C4—C5—Br1119.06 (16)O2—C14—H14B109.5
C5—C6—C1119.8 (2)H14A—C14—H14B109.5
C5—C6—H6120.1O2—C14—H14C109.5
C1—C6—H6120.1H14A—C14—H14C109.5
N1—C7—C1121.2 (2)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.89 (1)2.26 (1)3.126 (3)166 (3)
O1—H1···N10.821.932.643 (2)145.
Symmetry codes: (i) x, −y+3/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.89 (1)2.26 (1)3.126 (3)166 (3)
O1—H1···N10.821.932.643 (2)145.
Symmetry codes: (i) x, −y+3/2, z+1/2.
Acknowledgements top

SJP gratefully acknowledges Changsha University of Science and Technology for research grants.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

Alvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952–5961.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894–898.

Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.

El-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380–2401.

Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.

Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572–o5573.

Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344.

Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.

Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.

Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612–624.

Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.