metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbon­yl[4-(2,3-di­methyl­phenyl­amino)pent-3-en-2-onato-κ2N,O](tri­phenyl­phosphine-κP)rhodium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: truidie@hotmail.com

(Received 5 August 2009; accepted 30 September 2009; online 7 October 2009)

In the title compound, [Rh(C13H16NO)(C18H15P)(CO)], the coordination geometry of the RhI atom is square-planar, formed by the coordinating N and O atoms of the bidentate enaminoketonate ligand, one C atom from the carbonyl group and a P atom from triphenyl­phosphine. The complex displays a 0.591 (3):0.409 (3) ratio disorder of the phenyl unit of the monoanionic N,O-bidentate ligand. Intra­molecular hydrogen bonding is observed between a C—H group of the triphenyl­phosphine unit and the O atom of the enamino­ketonate ligand.

Related literature

For related derivatives of the 4-phenyl­amino­pent-3-en-2-onate ligand, see: Da Silva et al. (1993[Da Silva, M. A. V. R., Da Silva, M. D. M. C. R., Paiva, J. P. A., Nogueira, I. M. C. S., Damas, A. M., Barkley, J. V., Harding, M. M., Akello, M. J. & Pilcher, G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1765-1769.]); Gordon et al. (2002[Gordon, J. C., Shukla, P., Cowley, A. H., Jones, J. N., Keogh, D. W. & Scott, B. L. (2002). Chem. Commun. pp. 2710-2711.]); Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]). For related dicarbonyl rhodium(I) complexes with a bidentate ligand, see: Cornils & Herrmann (1996[Cornils, B. & Herrmann, W. A. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook. Weinheim: VCH.]); Trzeciak & Ziółkowski (1994[Trzeciak, A. M. & Ziółkowski, J. J. (1994). J. Organomet. Chem. 464, 107-111.]); van Rooy et al. (1995[Rooy, A. van, Orij, E. N., Kamer, P. C. J. & van Leeuwen, P. W. M. N. (1995). Organometallics, 14, 34-43.]). For related carbonyl rhodium(I) complexes with a phosphine and a bidentate ligand, see: Bonati & Wilkinson (1964[Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.]); Damoense et al. (1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); Lamprecht et al. (1997[Lamprecht, D., Lamprecht, G. J., Botha, J. M., Umakoshi, K. & Sasaki, Y. (1997). Acta Cryst. C53, 1403-1405.]); Leipoldt et al. (1978[Leipoldt, J. G., Basson, S. S., Bok, L. D. C. & Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35-L37.]); Purcell et al. (1995[Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153-156.]); Varshavsky et al. (2001[Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195-210.]). For background information, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C13H16NO)(C18H15P)(CO)]

  • Mr = 595.46

  • Monoclinic, P 21 /c

  • a = 14.9077 (3) Å

  • b = 11.6202 (3) Å

  • c = 16.0256 (4) Å

  • β = 93.521 (1)°

  • V = 2770.88 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.13 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.914

  • 30367 measured reflections

  • 6985 independent reflections

  • 5783 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.04

  • 6985 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C326—H326⋯O12 0.95 2.36 3.177 (3) 143

Table 2
Comparative geometrical parameters for similar [Rh(N,O-bid)(CO)(PPh3)] complexes (Å,°)

Parameters (I) (II) (III)
Rh1—N11 2.069 (2) 2.045 (4) 2.045 (3)
Rh1—O12 2.028 (2) 2.044 (3) 2.045 (2)
Rh1—P13 2.2635 (6) 2.275 (1) 2.281 (2)
Rh1—C14 1.807 (2) 1.784 (5) 1.804 (3)
C14—O14 1.152 (3) 1.142 (7) 1.148 (4)
N11⋯O12 2.885 (3) 2.826 (6) 2.841 (3)
N11—Rh1—O12 89.54 (8) 87.4 (1) 87.95 (8)
O12—Rh1—P13 84.97 (5) 89.7 (1) 89.91 (5)
P13—Rh1—C14 91.87 (7) 90.3 (2) 89.48 (9)
N11—Rh1—C14 93.6 (1) 92.6 (2) 92.6 (1)
N11—C2—C4—O12 4.1 (2) 1.2 (4) 1.5 (2)
θEa 156.39 (3) 156.0 (2) 156.23 (4)
Notes: (I) This work. (II) N,O-bid = 4-aminopent-3-en-2-onato (Damoense et al., 1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]). (III) N,O-bid = 4-amino-1,1,1-trifluoropent-3-en-2-onato (Varshavsky et al., 2001[Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195-210.]). (a) Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.])

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Rhodium(I) dicarbonyl complexes of the type [Rh(L,L')(CO)2] containing chelating mono-anionic bidentate (L,L') ligands coordinated to rhodium via (O,O) donor atoms have been studied as catalyst precursors (Cornils & Herrmann, 1996; Trzeciak & Ziółkowski, 1994; van Rooy et al., 1995). In this study the investigation of these β-diketonato complexes is followed by complexes containing bidentate β-enaminoketonato ligands such as 4-(phenylamino)pent-3-en-2-onato (Phony) (Shaheen et al., 2006) coordinated to rhodium via (N,O) donor atoms. Dicarbonyl complexes of the [Rh(N,O-bid)(CO)2]-type (Varshavsky et al., 2001) react with phosphorus ligands to form [Rh(N,O-bid)(CO)(PZ3)] complexes (Damoense et al., 1994; Varshavsky et al., 2001). According to Bonati & Wilkinson (1964), only one CO group will be substituted by triphenylphosphine, with the product being one of two possible isomers. Since N atom has a larger trans-influence than O atom, the CO group trans to the N atom will be substituted. This is evident in the title compound (Fig. 1), where [Rh(2,3-diMe-Phony)(CO)(PPh3)] is formed by the substitution of the carbonyl ligand in the dicarbonyl rhodium(I) complex [Rh(2,3-diMe-Phony)(CO)2] by PPh3.

Bond distances involving Rh atom in the title complex differ significantly from the distances in related complexes (Table 2). The Rh—N bond distance in the title complex is longer than those in similar complexes while the Rh—O bond distance is shorter. This is due to the steric influence of the phenyl group connected to N atom in the title compound, as opposed to H atom in the related complexes. The Rh—C and the carbonyl C—O bond distances do not differ substantially from the distances in the related complexes (Table 2). The N—Rh—O bite angle is slightly larger than those observed in similar complexes found in literature. The effective cone angle, θE (Tolman, 1977), of 156.39 (3)° is similar to the angles in the related compounds. The title complex displays a disorder of the phenyl ring in a 59:41% ratio.

Related literature top

For related derivatives of the 4-phenylaminopent-3-en-2-onate ligand, see: Da Silva et al. (1993); Gordon et al. (2002); Shaheen et al. (2006). For related dicarbonyl rhodium(I) complexes with a bidentate ligand, see: Cornils & Herrmann (1996); Trzeciak & Ziółkowski (1994); van Rooy et al. (1995). For related carbonyl rhodium(I) complexes with a phosphine and a bidentate ligand, see: Bonati & Wilkinson (1964); Damoense et al. (1994); Lamprecht et al. (1997); Leipoldt et al. (1978); Purcell et al. (1995); Varshavsky et al. (2001). For background information, see: Tolman (1977).

Experimental top

To a 5 ml acetone solution of [Rh(2,3-diMe-Phony)(CO)2] (0.0204 g, 56.48 mmol) was added PPh3 (0.0151 g, 57.57 mmol) resulting in the immediate evolution of gas. Crystallization from acetone produced yellow crystals in quantitative yield (0.0334 g). IR (KBr): νCO 1966.93 s (cm-1).

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 and 0.95 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.

Structure description top

Rhodium(I) dicarbonyl complexes of the type [Rh(L,L')(CO)2] containing chelating mono-anionic bidentate (L,L') ligands coordinated to rhodium via (O,O) donor atoms have been studied as catalyst precursors (Cornils & Herrmann, 1996; Trzeciak & Ziółkowski, 1994; van Rooy et al., 1995). In this study the investigation of these β-diketonato complexes is followed by complexes containing bidentate β-enaminoketonato ligands such as 4-(phenylamino)pent-3-en-2-onato (Phony) (Shaheen et al., 2006) coordinated to rhodium via (N,O) donor atoms. Dicarbonyl complexes of the [Rh(N,O-bid)(CO)2]-type (Varshavsky et al., 2001) react with phosphorus ligands to form [Rh(N,O-bid)(CO)(PZ3)] complexes (Damoense et al., 1994; Varshavsky et al., 2001). According to Bonati & Wilkinson (1964), only one CO group will be substituted by triphenylphosphine, with the product being one of two possible isomers. Since N atom has a larger trans-influence than O atom, the CO group trans to the N atom will be substituted. This is evident in the title compound (Fig. 1), where [Rh(2,3-diMe-Phony)(CO)(PPh3)] is formed by the substitution of the carbonyl ligand in the dicarbonyl rhodium(I) complex [Rh(2,3-diMe-Phony)(CO)2] by PPh3.

Bond distances involving Rh atom in the title complex differ significantly from the distances in related complexes (Table 2). The Rh—N bond distance in the title complex is longer than those in similar complexes while the Rh—O bond distance is shorter. This is due to the steric influence of the phenyl group connected to N atom in the title compound, as opposed to H atom in the related complexes. The Rh—C and the carbonyl C—O bond distances do not differ substantially from the distances in the related complexes (Table 2). The N—Rh—O bite angle is slightly larger than those observed in similar complexes found in literature. The effective cone angle, θE (Tolman, 1977), of 156.39 (3)° is similar to the angles in the related compounds. The title complex displays a disorder of the phenyl ring in a 59:41% ratio.

For related derivatives of the 4-phenylaminopent-3-en-2-onate ligand, see: Da Silva et al. (1993); Gordon et al. (2002); Shaheen et al. (2006). For related dicarbonyl rhodium(I) complexes with a bidentate ligand, see: Cornils & Herrmann (1996); Trzeciak & Ziółkowski (1994); van Rooy et al. (1995). For related carbonyl rhodium(I) complexes with a phosphine and a bidentate ligand, see: Bonati & Wilkinson (1964); Damoense et al. (1994); Lamprecht et al. (1997); Leipoldt et al. (1978); Purcell et al. (1995); Varshavsky et al. (2001). For background information, see: Tolman (1977).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound.
Carbonyl[4-(2,3-dimethylphenylamino)pent-3-en-2-onato- κ2N,O](triphenylphosphine-κP)rhodium(I) top
Crystal data top
[Rh(C13H16NO)(C18H15P)(CO)]F(000) = 1224
Mr = 595.46Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8984 reflections
a = 14.9077 (3) Åθ = 2.2–28.4°
b = 11.6202 (3) ŵ = 0.70 mm1
c = 16.0256 (4) ÅT = 100 K
β = 93.521 (1)°Cuboid, yellow
V = 2770.88 (11) Å30.25 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6985 independent reflections
Radiation source: fine-focus sealed tube5783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and φ scansθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.844, Tmax = 0.914k = 1514
30367 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0235P)2 + 2.8578P]
where P = (Fo2 + 2Fc2)/3
6985 reflections(Δ/σ)max = 0.005
305 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Rh(C13H16NO)(C18H15P)(CO)]V = 2770.88 (11) Å3
Mr = 595.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9077 (3) ŵ = 0.70 mm1
b = 11.6202 (3) ÅT = 100 K
c = 16.0256 (4) Å0.25 × 0.15 × 0.13 mm
β = 93.521 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6985 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5783 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.914Rint = 0.040
30367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
6985 reflectionsΔρmin = 0.69 e Å3
305 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1033 frames were collected with a frame width of 0.5° covering up to θ = 28.41° with 99.4% completeness accomplished.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.258727 (11)0.605541 (15)1.062396 (10)0.01882 (6)
N110.26580 (15)0.43296 (18)1.03172 (15)0.0361 (5)
O120.36554 (10)0.63702 (14)0.99328 (9)0.0221 (3)
O140.09801 (11)0.57318 (15)1.15945 (10)0.0285 (4)
P130.26175 (4)0.79721 (5)1.08760 (3)0.01818 (12)
C10.3204 (2)0.2591 (2)0.9641 (2)0.0576 (10)
H1A0.30990.2181.01610.086*
H1B0.37820.23520.94390.086*
H1C0.27220.24090.92190.086*
C20.32179 (18)0.3869 (2)0.98045 (17)0.0325 (6)
C30.38454 (16)0.4508 (2)0.93713 (15)0.0267 (5)
H30.41760.40930.89820.032*
C40.40317 (14)0.5655 (2)0.94473 (14)0.0222 (5)
C50.47221 (16)0.6203 (2)0.89254 (16)0.0318 (6)
H5A0.44190.66840.84920.048*
H5B0.50680.56010.86620.048*
H5C0.51290.6680.92830.048*
C11A0.22412 (17)0.3512 (2)1.08695 (16)0.0249 (5)0.591 (3)
C12A0.13769 (16)0.3169 (2)1.06046 (13)0.0249 (5)0.591 (3)
C13A0.09120 (13)0.2400 (2)1.10833 (15)0.0249 (5)0.591 (3)
C14A0.13113 (16)0.1974 (2)1.18269 (14)0.0249 (5)0.591 (3)
H14A0.09940.14491.21540.03*0.591 (3)
C15A0.21756 (17)0.2318 (2)1.20919 (14)0.0249 (5)0.591 (3)
H15A0.24490.20271.260.03*0.591 (3)
C16A0.26405 (14)0.3086 (3)1.16132 (17)0.0249 (5)0.591 (3)
H16A0.32310.33211.17940.03*0.591 (3)
C18A0.0011 (3)0.1950 (4)1.0797 (2)0.0249 (5)0.591 (3)
H18A0.00430.14231.03250.037*0.591 (3)
H18B0.04010.25961.06220.037*0.591 (3)
H18C0.02710.15391.12580.037*0.591 (3)
C17A0.0953 (3)0.3664 (4)0.9799 (3)0.0249 (5)0.591 (3)
H17A0.09020.45010.98530.037*0.591 (3)
H17B0.03540.3330.96880.037*0.591 (3)
H17C0.13290.3480.93370.037*0.591 (3)
C11B0.1803 (2)0.3671 (3)1.0474 (2)0.0243 (7)0.409 (3)
C12B0.18861 (19)0.3040 (3)1.1212 (2)0.0243 (7)0.409 (3)
C13B0.1158 (2)0.2418 (3)1.14741 (19)0.0243 (7)0.409 (3)
C14B0.0346 (2)0.2428 (3)1.0998 (2)0.0243 (7)0.409 (3)
H14B0.01520.20031.11780.029*0.409 (3)
C15B0.0263 (2)0.3059 (3)1.0261 (2)0.0243 (7)0.409 (3)
H15B0.02920.30650.99360.029*0.409 (3)
C16B0.0991 (3)0.3680 (3)0.99988 (19)0.0243 (7)0.409 (3)
H16B0.09340.41110.94950.029*0.409 (3)
C17B0.2760 (4)0.3064 (6)1.1737 (4)0.0243 (7)0.409 (3)
H17D0.30930.23511.1650.036*0.409 (3)
H17E0.26360.31321.23280.036*0.409 (3)
H17F0.31190.37241.15740.036*0.409 (3)
C18B0.1219 (4)0.1738 (5)1.2287 (3)0.0243 (7)0.409 (3)
H18D0.06240.1441.23990.036*0.409 (3)
H18E0.14360.22411.27470.036*0.409 (3)
H18F0.16380.10941.22380.036*0.409 (3)
C140.16135 (15)0.58652 (19)1.12283 (14)0.0215 (5)
C3110.19823 (15)0.8522 (2)1.17253 (14)0.0212 (5)
C3120.23991 (16)0.8923 (2)1.24725 (15)0.0261 (5)
H3120.30360.8981.25310.031*
C3130.18891 (18)0.9239 (2)1.31310 (16)0.0336 (6)
H3130.21770.95011.36420.04*
C3140.09599 (18)0.9173 (2)1.30437 (17)0.0372 (6)
H3140.06110.93951.34930.045*
C3150.05421 (17)0.8787 (2)1.23056 (18)0.0364 (6)
H3150.00950.87451.22480.044*
C3160.10419 (16)0.8460 (2)1.16490 (16)0.0289 (5)
H3160.07480.81921.11430.035*
C3210.22426 (16)0.8831 (2)0.99645 (14)0.0239 (5)
C3220.17703 (18)0.9858 (2)1.00150 (15)0.0329 (6)
H3220.16151.0141.05440.04*
C3230.1525 (2)1.0472 (2)0.92915 (17)0.0409 (7)
H3230.11941.11670.93290.049*
C3240.1756 (2)1.0084 (2)0.85193 (16)0.0383 (6)
H3240.15911.05110.80280.046*
C3250.22301 (19)0.9068 (2)0.84678 (16)0.0362 (6)
H3250.23930.87960.79390.043*
C3260.24695 (16)0.8442 (2)0.91864 (14)0.0280 (5)
H3260.27910.77410.91440.034*
C3310.37540 (15)0.8504 (2)1.11391 (13)0.0224 (5)
C3320.40227 (19)0.9603 (2)1.09345 (18)0.0389 (7)
H3320.36231.00961.06180.047*
C3330.4886 (2)0.9988 (3)1.1196 (2)0.0510 (8)
H3330.50731.0741.10530.061*
C3340.54615 (18)0.9282 (3)1.16566 (18)0.0431 (8)
H3340.60430.9551.18390.052*
C3350.52026 (16)0.8193 (3)1.18548 (16)0.0353 (6)
H3350.56050.77051.21720.042*
C3360.43533 (15)0.7797 (2)1.15942 (14)0.0264 (5)
H3360.41810.70351.17290.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01877 (9)0.01664 (9)0.02180 (9)0.00199 (7)0.00727 (6)0.00079 (7)
N110.0465 (13)0.0177 (10)0.0478 (13)0.0072 (9)0.0327 (11)0.0047 (9)
O120.0197 (8)0.0216 (8)0.0256 (8)0.0005 (6)0.0075 (6)0.0035 (6)
O140.0241 (9)0.0315 (10)0.0309 (9)0.0077 (7)0.0108 (7)0.0045 (7)
P130.0172 (3)0.0182 (3)0.0191 (3)0.0007 (2)0.0002 (2)0.0006 (2)
C10.083 (2)0.0238 (15)0.073 (2)0.0050 (15)0.055 (2)0.0111 (15)
C20.0384 (14)0.0220 (13)0.0393 (14)0.0005 (11)0.0201 (12)0.0043 (11)
C30.0271 (12)0.0248 (13)0.0297 (12)0.0038 (10)0.0134 (10)0.0004 (10)
C40.0169 (10)0.0277 (12)0.0223 (11)0.0033 (9)0.0038 (9)0.0054 (9)
C50.0247 (12)0.0372 (15)0.0349 (13)0.0004 (11)0.0128 (10)0.0068 (11)
C11A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C12A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C13A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C14A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C15A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C16A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C18A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C17A0.0258 (8)0.0232 (8)0.0259 (8)0.0024 (6)0.0018 (6)0.0011 (6)
C11B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C12B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C13B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C14B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C15B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C16B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C17B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C18B0.0281 (12)0.0204 (11)0.0246 (11)0.0016 (9)0.0036 (9)0.0003 (8)
C140.0238 (11)0.0192 (12)0.0216 (11)0.0045 (9)0.0027 (9)0.0031 (9)
C3110.0201 (11)0.0193 (11)0.0242 (11)0.0002 (9)0.0009 (9)0.0020 (9)
C3120.0232 (12)0.0279 (13)0.0267 (12)0.0035 (10)0.0017 (9)0.0048 (10)
C3130.0363 (14)0.0400 (16)0.0242 (12)0.0017 (12)0.0009 (11)0.0116 (11)
C3140.0320 (14)0.0462 (17)0.0345 (14)0.0044 (12)0.0106 (11)0.0135 (12)
C3150.0201 (12)0.0439 (17)0.0459 (16)0.0004 (11)0.0072 (11)0.0112 (13)
C3160.0235 (12)0.0312 (14)0.0319 (13)0.0013 (10)0.0007 (10)0.0085 (11)
C3210.0280 (12)0.0199 (12)0.0231 (11)0.0001 (10)0.0034 (9)0.0003 (9)
C3220.0483 (16)0.0230 (13)0.0267 (12)0.0066 (12)0.0043 (11)0.0046 (10)
C3230.0585 (19)0.0243 (14)0.0386 (15)0.0148 (13)0.0064 (14)0.0002 (11)
C3240.0529 (18)0.0312 (15)0.0298 (13)0.0095 (13)0.0065 (12)0.0074 (11)
C3250.0469 (16)0.0383 (16)0.0230 (12)0.0103 (13)0.0008 (11)0.0022 (11)
C3260.0340 (14)0.0248 (13)0.0246 (12)0.0081 (10)0.0023 (10)0.0009 (10)
C3310.0200 (11)0.0286 (12)0.0190 (10)0.0059 (9)0.0035 (9)0.0027 (9)
C3320.0405 (16)0.0334 (16)0.0423 (15)0.0137 (12)0.0020 (13)0.0053 (12)
C3330.0503 (19)0.0486 (19)0.0550 (19)0.0328 (16)0.0110 (15)0.0046 (16)
C3340.0240 (13)0.067 (2)0.0387 (15)0.0154 (14)0.0085 (12)0.0198 (15)
C3350.0194 (12)0.0592 (19)0.0276 (12)0.0007 (12)0.0031 (10)0.0165 (12)
C3360.0212 (11)0.0368 (14)0.0215 (11)0.0014 (10)0.0050 (9)0.0095 (10)
Geometric parameters (Å, º) top
Rh1—C141.807 (2)C13B—C18B1.522 (6)
Rh1—O122.0280 (15)C14B—C15B1.39
Rh1—N112.069 (2)C14B—H14B0.95
Rh1—P132.2635 (6)C15B—C16B1.39
N11—C21.320 (3)C15B—H15B0.95
N11—C11A1.463 (3)C16B—H16B0.95
N11—C11B1.522 (3)C17B—H17D0.98
O12—C41.290 (3)C17B—H17E0.98
O14—C141.152 (3)C17B—H17F0.98
P13—C3111.821 (2)C18B—H18D0.98
P13—C3311.828 (2)C18B—H18E0.98
P13—C3211.828 (2)C18B—H18F0.98
C1—C21.508 (4)C311—C3121.395 (3)
C1—H1A0.98C311—C3161.401 (3)
C1—H1B0.98C312—C3131.388 (3)
C1—H1C0.98C312—H3120.95
C2—C31.410 (3)C313—C3141.386 (4)
C3—C41.366 (3)C313—H3130.95
C3—H30.95C314—C3151.378 (4)
C4—C51.507 (3)C314—H3140.95
C5—H5A0.98C315—C3161.379 (3)
C5—H5B0.98C315—H3150.95
C5—H5C0.98C316—H3160.95
C11A—C12A1.39C321—C3261.388 (3)
C11A—C16A1.39C321—C3221.390 (3)
C12A—C13A1.39C322—C3231.391 (4)
C12A—C17A1.515 (5)C322—H3220.95
C13A—C14A1.39C323—C3241.381 (4)
C13A—C18A1.516 (4)C323—H3230.95
C14A—C15A1.39C324—C3251.380 (4)
C14A—H14A0.95C324—H3240.95
C15A—C16A1.39C325—C3261.390 (3)
C15A—H15A0.95C325—H3250.95
C16A—H16A0.95C326—H3260.95
C18A—H18A0.98C331—C3321.384 (4)
C18A—H18B0.98C331—C3361.388 (3)
C18A—H18C0.98C332—C3331.403 (4)
C17A—H17A0.98C332—H3320.95
C17A—H17B0.98C333—C3341.369 (5)
C17A—H17C0.98C333—H3330.95
C11B—C12B1.39C334—C3351.366 (4)
C11B—C16B1.39C334—H3340.95
C12B—C13B1.39C335—C3361.387 (3)
C12B—C17B1.506 (7)C335—H3350.95
C13B—C14B1.39C336—H3360.95
C14—Rh1—O12176.48 (9)C14B—C15B—H15B120
C14—Rh1—N1193.62 (9)C15B—C16B—C11B120
O12—Rh1—N1189.53 (7)C15B—C16B—H16B120
C14—Rh1—P1391.86 (7)C11B—C16B—H16B120
O12—Rh1—P1384.97 (5)C12B—C17B—H17D109.5
N11—Rh1—P13174.49 (6)C12B—C17B—H17E109.5
C2—N11—C11A114.9 (2)H17D—C17B—H17E109.5
C2—N11—C11B117.8 (2)C12B—C17B—H17F109.5
C2—N11—Rh1125.77 (17)H17D—C17B—H17F109.5
C11A—N11—Rh1117.14 (17)H17E—C17B—H17F109.5
C11B—N11—Rh1113.14 (19)C13B—C18B—H18D109.5
C4—O12—Rh1126.75 (15)C13B—C18B—H18E109.5
C311—P13—C331103.07 (10)H18D—C18B—H18E109.5
C311—P13—C321104.96 (11)C13B—C18B—H18F109.5
C331—P13—C321103.48 (11)H18D—C18B—H18F109.5
C311—P13—Rh1118.23 (8)H18E—C18B—H18F109.5
C331—P13—Rh1112.44 (8)O14—C14—Rh1178.1 (2)
C321—P13—Rh1113.14 (8)C312—C311—C316118.8 (2)
C2—C1—H1A109.5C312—C311—P13122.29 (17)
C2—C1—H1B109.5C316—C311—P13118.70 (17)
H1A—C1—H1B109.5C313—C312—C311120.4 (2)
C2—C1—H1C109.5C313—C312—H312119.8
H1A—C1—H1C109.5C311—C312—H312119.8
H1B—C1—H1C109.5C314—C313—C312120.0 (2)
N11—C2—C3123.8 (2)C314—C313—H313120
N11—C2—C1120.3 (2)C312—C313—H313120
C3—C2—C1115.8 (2)C315—C314—C313120.1 (2)
C4—C3—C2127.4 (2)C315—C314—H314120
C4—C3—H3116.3C313—C314—H314120
C2—C3—H3116.3C314—C315—C316120.5 (2)
O12—C4—C3126.1 (2)C314—C315—H315119.7
O12—C4—C5113.6 (2)C316—C315—H315119.7
C3—C4—C5120.3 (2)C315—C316—C311120.2 (2)
C4—C5—H5A109.5C315—C316—H316119.9
C4—C5—H5B109.5C311—C316—H316119.9
H5A—C5—H5B109.5C326—C321—C322119.0 (2)
C4—C5—H5C109.5C326—C321—P13117.40 (18)
H5A—C5—H5C109.5C322—C321—P13123.59 (18)
H5B—C5—H5C109.5C321—C322—C323120.0 (2)
C12A—C11A—C16A120C321—C322—H322120
C12A—C11A—N11114.94 (19)C323—C322—H322120
C16A—C11A—N11125.06 (19)C324—C323—C322120.8 (2)
C11A—C12A—C13A120C324—C323—H323119.6
C11A—C12A—C17A118.8 (2)C322—C323—H323119.6
C13A—C12A—C17A121.2 (2)C325—C324—C323119.3 (2)
C12A—C13A—C14A120C325—C324—H324120.3
C12A—C13A—C18A121.9 (2)C323—C324—H324120.3
C14A—C13A—C18A118.0 (2)C324—C325—C326120.3 (2)
C15A—C14A—C13A120C324—C325—H325119.9
C15A—C14A—H14A120C326—C325—H325119.9
C13A—C14A—H14A120C321—C326—C325120.6 (2)
C14A—C15A—C16A120C321—C326—H326119.7
C14A—C15A—H15A120C325—C326—H326119.7
C16A—C15A—H15A120C332—C331—C336119.0 (2)
C15A—C16A—C11A120C332—C331—P13122.3 (2)
C15A—C16A—H16A120C336—C331—P13118.61 (18)
C11A—C16A—H16A120C331—C332—C333119.8 (3)
C12B—C11B—C16B120C331—C332—H332120.1
C12B—C11B—N11112.0 (2)C333—C332—H332120.1
C16B—C11B—N11128.0 (2)C334—C333—C332120.2 (3)
C11B—C12B—C13B120C334—C333—H333119.9
C11B—C12B—C17B119.6 (3)C332—C333—H333119.9
C13B—C12B—C17B120.4 (3)C335—C334—C333120.3 (3)
C14B—C13B—C12B120C335—C334—H334119.9
C14B—C13B—C18B118.6 (3)C333—C334—H334119.9
C12B—C13B—C18B121.4 (3)C334—C335—C336120.2 (3)
C13B—C14B—C15B120C334—C335—H335119.9
C13B—C14B—H14B120C336—C335—H335119.9
C15B—C14B—H14B120C335—C336—C331120.5 (3)
C16B—C15B—C14B120C335—C336—H336119.7
C16B—C15B—H15B120C331—C336—H336119.7
C14—Rh1—N11—C2174.7 (3)C16B—C11B—C12B—C17B178.1 (4)
O12—Rh1—N11—C23.8 (3)N11—C11B—C12B—C17B0.6 (4)
C14—Rh1—N11—C11A23.0 (2)C11B—C12B—C13B—C14B0
O12—Rh1—N11—C11A158.5 (2)C17B—C12B—C13B—C14B178.1 (4)
C14—Rh1—N11—C11B15.6 (2)C11B—C12B—C13B—C18B178.8 (4)
O12—Rh1—N11—C11B162.8 (2)C17B—C12B—C13B—C18B0.7 (5)
N11—Rh1—O12—C48.13 (19)C12B—C13B—C14B—C15B0
P13—Rh1—O12—C4171.45 (18)C18B—C13B—C14B—C15B178.8 (4)
C14—Rh1—P13—C31116.41 (11)C13B—C14B—C15B—C16B0
O12—Rh1—P13—C311165.13 (10)C14B—C15B—C16B—C11B0
C14—Rh1—P13—C331136.38 (11)C12B—C11B—C16B—C15B0
O12—Rh1—P13—C33145.16 (9)N11—C11B—C16B—C15B177.0 (4)
C14—Rh1—P13—C321106.82 (11)C331—P13—C311—C31216.6 (2)
O12—Rh1—P13—C32171.63 (10)C321—P13—C311—C312124.6 (2)
C11A—N11—C2—C3164.1 (3)Rh1—P13—C311—C312108.17 (19)
C11B—N11—C2—C3156.7 (3)C331—P13—C311—C316168.3 (2)
Rh1—N11—C2—C31.5 (4)C321—P13—C311—C31660.2 (2)
C11A—N11—C2—C116.8 (4)Rh1—P13—C311—C31667.0 (2)
C11B—N11—C2—C122.4 (4)C316—C311—C312—C3130.9 (4)
Rh1—N11—C2—C1179.4 (2)P13—C311—C312—C313174.3 (2)
N11—C2—C3—C45.4 (5)C311—C312—C313—C3140.9 (4)
C1—C2—C3—C4175.5 (3)C312—C313—C314—C3150.4 (4)
Rh1—O12—C4—C37.5 (3)C313—C314—C315—C3160.1 (5)
Rh1—O12—C4—C5171.45 (15)C314—C315—C316—C3110.2 (4)
C2—C3—C4—O120.5 (4)C312—C311—C316—C3150.3 (4)
C2—C3—C4—C5179.4 (3)P13—C311—C316—C315175.1 (2)
C2—N11—C11A—C12A98.8 (3)C311—P13—C321—C326166.46 (19)
C11B—N11—C11A—C12A4.8 (3)C331—P13—C321—C32685.8 (2)
Rh1—N11—C11A—C12A97.0 (2)Rh1—P13—C321—C32636.2 (2)
C2—N11—C11A—C16A81.7 (3)C311—P13—C321—C32215.4 (2)
C11B—N11—C11A—C16A174.7 (4)C331—P13—C321—C32292.3 (2)
Rh1—N11—C11A—C16A82.5 (2)Rh1—P13—C321—C322145.7 (2)
C16A—C11A—C12A—C13A0C326—C321—C322—C3230.6 (4)
N11—C11A—C12A—C13A179.5 (3)P13—C321—C322—C323178.7 (2)
C16A—C11A—C12A—C17A178.9 (3)C321—C322—C323—C3241.0 (4)
N11—C11A—C12A—C17A0.6 (3)C322—C323—C324—C3250.6 (5)
C11A—C12A—C13A—C14A0C323—C324—C325—C3260.2 (5)
C17A—C12A—C13A—C14A178.9 (3)C322—C321—C326—C3250.1 (4)
C11A—C12A—C13A—C18A176.5 (3)P13—C321—C326—C325178.1 (2)
C17A—C12A—C13A—C18A4.6 (4)C324—C325—C326—C3210.5 (4)
C12A—C13A—C14A—C15A0C311—P13—C331—C33283.3 (2)
C18A—C13A—C14A—C15A176.7 (3)C321—P13—C331—C33225.9 (2)
C13A—C14A—C15A—C16A0Rh1—P13—C331—C332148.32 (19)
C14A—C15A—C16A—C11A0C311—P13—C331—C33693.63 (19)
C12A—C11A—C16A—C15A0C321—P13—C331—C336157.22 (18)
N11—C11A—C16A—C15A179.5 (3)Rh1—P13—C331—C33634.78 (19)
C2—N11—C11B—C12B98.0 (3)C336—C331—C332—C3330.7 (4)
C11A—N11—C11B—C12B3.6 (3)P13—C331—C332—C333176.2 (2)
Rh1—N11—C11B—C12B101.2 (2)C331—C332—C333—C3340.4 (4)
C2—N11—C11B—C16B84.8 (3)C332—C333—C334—C3350.9 (4)
C11A—N11—C11B—C16B179.2 (5)C333—C334—C335—C3360.3 (4)
Rh1—N11—C11B—C16B76.1 (3)C334—C335—C336—C3310.8 (3)
C16B—C11B—C12B—C13B0C332—C331—C336—C3351.3 (3)
N11—C11B—C12B—C13B177.5 (3)P13—C331—C336—C335175.74 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C326—H326···O120.952.363.177 (3)143

Experimental details

Crystal data
Chemical formula[Rh(C13H16NO)(C18H15P)(CO)]
Mr595.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.9077 (3), 11.6202 (3), 16.0256 (4)
β (°) 93.521 (1)
V3)2770.88 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.25 × 0.15 × 0.13
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.844, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
30367, 6985, 5783
Rint0.040
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.04
No. of reflections6985
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C326—H326···O120.952.363.177 (3)143
Comparative geometrical parameters for similar [Rh(N,O-bid)(CO)(PPh3)] complexes (Å,°). top
Parameters(I)(II)(III)
Rh1—N112.069 (2)2.045 (4)2.045 (3)
Rh1—O122.028 (2)2.044 (3)2.045 (2)
Rh1—P132.2635 (6)2.275 (1)2.281 (2)
Rh1—C141.807 (2)1.784 (5)1.804 (3)
C14—O141.152 (3)1.142 (7)1.148 (4)
N11···O122.885 (3)2.826 (6)2.841 (3)
N11—Rh1—O1289.54 (8)87.4 (1)87.95 (8)
O12—Rh1—P1384.97 (5)89.7 (1)89.91 (5)
P13—Rh1—C1491.87 (7)90.3 (2)89.48 (9)
N11—Rh1—C1493.6 (1)92.6 (2)92.6 (1)
N11—C2—C4—O124.1 (2)1.2 (4)1.5 (2)
θE (Tolman, 1977)156.39 (3)156.0 (2)156.23 (4)
(I) This work. (II) N,O-bid = 4-aminopent-3-en-2-onato (Damoense et al., 1994). (III) N,O-bid = 4-amino-1,1,1-trifluoropent-3-en-2-onato (Varshavsky et al., 2001).
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged, while Mr Leo Kirsten is thanked for the XRD data collections. We also express our gratitude towards SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornils, B. & Herrmann, W. A. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook. Weinheim: VCH.  Google Scholar
First citationDamoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.  CAS Google Scholar
First citationDa Silva, M. A. V. R., Da Silva, M. D. M. C. R., Paiva, J. P. A., Nogueira, I. M. C. S., Damas, A. M., Barkley, J. V., Harding, M. M., Akello, M. J. & Pilcher, G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1765–1769.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGordon, J. C., Shukla, P., Cowley, A. H., Jones, J. N., Keogh, D. W. & Scott, B. L. (2002). Chem. Commun. pp. 2710–2711.  Web of Science CSD CrossRef Google Scholar
First citationLamprecht, D., Lamprecht, G. J., Botha, J. M., Umakoshi, K. & Sasaki, Y. (1997). Acta Cryst. C53, 1403–1405.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLeipoldt, J. G., Basson, S. S., Bok, L. D. C. & Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35–L37.  CSD CrossRef CAS Web of Science Google Scholar
First citationPurcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156.  CSD CrossRef CAS Web of Science Google Scholar
First citationRooy, A. van, Orij, E. N., Kamer, P. C. J. & van Leeuwen, P. W. M. N. (1995). Organometallics, 14, 34–43.  Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationTrzeciak, A. M. & Ziółkowski, J. J. (1994). J. Organomet. Chem. 464, 107–111.  CrossRef CAS Web of Science Google Scholar
First citationVarshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195–210.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds