organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,3-Tri­fluoro­benzene

aInstitut für Anorganische Chemie der Universität, 45117 Essen, Germany, and bIndian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: roland.boese@uni-due.de, gautam_desiraju@yahoo.com

(Received 12 August 2009; accepted 25 September 2009; online 7 October 2009)

In the title compound, C6H3F3, weak electrostatic and dispersive forces between C(δ+)—F(δ−) and H(δ+)—C(δ−) groups are at the borderline of the hydrogen-bond phenomenon and are poorly directional and further deformed in the presence of ππ stacking inter­actions. The mol­ecule lies on a twofold rotation axis. In the crystal structure, one-dimensional tapes are formed via two anti­dromic C—H⋯F hydrogen bonds. These tapes are, in turn, connected into corrugated two-dimensional sheets by bifurcated C—H⋯F hydrogen bonds. Packing in the third dimension is furnished by ππ stacking inter­actions with a centroid–centroid distance of 3.6362 (14) Å.

Related literature

For C—H⋯F inter­actions, see: Althoff et al. (2006[Althoff, G., Ruiz, J., Rodriguez, V., Lopez, G., Perez, J. & Janiak, C. (2006). CrystEngComm, 8, 662-665.]); Bats et al. (2000[Bats, J. W., Parsch, J. & Engels, J. W. (2000). Acta Cryst. C56, 201-205.]); Choudhury et al. (2004[Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644-o647.]); D'Oria & Novoa (2008[D'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423-436.]); Dunitz & Taylor (1997[Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89-98.]); Howard et al. (1996[Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 38, 12613-12622.]); Müller et al. (2007[Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]); O'Hagan (2008[O'Hagan, D. (2008). Chem. Soc. Rev. 37, 308-319.]); Reichenbacher et al. (2005[Reichenbacher, K., Suss, H. I. & Hulliger, J. (2005). J. Chem. Soc. Rev. 34, 22-30.]); Weiss et al. (1997[Weiss, H. C., Boese, R., Smith, H. L. & Haley, M. M. (1997). Chem. Commun. pp. 2403-2404.]). For related crystal structures of several polyfluorinated benzenes, see: Thalladi et al. (1998[Thalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.]). For crystallization techniques, see: Boese & Nussbaumer (1994[Boese, R. & Nussbaumer, M. (1994). In Situ Crystallisation Techniques. In Organic Crystal Chemistry, edited by D. W. Jones, pp. 20-37. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H3F3

  • Mr = 132.08

  • Monoclinic, C 2/c

  • a = 7.4238 (19) Å

  • b = 11.590 (3) Å

  • c = 7.0473 (17) Å

  • β = 112.783 (4)°

  • V = 559.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 233 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Siemens SMART three-axis goniometer with an APEXII area-detector system diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker; 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.820, Tmax = 0.953

  • 1074 measured reflections

  • 634 independent reflections

  • 413 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.226

  • S = 1.04

  • 634 reflections

  • 44 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F2i 1.10 2.77 3.560 (3) 129
C3—H3⋯F1ii 1.10 2.59 3.528 (4) 144
C4—H4⋯F2iii 1.00 2.60 3.440 (4) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and GIMP2 (The GIMP team, 2008[The GIMP team (2008). The GNU Image Manipulation Program, http://www.gimp.org.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Despite the high electronegativity difference between carbon and fluorine, the C–F bond acts as a poor hydrogen bond acceptor due to the hardness of the F-atom (Dunitz & Taylor, 1997; O'Hagan, 2008). The resultant weak C–H···F–C interactions (Howard et al., 1996; Reichenbacher et al., 2005) arise mainly due to electrostatic and dispersive forces between the C(δ+)–F(δ-) and the H(δ+)–C(δ-) fragments. These interactions, at the borderline of the hydrogen bond phenomenon, are also poorly directional and are deformed by other dominant interactions (Weiss, et al., 1997; D'Oria & Novoa, 2008; Müller et al., 2007). In the absence of other interactions these weak interactions can play a role in the overall crystal packing of the molecule (Bats et al. 2000; Choudhury et al. 2004; Althoff et al. 2006). In activated systems such as polyfluorobenzenes, C–H···F–C interactions may be of significance, and in connection there are some reports of the crystal structures of several polyfluorinated benzene compunds (Thalladi et al., 1998). As a continuation of this work, we report here the crystal structure 1,2,3-trifluorobenzene (1). The comparison crystal structures of 1,2- and 1,4-difluorobenzene and 1,3,5-trifluorobenzene have been reported in this earlier work.

Related literature top

For C—H···F interactions, see: Althoff et al. (2006); Bats et al. (2000); Choudhury et al. (2004); D'Oria & Novoa (2008); Dunitz & Taylor (1997); Howard et al. (1996); Müller et al. (2007); O'Hagan (2008); Reichenbacher et al. (2005); Weiss et al. (1997). For related crystal structures of several polyfluorinated benzenes, see: Thalladi et al. (1998). For the synthesis, see: Boese & Nussbaumer (1994)

Experimental top

The crystals were prepared from commerical samples by zone melting in a quartz capillary at 235 K (1) according to the procedure outlined by (Boese & Nussbaumer, 1994).

Refinement top

Treatment of hydrogen atoms: Riding model with the 1.2 fold isotropic displacement parameters of the equivalent Uij of the corresponding carbon atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and GIMP2 (The GIMP team, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of 1 (a) 2D network of C–H···F–C interactions viewed along the c-axis (b) ππ stacking of molecules viewed along the c-axis.
[Figure 2] Fig. 2. The molecular structure of (1) with displacement ellipsoids drawn at the 50% probability level. The identically labelled atoms are related to each other by the symmetry operator (2-x, y, -z+1/2).
1,2,3-Trifluorobenzene top
Crystal data top
C6H3F3F(000) = 264
Mr = 132.08Dx = 1.569 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 376 reflections
a = 7.4238 (19) Åθ = 3.8–22.7°
b = 11.590 (3) ŵ = 0.16 mm1
c = 7.0473 (17) ÅT = 233 K
β = 112.783 (4)°Cylindric, colourless
V = 559.1 (2) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Siemens SMART three-axis goniometer with an APEXII area-detector system
diffractometer
634 independent reflections
Radiation source: fine-focus sealed tube413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 512 pixels mm-1θmax = 28.2°, θmin = 3.5°
in ω at 0.3° scan width one run with 740 frames, phi = 0°, chi = 0°h = 99
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
k = 1410
Tmin = 0.820, Tmax = 0.953l = 94
1074 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.226H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1501P)2 + 0.039P],
where P = (Fo2 + 2Fc2)/3
634 reflections(Δ/σ)max = 0.017
44 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H3F3V = 559.1 (2) Å3
Mr = 132.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.4238 (19) ŵ = 0.16 mm1
b = 11.590 (3) ÅT = 233 K
c = 7.0473 (17) Å0.30 × 0.30 × 0.30 mm
β = 112.783 (4)°
Data collection top
Siemens SMART three-axis goniometer with an APEXII area-detector system
diffractometer
634 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
413 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.953Rint = 0.013
1074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.226H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
634 reflectionsΔρmin = 0.18 e Å3
44 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.00000.30558 (17)0.25000.1156 (10)
F20.6666 (2)0.4183 (2)0.1576 (3)0.1354 (10)
C11.00000.4213 (3)0.25000.0769 (9)
C20.8308 (3)0.4803 (2)0.2036 (3)0.0824 (8)
C30.8265 (4)0.5973 (3)0.2023 (3)0.0942 (9)
H30.68330.63880.15850.113*
C41.00000.6558 (3)0.25000.1006 (13)
H41.00000.74220.25000.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.161 (2)0.0623 (13)0.1249 (16)0.0000.0563 (14)0.000
F20.0959 (12)0.157 (2)0.1484 (16)0.0341 (10)0.0415 (10)0.0067 (12)
C10.1030 (19)0.0573 (16)0.0725 (15)0.0000.0364 (13)0.000
C20.0830 (14)0.0890 (17)0.0770 (13)0.0101 (9)0.0327 (10)0.0013 (9)
C30.1073 (17)0.0935 (18)0.0858 (15)0.0277 (12)0.0419 (12)0.0094 (10)
C40.163 (4)0.0605 (17)0.0848 (19)0.0000.056 (2)0.000
Geometric parameters (Å, º) top
F1—C11.341 (4)C3—C41.377 (3)
F2—C21.342 (3)C3—H31.0973
C1—C21.354 (3)C4—H41.0018
C2—C31.357 (4)
F1—C1—C2120.30 (15)C2—C3—H3117.3
C2i—C1—C2119.4 (3)C4—C3—H3124.4
F2—C2—C3121.1 (2)C3—C4—C3i121.0 (3)
F2—C2—C1117.3 (3)C3—C4—H4119.5
C3—C2—C1121.5 (2)C3i—C4—H4119.5
C2—C3—C4118.3 (2)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F2ii1.102.773.560 (3)129
C3—H3···F1iii1.102.593.528 (4)144
C4—H4···F2iv1.002.603.440 (4)142
Symmetry codes: (ii) x+1, y+1, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H3F3
Mr132.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)233
a, b, c (Å)7.4238 (19), 11.590 (3), 7.0473 (17)
β (°) 112.783 (4)
V3)559.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerSiemens SMART three-axis goniometer with an APEXII area-detector system
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker; 2004)
Tmin, Tmax0.820, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
1074, 634, 413
Rint0.013
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.226, 1.04
No. of reflections634
No. of parameters44
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and GIMP2 (The GIMP team, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F2i1.102.773.560 (3)129
C3—H3···F1ii1.102.593.528 (4)144
C4—H4···F2iii1.002.603.440 (4)142
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

MTK and RB thank the DFG FOR-618. GRD thanks the DST for the award of a J.C. Bose fellowship. TST thanks the UGC for an SRF.

References

First citationAlthoff, G., Ruiz, J., Rodriguez, V., Lopez, G., Perez, J. & Janiak, C. (2006). CrystEngComm, 8, 662–665.  Web of Science CSD CrossRef CAS
First citationBats, J. W., Parsch, J. & Engels, J. W. (2000). Acta Cryst. C56, 201–205.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBoese, R. & Nussbaumer, M. (1994). In Situ Crystallisation Techniques. In Organic Crystal Chemistry, edited by D. W. Jones, pp. 20–37. Oxford University Press.
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChoudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644–o647.  Web of Science CSD CrossRef CAS IUCr Journals
First citationD'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423–436.  CAS
First citationDunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89–98.  CrossRef CAS Web of Science
First citationHoward, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 38, 12613–12622.  CrossRef Web of Science
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationMüller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science PubMed
First citationO'Hagan, D. (2008). Chem. Soc. Rev. 37, 308–319.  Web of Science CrossRef PubMed CAS
First citationReichenbacher, K., Suss, H. I. & Hulliger, J. (2005). J. Chem. Soc. Rev. 34, 22–30.  Web of Science CrossRef
First citationThalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.  Web of Science CSD CrossRef CAS
First citationThe GIMP team (2008). The GNU Image Manipulation Program, http://www.gimp.org.
First citationWeiss, H. C., Boese, R., Smith, H. L. & Haley, M. M. (1997). Chem. Commun. pp. 2403–2404.  Web of Science CSD CrossRef
First citationWestrip, S. P. (2009). publCIF. In preparation.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds