metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[Bis(3-methyl-1H-indol-2-yl)meth­yl]phenolato-κO}dimeth­yl(tetra­hydro­furan-κO)aluminium(III)

aDepartments of Chemistry & Biochemistry, Kenyon College, Gambier, OH 43214-9623, USA, and bDepartment of Chemistry, Vassar College, 124 Raymond Ave., Box 406, Poughkeepsie, NY 12604-0744, USA
*Correspondence e-mail: getzlery@kenyon.edu

(Received 9 September 2009; accepted 5 October 2009; online 13 October 2009)

The title compound, [Al(CH3)2(C25H21N2O)(C4H8O)], was isolated as a minor component from a reaction mixture of the parent indolyl ligand and trimethyl­aluminum in tetra­hydro­furan. The ligands adopt a distorted tetra­hedral geometry around aluminium. Obvious hydrogen-bonding interactions are not present.

Related literature

For general background to (indol­yl)methanes, see, see: Mason (2003[Mason, M. R. (2003). ChemTracts Inorg. Chem. 16, 272-289.]); Mason et al. (2003[Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. & Kirschbaum, K. (2003). J. Chem. Crystallogr., 33, 531-540.]). For related structures, see: Ziemkowska et al. (2007[Ziemkowska, W., Kubiak, A., Kucharski, S., Woźniak, R., Anulewicz-Ostrowska, R. (2007). Polyhedron, 26, 1436-1444.]); Haddad et al. (2009[Haddad, M., Laghzaoui, M., Welter, R. & Dagorne, S. (2009). Organometallics, 28, 4584-4592.]). For patterns in hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(CH3)2(C25H21N2O)(C4H8O)]

  • Mr = 494.59

  • Monoclinic, P 21 /n

  • a = 11.2045 (1) Å

  • b = 19.4191 (3) Å

  • c = 12.5543 (2) Å

  • β = 98.537 (1)°

  • V = 2701.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 115 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 55902 measured reflections

  • 9864 independent reflections

  • 7340 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.04

  • 9864 reflections

  • 335 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Al—O1 1.7498 (9)
Al—O2 1.9097 (10)
Al—C9 1.9562 (16)
Al—C8 1.9588 (15)
O1—Al—O2 99.27 (5)
O2—Al—C8 101.16 (6)
C9—Al—C8 121.34 (8)
C1—O1—Al 140.52 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.869 (13) 2.703 (15) 3.2353 (14) 120.8 (12)
N1—H1⋯N2i 0.874 (13) 2.734 (14) 3.5391 (15) 153.8 (14)
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The molecule of the title complex (Fig. 1), has a distorted tetrahedral coordination geometry around aluminum with X—Al—X (X = C, O) angles ranging from 99.26 (5)° to 121.34 (8)°. The phenoxy(bisindolyl)methane ligand is coordinated to aluminum through a deprotonated phenol oxygen that is bent well out of the ideal sp3 to 140.50 (8)°, consistent with significant π-donation to Al(III) from the phenoxide O. In the crystal structure (Fig. 2), weak intramolecular N—H···N interactions may stabilize the ligand conformations while weak intermolecular N—H···N interactions may stabilize crystal packing. The distances of these contacts [2.703 (15) Å and 2.734 (14) Å, respectively] are quite long (Steiner, 2002). However, they are slightly less then the sum of the relevant Van der Waals radii.

Related literature top

For general background to (indolyl)methanes see, see: Mason (2003); Mason et al. (2003). For related structures, see: Ziemkowska et al. (2007); Haddad et al. (2009). For patterns in hydrogen bonding, see: Steiner (2002).

Experimental top

The ligand was synthesized by mixing two equivalents of 3-methylindole with one equivalent of salicylaldehyde in EtOH in the presence of an acid catalyst. The product was isolated by vacuum filtration (66.6%; mp 230–240 °C (dec.)); 1H NMR (300 MHz, DMSO-d6), 2.01 (6H, s), 6.22 (1H, s), 6.76 (1H, dt, J=1.2 H, 8.5 Hz), 6.85 (1H, d, J=5.4 Hz), 6.91–7.03 (4H, m), 7.08 (2H, d, J=7.4 Hz), 7.30 (2H, d, J=7.2 H), 7.4 (2H, d, J=6.9 H), 9.58 (1H, s), 10.31 (2H, s); 13C NMR (75 MHz, DMSO-d6) 8.34, 34.79, 105.93, 111.07, 115.07, 117.57, 18.09, 119.06, 120.26, 127.22, 127.74, 128.85, 129.57, 134.72, 135.36, 154.69.

Using standard Schlenk techniques, the free ligand was dissolved in THF and AlMe3 (2.0 M in heptane, 1 equivalent) was added dropwise via syringe. Upon reaction completion, solvent was removed under high vacuum and the residue was dissolved in a minimum of hot toluene. Upon sitting, a few small, colorless crystals appeared.

Refinement top

Hydrogen atoms on carbon were added geometrically and refined using a riding model, whereas hydrogen atoms on nitrogen were located in the difference map and refined semi-freely with the help of a distance restraint. Uiso values for hydrogen atoms were assigned to be 1.20 times the Ueq value of the atom to which they are attached, except for hydrogen atoms on methyl carbon atoms, which were assigned a Uiso of 1.50 times the Ueq of the methyl carbon atom to which they are attached.

Structure description top

The molecule of the title complex (Fig. 1), has a distorted tetrahedral coordination geometry around aluminum with X—Al—X (X = C, O) angles ranging from 99.26 (5)° to 121.34 (8)°. The phenoxy(bisindolyl)methane ligand is coordinated to aluminum through a deprotonated phenol oxygen that is bent well out of the ideal sp3 to 140.50 (8)°, consistent with significant π-donation to Al(III) from the phenoxide O. In the crystal structure (Fig. 2), weak intramolecular N—H···N interactions may stabilize the ligand conformations while weak intermolecular N—H···N interactions may stabilize crystal packing. The distances of these contacts [2.703 (15) Å and 2.734 (14) Å, respectively] are quite long (Steiner, 2002). However, they are slightly less then the sum of the relevant Van der Waals radii.

For general background to (indolyl)methanes see, see: Mason (2003); Mason et al. (2003). For related structures, see: Ziemkowska et al. (2007); Haddad et al. (2009). For patterns in hydrogen bonding, see: Steiner (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The molecular structure of (I), showing the possible weak intra- and intermolecular hydrogen bonds. Only the atoms involved are labeled and non-involved H atoms are omitted for clarity. Atoms with the 'i' superscript are related by the inversion operation (1-x,-y,-z).
{2-[Bis(3-methyl-1H-indol-2-yl)methyl]phenolato- κO}dimethyl(tetrahydrofuran-κO)aluminium(III) top
Crystal data top
[Al(CH3)2(C25H21N2O)(C4H8O)]F(000) = 1056
Mr = 494.59Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6863 reflections
a = 11.2045 (1) Åθ = 2.6–31.6°
b = 19.4191 (3) ŵ = 0.11 mm1
c = 12.5543 (2) ÅT = 115 K
β = 98.537 (1)°Block, colorless
V = 2701.32 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
9864 independent reflections
Radiation source: fine-focus sealed tube7340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1616
Tmin = 0.969, Tmax = 0.979k = 2929
55902 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.8449P]
where P = (Fo2 + 2Fc2)/3
9864 reflections(Δ/σ)max = 0.003
335 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Al(CH3)2(C25H21N2O)(C4H8O)]V = 2701.32 (6) Å3
Mr = 494.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2045 (1) ŵ = 0.11 mm1
b = 19.4191 (3) ÅT = 115 K
c = 12.5543 (2) Å0.30 × 0.25 × 0.20 mm
β = 98.537 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
7340 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.039
55902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
9864 reflectionsΔρmin = 0.33 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

An extinction parameter (EXTI in SHELXL-97) refined to zero and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al1.01187 (3)0.14505 (2)0.20418 (3)0.02200 (9)
N10.57741 (10)0.09740 (5)0.12462 (8)0.02006 (19)
H10.5904 (14)0.0533 (7)0.1342 (13)0.024*
N20.47850 (9)0.08185 (5)0.12975 (8)0.01998 (19)
H20.4441 (13)0.0848 (8)0.0723 (11)0.024*
O10.90038 (8)0.10626 (5)0.11103 (7)0.02398 (18)
C10.86433 (10)0.04405 (6)0.07380 (9)0.0192 (2)
C20.93110 (11)0.01616 (6)0.10154 (10)0.0228 (2)
H2B1.00400.01370.15090.027*
C30.89153 (12)0.07922 (7)0.05754 (10)0.0250 (2)
H3A0.93770.11960.07690.030*
C40.78513 (12)0.08382 (6)0.01458 (10)0.0247 (2)
H4A0.75780.12710.04410.030*
C50.71913 (11)0.02421 (6)0.04303 (9)0.0212 (2)
H5A0.64680.02710.09310.025*
C60.75665 (10)0.03961 (6)0.00020 (9)0.0178 (2)
C70.68922 (10)0.10618 (6)0.03436 (9)0.0177 (2)
H7A0.75070.13980.05260.021*
C81.11591 (13)0.08255 (8)0.29899 (12)0.0338 (3)
H8A1.06650.04670.32580.051*
H8B1.15860.10850.35990.051*
H8C1.17470.06120.25870.051*
C91.07672 (16)0.22760 (8)0.14422 (14)0.0394 (4)
H9A1.01000.25620.10950.059*
H9B1.12810.21410.09090.059*
H9C1.12460.25380.20220.059*
C110.63063 (10)0.13818 (6)0.05412 (9)0.0171 (2)
C120.61172 (11)0.20616 (6)0.07482 (9)0.0191 (2)
C130.65235 (14)0.26706 (7)0.01607 (11)0.0289 (3)
H13A0.69340.25110.04300.043*
H13B0.70810.29500.06600.043*
H13C0.58210.29490.01310.043*
C140.54458 (10)0.20819 (6)0.16404 (9)0.0190 (2)
C150.50018 (12)0.26175 (7)0.22256 (10)0.0254 (2)
H15A0.51100.30850.20390.030*
C160.44039 (12)0.24503 (7)0.30784 (11)0.0280 (3)
H16A0.41020.28090.34790.034*
C170.42337 (12)0.17622 (7)0.33649 (11)0.0271 (3)
H17A0.38210.16650.39560.033*
C180.46554 (12)0.12220 (7)0.28017 (10)0.0249 (2)
H18A0.45390.07560.29920.030*
C190.52584 (11)0.13945 (6)0.19429 (9)0.0192 (2)
C210.59924 (10)0.09616 (6)0.13497 (9)0.0182 (2)
C220.61934 (11)0.09319 (6)0.23992 (9)0.0188 (2)
C230.73747 (11)0.10156 (7)0.28045 (10)0.0241 (2)
H23A0.80340.09930.21980.036*
H23B0.73930.14630.31640.036*
H23C0.74710.06460.33170.036*
C240.50504 (11)0.07783 (6)0.30392 (9)0.0189 (2)
C250.46808 (12)0.06826 (7)0.41469 (10)0.0243 (2)
H25A0.52420.07230.46410.029*
C260.34840 (13)0.05292 (7)0.45055 (10)0.0287 (3)
H26A0.32280.04590.52530.034*
C270.26399 (12)0.04754 (7)0.37887 (11)0.0282 (3)
H27A0.18220.03740.40620.034*
C280.29754 (11)0.05678 (7)0.26873 (10)0.0239 (2)
H28A0.24050.05330.22000.029*
C290.41869 (11)0.07144 (6)0.23296 (9)0.0194 (2)
O20.91231 (9)0.18169 (5)0.30148 (8)0.0269 (2)
C310.83901 (18)0.13759 (9)0.35943 (18)0.0520 (5)
H31A0.89090.10640.40860.062*
H31B0.78340.10940.30840.062*
C320.76950 (18)0.18470 (12)0.42187 (15)0.0518 (5)
H32A0.78660.17390.49970.062*
H32B0.68180.17950.39770.062*
C330.80926 (15)0.25690 (10)0.40136 (14)0.0440 (4)
H33A0.73980.28890.39250.053*
H33B0.87010.27330.46130.053*
C340.86274 (15)0.25129 (8)0.29894 (13)0.0359 (3)
H34A0.80010.25770.23530.043*
H34B0.92700.28610.29690.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al0.02055 (18)0.02033 (18)0.02432 (19)0.00075 (13)0.00067 (14)0.00421 (14)
N10.0270 (5)0.0147 (4)0.0193 (4)0.0000 (4)0.0063 (4)0.0003 (3)
N20.0208 (5)0.0241 (5)0.0153 (4)0.0012 (4)0.0038 (3)0.0005 (4)
O10.0225 (4)0.0200 (4)0.0274 (4)0.0005 (3)0.0033 (3)0.0048 (3)
C10.0203 (5)0.0190 (5)0.0188 (5)0.0007 (4)0.0044 (4)0.0010 (4)
C20.0215 (5)0.0229 (6)0.0239 (5)0.0033 (4)0.0034 (4)0.0003 (4)
C30.0291 (6)0.0202 (5)0.0268 (6)0.0054 (5)0.0079 (5)0.0013 (4)
C40.0326 (6)0.0180 (5)0.0247 (6)0.0013 (5)0.0086 (5)0.0032 (4)
C50.0238 (5)0.0206 (5)0.0192 (5)0.0028 (4)0.0039 (4)0.0014 (4)
C60.0190 (5)0.0188 (5)0.0159 (5)0.0002 (4)0.0042 (4)0.0004 (4)
C70.0194 (5)0.0185 (5)0.0149 (4)0.0009 (4)0.0021 (4)0.0007 (4)
C80.0308 (7)0.0337 (7)0.0334 (7)0.0073 (6)0.0068 (5)0.0077 (6)
C90.0462 (9)0.0279 (7)0.0473 (9)0.0103 (6)0.0172 (7)0.0066 (6)
C110.0184 (5)0.0177 (5)0.0148 (4)0.0006 (4)0.0011 (4)0.0001 (4)
C120.0215 (5)0.0170 (5)0.0183 (5)0.0006 (4)0.0014 (4)0.0009 (4)
C130.0397 (7)0.0203 (6)0.0283 (6)0.0012 (5)0.0104 (5)0.0036 (5)
C140.0200 (5)0.0180 (5)0.0184 (5)0.0018 (4)0.0009 (4)0.0004 (4)
C150.0299 (6)0.0197 (6)0.0268 (6)0.0055 (5)0.0052 (5)0.0012 (4)
C160.0296 (6)0.0270 (6)0.0288 (6)0.0063 (5)0.0085 (5)0.0047 (5)
C170.0281 (6)0.0302 (7)0.0250 (6)0.0012 (5)0.0100 (5)0.0019 (5)
C180.0294 (6)0.0232 (6)0.0236 (6)0.0012 (5)0.0087 (5)0.0000 (4)
C190.0205 (5)0.0194 (5)0.0176 (5)0.0001 (4)0.0024 (4)0.0021 (4)
C210.0193 (5)0.0182 (5)0.0169 (5)0.0000 (4)0.0026 (4)0.0003 (4)
C220.0218 (5)0.0186 (5)0.0165 (5)0.0016 (4)0.0039 (4)0.0011 (4)
C230.0241 (6)0.0278 (6)0.0217 (5)0.0013 (5)0.0073 (4)0.0002 (4)
C240.0231 (5)0.0169 (5)0.0164 (5)0.0019 (4)0.0021 (4)0.0007 (4)
C250.0316 (6)0.0238 (6)0.0169 (5)0.0033 (5)0.0019 (4)0.0003 (4)
C260.0370 (7)0.0274 (6)0.0192 (5)0.0014 (5)0.0044 (5)0.0009 (5)
C270.0267 (6)0.0261 (6)0.0288 (6)0.0021 (5)0.0053 (5)0.0004 (5)
C280.0230 (6)0.0229 (6)0.0251 (6)0.0019 (4)0.0011 (4)0.0008 (4)
C290.0232 (5)0.0171 (5)0.0172 (5)0.0004 (4)0.0009 (4)0.0003 (4)
O20.0309 (5)0.0226 (4)0.0278 (5)0.0018 (4)0.0059 (4)0.0036 (3)
C310.0533 (11)0.0370 (9)0.0742 (13)0.0016 (8)0.0375 (10)0.0087 (8)
C320.0499 (10)0.0722 (13)0.0371 (9)0.0054 (9)0.0191 (8)0.0110 (9)
C330.0340 (8)0.0532 (10)0.0432 (9)0.0115 (7)0.0006 (7)0.0234 (8)
C340.0371 (8)0.0257 (7)0.0451 (8)0.0077 (6)0.0065 (6)0.0065 (6)
Geometric parameters (Å, º) top
Al—O11.7498 (9)C14—C191.4120 (16)
Al—O21.9097 (10)C15—C161.3833 (19)
Al—C91.9562 (16)C15—H15A0.9500
Al—C81.9588 (15)C16—C171.404 (2)
N1—C191.3841 (15)C16—H16A0.9500
N1—C111.3866 (15)C17—C181.3866 (18)
N1—H10.874 (13)C17—H17A0.9500
N2—C291.3824 (15)C18—C191.3955 (16)
N2—C211.3922 (15)C18—H18A0.9500
N2—H20.869 (13)C21—C221.3705 (15)
O1—C11.3361 (14)C22—C241.4384 (16)
C1—C21.4038 (17)C22—C231.4958 (16)
C1—C61.4092 (16)C23—H23A0.9800
C2—C31.3887 (18)C23—H23B0.9800
C2—H2B0.9500C23—H23C0.9800
C3—C41.3888 (19)C24—C251.4032 (16)
C3—H3A0.9500C24—C291.4146 (16)
C4—C51.3914 (18)C25—C261.3822 (19)
C4—H4A0.9500C25—H25A0.9500
C5—C61.3928 (16)C26—C271.403 (2)
C5—H5A0.9500C26—H26A0.9500
C6—C71.5273 (16)C27—C281.3896 (18)
C7—C111.5058 (15)C27—H27A0.9500
C7—C211.5072 (16)C28—C291.3944 (17)
C7—H7A1.0000C28—H28A0.9500
C8—H8A0.9800O2—C311.4541 (19)
C8—H8B0.9800O2—C341.4598 (17)
C8—H8C0.9800C31—C321.496 (3)
C9—H9A0.9800C31—H31A0.9900
C9—H9B0.9800C31—H31B0.9900
C9—H9C0.9800C32—C331.505 (3)
C11—C121.3680 (16)C32—H32A0.9900
C12—C141.4396 (16)C32—H32B0.9900
C12—C131.4999 (17)C33—C341.501 (2)
C13—H13A0.9800C33—H33A0.9900
C13—H13B0.9800C33—H33B0.9900
C13—H13C0.9800C34—H34A0.9900
C14—C151.4063 (17)C34—H34B0.9900
O1—Al—O299.27 (5)C15—C16—H16A119.3
O1—Al—C9111.39 (7)C17—C16—H16A119.3
O2—Al—C9103.09 (6)C18—C17—C16121.32 (12)
O1—Al—C8116.16 (6)C18—C17—H17A119.3
O2—Al—C8101.16 (6)C16—C17—H17A119.3
C9—Al—C8121.34 (8)C17—C18—C19116.94 (12)
C19—N1—C11109.02 (10)C17—C18—H18A121.5
C19—N1—H1124.6 (10)C19—C18—H18A121.5
C11—N1—H1124.7 (10)N1—C19—C18129.94 (11)
C29—N2—C21108.92 (9)N1—C19—C14107.16 (10)
C29—N2—H2125.1 (10)C18—C19—C14122.90 (11)
C21—N2—H2125.4 (10)C22—C21—N2109.66 (10)
C1—O1—Al140.52 (8)C22—C21—C7128.77 (11)
O1—C1—C2122.96 (11)N2—C21—C7121.34 (10)
O1—C1—C6118.01 (10)C21—C22—C24106.62 (10)
C2—C1—C6118.99 (11)C21—C22—C23127.05 (11)
C3—C2—C1120.59 (12)C24—C22—C23126.30 (10)
C3—C2—H2B119.7C22—C23—H23A109.5
C1—C2—H2B119.7C22—C23—H23B109.5
C2—C3—C4120.57 (12)H23A—C23—H23B109.5
C2—C3—H3A119.7C22—C23—H23C109.5
C4—C3—H3A119.7H23A—C23—H23C109.5
C3—C4—C5119.07 (12)H23B—C23—H23C109.5
C3—C4—H4A120.5C25—C24—C29118.93 (11)
C5—C4—H4A120.5C25—C24—C22133.50 (11)
C4—C5—C6121.48 (11)C29—C24—C22107.57 (10)
C4—C5—H5A119.3C26—C25—C24118.73 (12)
C6—C5—H5A119.3C26—C25—H25A120.6
C5—C6—C1119.30 (11)C24—C25—H25A120.6
C5—C6—C7122.31 (10)C25—C26—C27121.40 (12)
C1—C6—C7118.28 (10)C25—C26—H26A119.3
C11—C7—C21111.15 (9)C27—C26—H26A119.3
C11—C7—C6113.02 (9)C28—C27—C26121.34 (12)
C21—C7—C6111.72 (9)C28—C27—H27A119.3
C11—C7—H7A106.8C26—C27—H27A119.3
C21—C7—H7A106.8C27—C28—C29116.96 (12)
C6—C7—H7A106.8C27—C28—H28A121.5
Al—C8—H8A109.5C29—C28—H28A121.5
Al—C8—H8B109.5N2—C29—C28130.16 (11)
H8A—C8—H8B109.5N2—C29—C24107.20 (10)
Al—C8—H8C109.5C28—C29—C24122.64 (11)
H8A—C8—H8C109.5C31—O2—C34108.35 (11)
H8B—C8—H8C109.5C31—O2—Al121.84 (9)
Al—C9—H9A109.5C34—O2—Al125.98 (9)
Al—C9—H9B109.5O2—C31—C32106.18 (15)
H9A—C9—H9B109.5O2—C31—H31A110.5
Al—C9—H9C109.5C32—C31—H31A110.5
H9A—C9—H9C109.5O2—C31—H31B110.5
H9B—C9—H9C109.5C32—C31—H31B110.5
C12—C11—N1109.66 (10)H31A—C31—H31B108.7
C12—C11—C7129.43 (10)C31—C32—C33106.83 (14)
N1—C11—C7120.74 (10)C31—C32—H32A110.4
C11—C12—C14106.73 (10)C33—C32—H32A110.4
C11—C12—C13126.92 (11)C31—C32—H32B110.4
C14—C12—C13126.36 (11)C33—C32—H32B110.4
C12—C13—H13A109.5H32A—C32—H32B108.6
C12—C13—H13B109.5C34—C33—C32104.18 (13)
H13A—C13—H13B109.5C34—C33—H33A110.9
C12—C13—H13C109.5C32—C33—H33A110.9
H13A—C13—H13C109.5C34—C33—H33B110.9
H13B—C13—H13C109.5C32—C33—H33B110.9
C15—C14—C19118.71 (11)H33A—C33—H33B108.9
C15—C14—C12133.87 (11)O2—C34—C33104.33 (13)
C19—C14—C12107.40 (10)O2—C34—H34A110.9
C16—C15—C14118.70 (12)C33—C34—H34A110.9
C16—C15—H15A120.6O2—C34—H34B110.9
C14—C15—H15A120.6C33—C34—H34B110.9
C15—C16—C17121.43 (12)H34A—C34—H34B108.9
O2—Al—O1—C1114.62 (13)C12—C14—C19—N11.19 (13)
C9—Al—O1—C1137.30 (13)C15—C14—C19—C180.29 (18)
C8—Al—O1—C17.24 (15)C12—C14—C19—C18178.64 (11)
Al—O1—C1—C27.9 (2)C29—N2—C21—C221.74 (14)
Al—O1—C1—C6174.60 (10)C29—N2—C21—C7176.69 (10)
O1—C1—C2—C3177.73 (11)C11—C7—C21—C22153.80 (12)
C6—C1—C2—C30.25 (18)C6—C7—C21—C2278.94 (15)
C1—C2—C3—C40.09 (19)C11—C7—C21—N232.31 (15)
C2—C3—C4—C50.61 (19)C6—C7—C21—N294.95 (13)
C3—C4—C5—C60.81 (18)N2—C21—C22—C241.35 (13)
C4—C5—C6—C10.48 (17)C7—C21—C22—C24175.81 (11)
C4—C5—C6—C7176.69 (11)N2—C21—C22—C23176.55 (11)
O1—C1—C6—C5177.66 (10)C7—C21—C22—C232.1 (2)
C2—C1—C6—C50.05 (16)C21—C22—C24—C25179.78 (13)
O1—C1—C6—C71.30 (15)C23—C22—C24—C251.9 (2)
C2—C1—C6—C7176.31 (10)C21—C22—C24—C290.48 (13)
C5—C6—C7—C11113.18 (12)C23—C22—C24—C29177.43 (11)
C1—C6—C7—C1170.57 (13)C29—C24—C25—C260.00 (18)
C5—C6—C7—C2113.06 (15)C22—C24—C25—C26179.24 (13)
C1—C6—C7—C21163.18 (10)C24—C25—C26—C270.7 (2)
C19—N1—C11—C121.64 (13)C25—C26—C27—C280.6 (2)
C19—N1—C11—C7177.26 (10)C26—C27—C28—C290.1 (2)
C21—C7—C11—C1286.14 (15)C21—N2—C29—C28179.01 (12)
C6—C7—C11—C12147.32 (12)C21—N2—C29—C241.39 (13)
C21—C7—C11—N188.52 (12)C27—C28—C29—N2178.71 (12)
C6—C7—C11—N138.02 (14)C27—C28—C29—C240.83 (18)
N1—C11—C12—C140.85 (13)C25—C24—C29—N2178.86 (11)
C7—C11—C12—C14175.98 (11)C22—C24—C29—N20.56 (13)
N1—C11—C12—C13178.94 (12)C25—C24—C29—C280.78 (18)
C7—C11—C12—C133.8 (2)C22—C24—C29—C28179.80 (11)
C11—C12—C14—C15178.93 (13)O1—Al—O2—C3161.17 (14)
C13—C12—C14—C151.3 (2)C9—Al—O2—C31175.83 (14)
C11—C12—C14—C190.22 (13)C8—Al—O2—C3158.00 (14)
C13—C12—C14—C19179.99 (12)O1—Al—O2—C3494.15 (11)
C19—C14—C15—C160.32 (18)C9—Al—O2—C3420.51 (13)
C12—C14—C15—C16178.27 (13)C8—Al—O2—C34146.67 (11)
C14—C15—C16—C170.1 (2)C34—O2—C31—C3217.7 (2)
C15—C16—C17—C180.2 (2)Al—O2—C31—C32176.89 (12)
C16—C17—C18—C190.2 (2)O2—C31—C32—C332.3 (2)
C11—N1—C19—C18178.09 (12)C31—C32—C33—C3420.5 (2)
C11—N1—C19—C141.73 (13)C31—O2—C34—C3330.70 (17)
C17—C18—C19—N1179.81 (12)Al—O2—C34—C33171.24 (9)
C17—C18—C19—C140.01 (19)C32—C33—C34—O230.95 (17)
C15—C14—C19—N1179.87 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.87 (1)2.70 (2)3.2353 (14)121 (1)
N1—H1···N2i0.87 (1)2.73 (1)3.5391 (15)154 (1)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Al(CH3)2(C25H21N2O)(C4H8O)]
Mr494.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)115
a, b, c (Å)11.2045 (1), 19.4191 (3), 12.5543 (2)
β (°) 98.537 (1)
V3)2701.32 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
55902, 9864, 7340
Rint0.039
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.04
No. of reflections9864
No. of parameters335
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.33

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Al—O11.7498 (9)Al—C91.9562 (16)
Al—O21.9097 (10)Al—C81.9588 (15)
O1—Al—O299.27 (5)C9—Al—C8121.34 (8)
O2—Al—C8101.16 (6)C1—O1—Al140.52 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.869 (13)2.703 (15)3.2353 (14)120.8 (12)
N1—H1···N2i0.874 (13)2.734 (14)3.5391 (15)153.8 (14)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was generously supported by Kenyon College Startup Funds, Kenyon College Summer Science Scholars Program (ACE), the American Chemical Society's Petroleum Research Fund (42880-GB 7) (YDYLG) and the National Science Foundation (CHE-0521237) (JMT).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaddad, M., Laghzaoui, M., Welter, R. & Dagorne, S. (2009). Organometallics, 28, 4584–4592.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMason, M. R. (2003). ChemTracts Inorg. Chem. 16, 272–289.  CAS Google Scholar
First citationMason, M. R., Barnard, T. S., Segla, M. F., Xie, B. & Kirschbaum, K. (2003). J. Chem. Crystallogr., 33, 531–540.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationZiemkowska, W., Kubiak, A., Kucharski, S., Woźniak, R., Anulewicz-Ostrowska, R. (2007). Polyhedron, 26, 1436–1444.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds