organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-1-Benzyl-3,5-bis­­(2-fluoro­benzyl­­idene)piperidin-4-one

aBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500 046, India, bChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, and cPhysics Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 12 August 2009; accepted 29 September 2009; online 7 October 2009)

The inversion-related mol­ecules of the title compound, C26H21F2NO, associate into closed dimeric subunits via co-operative C—H⋯π inter­actions. Two non-classical C—H⋯O and one C—H⋯N intra­molecular hydrogen bonds are also found in the crystal structure. The piperidin-4-one ring adopts a sofa conforamtion with the 1-benzyl group in the equatorial position, and the equiplanar fluoro­phenyl substituents in the 3- and 5-positions stretched out on either side. The 1-benzyl group is disposed towards the substituent in the 6th position of the piperidin-4-one ring. The 3,5-diene units possess E configurations.

Related literature

For the synthesis of and pharmaceutical studies on 3,5-diaryl­idene-4-piperidone compounds, see: Krapcho & Turk (1979[Krapcho, J. & Turk, C. F. (1979). J. Med. Chem. 22, 207-210.]); Das et al. (2007[Das, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71-80.]). For a related structure, see: Suresh et al. (2007[Suresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315-o318.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), Duax et al., (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New Jersey: John Wiley.]). For C—H⋯π inter­actions, see: Nishio et al. (2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]).

[Scheme 1]

Experimental

Crystal data
  • C26H21F2NO

  • Mr = 401.44

  • Triclinic, [P \overline 1]

  • a = 6.7738 (4) Å

  • b = 12.5652 (7) Å

  • c = 12.8535 (7) Å

  • α = 71.051 (1)°

  • β = 88.057 (2)°

  • γ = 89.117 (2)°

  • V = 1034.12 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.19 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.984

  • 13326 measured reflections

  • 4281 independent reflections

  • 2531 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.12

  • 4281 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1 0.93 2.40 2.772 (2) 104
C21—H21⋯O1 0.93 2.39 2.768 (2) 104
C7—H7BCg2i 0.97 2.78 3.7315 (19) 168
C13—H13⋯N1 0.93 2.56 2.873 (3) 100
Symmetry code: (i) -x+1, -y+2, -z+2. Cg2 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds (Krapcho & Turk, 1979; Das et al., 2007). During our investigations on D4P, a series of compounds were prepared. The molecular and crystal structure of title compound (3E,5E)-1-benzyl-3,5-bis[(2-fluorophenyl)methylidene]piperidin-4-one, (I), is reported here.

The molecular structure of I with atom numbering scheme is shown in Fig. 1. The 3,5-diene moieties possess E-configuration. The 3,5-difluorophenyl substituents of the piperidinone ring are stretched out on either side with following values of torsion angles: C4–C3–C14–C15 = 175.34 (16)°, C3–C14–C15–C16 = 147.49 (19)°, C4–C5–C21–C22 = -172.85 (15)°, and C5–C21–C22–C23 = -151.13 (17)°. The dihedral angle of 3,5-difluorophenyl units is 3.29 (7)°. The dihedral angles between of benzene rings of 3- and 5-substitutens with respect to the corresponding ring of 1-benzyl substituent are 58.65 (7)° and 56.90 (7)°, respectively.

The sp2 hybridized C3, C4 and C5 atoms give rise to a sofa-conformation of the six-membered piperidinone ring as also observed in the structures of related compounds, namely, (R)-3,5-Bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one, and 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one (Suresh et al., 2007). In the sofa conformation, the N1 atom is -0.781 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). The deviation of the ring from ideal sofa-conformation, ΔC2 (Duax et al., 1976) is 3.4°. The Cremer and Pople (Cremer & Pople, 1975) puckering parameters, corresponding to the ring conformation are as follows: q2 = 0.5432 (16)Å, q3 = 0.2577 (17)Å, φ = 3.14 (18)°, θ = 64.62 (16)°, and total puckering amplitude Q = 0.6012 (16)Å. The benzyl substituent is in equatorial position of piperidinone ring and its conformation is described by the following torsion angles: C2–N1–C7–C8 = -162.82 (14)° and N1–C7–C8–C9 = -153.28 (15)°. The N1-benzyl group is disposed towards C6 substituent of the piperidin-4-one ring, a feature that varies among related structures.

The observed inter- and intra-molecular interactions are listed in Table 1. The adjacent H14 and H21 atoms participate in intra-molecular C14–H14···O1···H21–C21 interaction scheme. The crystal packing is characterized by C–H···π hydrogen-bonded dimers. The methylene and aromatic groups of the N1-benzyl substituent participate in the interaction forming C7–H7B···Cg2i with symmetry code: (i) -x+1, -y+2, -z+2. The Cg2 is the centroid of (C8-C13) ring. The observed geometry of C–H···π interaction in I is in the range, reported by the Nishio and coworkers (Nishio et al., 2009). Crystal packing is shown in Fig. 2.

Related literature top

For literature related to synthesis and pharmaceutical studies on 3,5-diarylidene-4-piperidone compounds, see: Krapcho & Turk, (1979); Das et al., (2007). The related crystal structure, see: Suresh et al., (2007). For the related ring conformation, see: Cremer & Pople (1975), Duax et al., (1976). For the C–H···π interactions, see: Nishio et al., (2009). Cg2 is the centroid of the C8–C13 ring.

Experimental top

A mixture of 1-benzyl-4-piperidone (0.01 mol) and 2-fluorobenzaldehyde (0.02 mol) was added to a warm solution of ammonium acetate (0.01 mol) in absolute ethanol (15 ml). The mixture was gradually warmed on a water bath until the yellow color changed to orange. The mixture was kept aside overnight at room temperature. Reactions were monitored with TLC for completeness. The solid obtained was separated and the crude compound were purified using silica gel column chromatography with hexane and ethyl acetate as elutant. Final yields: 96.19%; m.p. 415 (2)K. Suitable single crystals for data collection were grown from ethanol, tetrahydrofurane and benzene in (1:1:1) ratio.

Refinement top

Hydrogen atoms were placed in the geometrically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic)–H = 0.93 Å, C(methylene)–H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Structure description top

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds (Krapcho & Turk, 1979; Das et al., 2007). During our investigations on D4P, a series of compounds were prepared. The molecular and crystal structure of title compound (3E,5E)-1-benzyl-3,5-bis[(2-fluorophenyl)methylidene]piperidin-4-one, (I), is reported here.

The molecular structure of I with atom numbering scheme is shown in Fig. 1. The 3,5-diene moieties possess E-configuration. The 3,5-difluorophenyl substituents of the piperidinone ring are stretched out on either side with following values of torsion angles: C4–C3–C14–C15 = 175.34 (16)°, C3–C14–C15–C16 = 147.49 (19)°, C4–C5–C21–C22 = -172.85 (15)°, and C5–C21–C22–C23 = -151.13 (17)°. The dihedral angle of 3,5-difluorophenyl units is 3.29 (7)°. The dihedral angles between of benzene rings of 3- and 5-substitutens with respect to the corresponding ring of 1-benzyl substituent are 58.65 (7)° and 56.90 (7)°, respectively.

The sp2 hybridized C3, C4 and C5 atoms give rise to a sofa-conformation of the six-membered piperidinone ring as also observed in the structures of related compounds, namely, (R)-3,5-Bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one, and 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one (Suresh et al., 2007). In the sofa conformation, the N1 atom is -0.781 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). The deviation of the ring from ideal sofa-conformation, ΔC2 (Duax et al., 1976) is 3.4°. The Cremer and Pople (Cremer & Pople, 1975) puckering parameters, corresponding to the ring conformation are as follows: q2 = 0.5432 (16)Å, q3 = 0.2577 (17)Å, φ = 3.14 (18)°, θ = 64.62 (16)°, and total puckering amplitude Q = 0.6012 (16)Å. The benzyl substituent is in equatorial position of piperidinone ring and its conformation is described by the following torsion angles: C2–N1–C7–C8 = -162.82 (14)° and N1–C7–C8–C9 = -153.28 (15)°. The N1-benzyl group is disposed towards C6 substituent of the piperidin-4-one ring, a feature that varies among related structures.

The observed inter- and intra-molecular interactions are listed in Table 1. The adjacent H14 and H21 atoms participate in intra-molecular C14–H14···O1···H21–C21 interaction scheme. The crystal packing is characterized by C–H···π hydrogen-bonded dimers. The methylene and aromatic groups of the N1-benzyl substituent participate in the interaction forming C7–H7B···Cg2i with symmetry code: (i) -x+1, -y+2, -z+2. The Cg2 is the centroid of (C8-C13) ring. The observed geometry of C–H···π interaction in I is in the range, reported by the Nishio and coworkers (Nishio et al., 2009). Crystal packing is shown in Fig. 2.

For literature related to synthesis and pharmaceutical studies on 3,5-diarylidene-4-piperidone compounds, see: Krapcho & Turk, (1979); Das et al., (2007). The related crystal structure, see: Suresh et al., (2007). For the related ring conformation, see: Cremer & Pople (1975), Duax et al., (1976). For the C–H···π interactions, see: Nishio et al., (2009). Cg2 is the centroid of the C8–C13 ring.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of I with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular associations into closed dimers via cooperative C–H···π interactions (see Table 1 for symmetry code). Cg2 is the centroid of (C8-C13) ring.
(3E,5E)-1-Benzyl-3,5-bis(2-fluorobenzylidene)piperidin-4-one top
Crystal data top
C26H21F2NOZ = 2
Mr = 401.44F(000) = 420
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Melting point: 415(2) K
a = 6.7738 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5652 (7) ÅCell parameters from 3075 reflections
c = 12.8535 (7) Åθ = 2.8–21.7°
α = 71.051 (1)°µ = 0.09 mm1
β = 88.057 (2)°T = 298 K
γ = 89.117 (2)°Block, colourless
V = 1034.12 (10) Å30.19 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4281 independent reflections
Radiation source: fine-focus sealed tube2531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 68
Tmin = 0.966, Tmax = 0.984k = 1515
13326 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
4281 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H21F2NOγ = 89.117 (2)°
Mr = 401.44V = 1034.12 (10) Å3
Triclinic, P1Z = 2
a = 6.7738 (4) ÅMo Kα radiation
b = 12.5652 (7) ŵ = 0.09 mm1
c = 12.8535 (7) ÅT = 298 K
α = 71.051 (1)°0.19 × 0.18 × 0.12 mm
β = 88.057 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4281 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2531 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.984Rint = 0.029
13326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.12Δρmax = 0.16 e Å3
4281 reflectionsΔρmin = 0.15 e Å3
271 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

===========================================================================

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II–A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = 0.3436 (10) m2 = -0.8917 (5) m3 = -0.2946 (7) D = -14.293 (8) Atom d s d/s (d/s)**2 C2 * 0.0169 0.0018 9.390 88.168 C3 * -0.0140 0.0017 -8.219 67.556 C5 * 0.0135 0.0017 8.052 64.834 C6 * -0.0165 0.0018 -9.252 85.593 C4 -0.1534 0.0018 -84.823 7194.988 N1 -0.7455 0.0014 -534.558 285752.750 O1 -0.3305 0.0015 -221.129 48897.992 ============ Sum((d/s)**2) for starred atoms 306.151 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.3043 (8) m2 = -0.9090 (3) m3 = -0.2848 (7) D = -14.485 (7) Atom d s d/s (d/s)**2 C2 * -0.0011 0.0018 -0.607 0.368 C3 * 0.0338 0.0017 19.758 390.365 C5 * 0.0610 0.0017 36.177 1308.754 C6 * -0.0350 0.0018 -19.553 382.330 C4 * -0.0718 0.0018 -39.539 1563.307 N1 -0.7813 0.0014 -557.032 310284.906 O1 -0.1954 0.0015 -129.768 16839.834 ============ Sum((d/s)**2) for starred atoms 3645.124 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.3826 (9) m2 = -0.4121 (9) m3 = -0.8269 (6) D = -16.581 (12) Atom d s d/s (d/s)**2 C8 * -0.0025 0.0018 -1.437 2.066 C9 * 0.0039 0.0022 1.780 3.167 C10 * -0.0027 0.0028 -0.947 0.896 C11 * -0.0017 0.0033 -0.509 0.259 C12 * 0.0014 0.0030 0.464 0.215 C13 * 0.0014 0.0021 0.691 0.478 C7 -0.1040 0.0017 -60.838 3701.229 ============ Sum((d/s)**2) for starred atoms 7.082 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity

Plane 4 m1 = -0.2708 (9) m2 = -0.9623 (2) m3 = -0.0242 (8) D = -12.113 (12) Atom d s d/s (d/s)**2 C15 * -0.0045 0.0019 -2.435 5.931 C16 * 0.0046 0.0022 2.062 4.253 C17 * 0.0018 0.0025 0.733 0.538 C18 * -0.0063 0.0024 -2.623 6.878 C19 * 0.0030 0.0021 1.381 1.908 C20 * 0.0019 0.0019 1.030 1.061 F1 0.0148 0.0017 8.905 79.302 C14 0.0542 0.0019 29.279 857.250 ============ Sum((d/s)**2) for starred atoms 20.569 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 5 m1 = -0.2350 (1) m2 = -0.9696 (2) m3 = -0.0685 (8) D = -12.925 (6) Atom d s d/s (d/s)**2 C22 * 0.0014 0.0018 0.732 0.536 C23 * -0.0006 0.0021 -0.301 0.091 C24 * -0.0019 0.0024 -0.785 0.616 C25 * 0.0034 0.0025 1.368 1.872 C26 * -0.0015 0.0024 -0.645 0.416 C27 * -0.0009 0.0021 -0.411 0.169 F1 0.0249 0.0017 14.969 224.077 C21 0.0995 0.0018 54.152 2932.435 ============ Sum((d/s)**2) for starred atoms 3.699 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 2.53 (7) 177.47 (7) 1 3 61.34 (7) 118.66 (7) 1 4 39.45 (7) 140.55 (7) 1 5 36.49 (8) 143.51 (8) 2 3 60.42 (7) 119.58 (7) 2 4 36.94 (7) 143.06 (7) 2 5 33.97 (7) 146.03 (7) 3 4 58.65 (7) 121.35 (7) 3 5 56.90 (7) 123.10 (7) 4 5 3.29 (7) 176.71 (7)

===========================================================================

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27851 (17)0.81199 (11)0.92961 (10)0.0473 (4)
O10.20803 (17)0.63605 (12)0.98723 (10)0.0733 (4)
F10.02954 (18)0.50536 (13)1.36027 (10)0.1039 (5)
F20.42414 (16)0.85416 (12)0.63705 (10)0.1014 (5)
C20.3146 (2)0.70072 (14)1.00807 (14)0.0513 (4)
H2A0.37890.70771.07180.062*
H2B0.40090.65800.97440.062*
C30.1218 (2)0.64096 (13)1.04272 (14)0.0460 (4)
C40.0404 (2)0.67177 (14)0.96139 (14)0.0504 (4)
C50.0152 (2)0.74206 (13)0.84662 (13)0.0450 (4)
C60.2136 (2)0.79813 (14)0.82805 (13)0.0494 (4)
H6A0.30900.75280.80290.059*
H6B0.20500.87110.77150.059*
C70.4527 (2)0.88369 (14)0.91102 (14)0.0531 (4)
H7A0.54730.86080.86390.064*
H7B0.51400.87290.98090.064*
C80.4052 (3)1.00649 (15)0.85878 (14)0.0534 (5)
C90.5456 (3)1.07860 (18)0.79602 (17)0.0773 (6)
H90.66741.05050.78120.093*
C100.5070 (6)1.1944 (2)0.7540 (2)0.1077 (9)
H100.60321.24320.71200.129*
C110.3284 (7)1.2350 (2)0.7748 (2)0.1146 (11)
H110.30191.31170.74690.138*
C120.1887 (4)1.1639 (2)0.8362 (2)0.1007 (8)
H120.06661.19210.85010.121*
C130.2261 (3)1.05075 (17)0.87788 (17)0.0713 (6)
H130.12851.00300.91980.086*
C140.0847 (2)0.56488 (14)1.14056 (15)0.0548 (5)
H140.04470.53921.15460.066*
C150.2232 (2)0.51659 (14)1.22897 (15)0.0524 (4)
C160.1619 (3)0.48556 (17)1.33750 (17)0.0663 (5)
C170.2810 (4)0.43617 (19)1.42435 (18)0.0837 (6)
H170.23190.41701.49650.100*
C180.4741 (3)0.41584 (18)1.40188 (19)0.0804 (6)
H180.55860.38321.45930.096*
C190.5436 (3)0.44358 (16)1.29479 (19)0.0715 (6)
H190.67450.42871.27980.086*
C200.4199 (3)0.49336 (14)1.20967 (16)0.0619 (5)
H200.46890.51191.13760.074*
C210.1155 (2)0.75128 (14)0.76848 (14)0.0498 (4)
H210.23890.71990.79300.060*
C220.0894 (2)0.80438 (14)0.64938 (14)0.0509 (4)
C230.2488 (3)0.85146 (16)0.58508 (16)0.0650 (5)
C240.2382 (4)0.89583 (18)0.47290 (19)0.0832 (7)
H240.34950.92670.43350.100*
C250.0606 (4)0.89395 (19)0.41964 (18)0.0851 (7)
H250.05050.92320.34330.102*
C260.1030 (3)0.84889 (18)0.47902 (17)0.0801 (6)
H260.22400.84820.44280.096*
C270.0879 (3)0.80488 (16)0.59185 (15)0.0637 (5)
H270.20000.77450.63080.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0468 (7)0.0487 (8)0.0461 (8)0.0052 (6)0.0086 (6)0.0143 (7)
O10.0423 (7)0.1033 (11)0.0658 (9)0.0083 (7)0.0004 (6)0.0156 (8)
F10.0798 (8)0.1567 (13)0.0676 (8)0.0106 (8)0.0028 (6)0.0270 (8)
F20.0582 (7)0.1426 (12)0.0905 (9)0.0144 (7)0.0214 (7)0.0189 (8)
C20.0456 (9)0.0543 (11)0.0528 (10)0.0003 (8)0.0086 (8)0.0152 (9)
C30.0440 (9)0.0485 (10)0.0473 (10)0.0010 (7)0.0008 (7)0.0181 (8)
C40.0390 (9)0.0567 (11)0.0585 (12)0.0004 (8)0.0001 (8)0.0231 (9)
C50.0413 (9)0.0474 (10)0.0502 (10)0.0045 (7)0.0034 (7)0.0211 (8)
C60.0479 (9)0.0542 (10)0.0485 (10)0.0024 (8)0.0053 (7)0.0197 (8)
C70.0497 (9)0.0575 (11)0.0553 (11)0.0058 (8)0.0064 (8)0.0219 (9)
C80.0678 (12)0.0523 (11)0.0451 (10)0.0096 (9)0.0064 (9)0.0218 (9)
C90.1022 (15)0.0686 (15)0.0628 (13)0.0219 (12)0.0098 (12)0.0236 (11)
C100.180 (3)0.073 (2)0.0675 (16)0.0447 (19)0.0029 (18)0.0176 (14)
C110.200 (3)0.0581 (17)0.093 (2)0.012 (2)0.059 (2)0.0290 (16)
C120.124 (2)0.0733 (18)0.120 (2)0.0261 (16)0.0474 (18)0.0501 (16)
C130.0785 (14)0.0644 (14)0.0801 (14)0.0057 (10)0.0166 (11)0.0346 (11)
C140.0465 (9)0.0569 (11)0.0612 (12)0.0039 (8)0.0003 (8)0.0196 (10)
C150.0543 (10)0.0445 (10)0.0564 (12)0.0065 (8)0.0046 (9)0.0130 (8)
C160.0563 (11)0.0777 (14)0.0644 (14)0.0013 (10)0.0035 (10)0.0220 (11)
C170.0973 (17)0.0941 (17)0.0563 (13)0.0017 (13)0.0136 (12)0.0184 (12)
C180.0826 (16)0.0731 (15)0.0820 (17)0.0041 (11)0.0319 (13)0.0175 (12)
C190.0643 (12)0.0576 (13)0.0844 (16)0.0003 (9)0.0135 (11)0.0106 (11)
C200.0643 (12)0.0464 (11)0.0668 (12)0.0001 (8)0.0058 (10)0.0067 (9)
C210.0422 (9)0.0518 (10)0.0590 (11)0.0001 (7)0.0071 (8)0.0221 (9)
C220.0568 (10)0.0476 (10)0.0518 (11)0.0031 (8)0.0138 (8)0.0196 (8)
C230.0550 (11)0.0720 (13)0.0673 (14)0.0009 (9)0.0164 (10)0.0205 (11)
C240.0903 (16)0.0865 (16)0.0689 (16)0.0013 (12)0.0338 (13)0.0166 (13)
C250.1170 (19)0.0876 (16)0.0518 (12)0.0026 (14)0.0164 (14)0.0226 (11)
C260.0905 (15)0.0952 (17)0.0574 (14)0.0033 (12)0.0041 (11)0.0286 (12)
C270.0699 (12)0.0716 (13)0.0551 (12)0.0083 (9)0.0100 (10)0.0276 (10)
Geometric parameters (Å, º) top
N1—C61.4551 (19)C12—C131.370 (3)
N1—C21.4567 (19)C12—H120.9300
N1—C71.4612 (19)C13—H130.9300
O1—C41.2223 (18)C14—C151.465 (2)
F1—C161.357 (2)C14—H140.9300
F2—C231.348 (2)C15—C161.372 (3)
C2—C31.497 (2)C15—C201.391 (2)
C2—H2A0.9700C16—C171.370 (3)
C2—H2B0.9700C17—C181.368 (3)
C3—C141.328 (2)C17—H170.9300
C3—C41.501 (2)C18—C191.374 (3)
C4—C51.491 (2)C18—H180.9300
C5—C211.337 (2)C19—C201.376 (2)
C5—C61.502 (2)C19—H190.9300
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C21—C221.463 (2)
C7—C81.504 (2)C21—H210.9300
C7—H7A0.9700C22—C231.386 (2)
C7—H7B0.9700C22—C271.388 (2)
C8—C91.370 (3)C23—C241.366 (3)
C8—C131.375 (3)C24—C251.367 (3)
C9—C101.402 (4)C24—H240.9300
C9—H90.9300C25—C261.374 (3)
C10—C111.358 (4)C25—H250.9300
C10—H100.9300C26—C271.375 (3)
C11—C121.353 (4)C26—H260.9300
C11—H110.9300C27—H270.9300
C6—N1—C2108.20 (13)C12—C13—C8121.1 (2)
C6—N1—C7111.83 (13)C12—C13—H13119.4
C2—N1—C7111.85 (12)C8—C13—H13119.4
N1—C2—C3109.17 (12)C3—C14—C15127.77 (15)
N1—C2—H2A109.8C3—C14—H14116.1
C3—C2—H2A109.8C15—C14—H14116.1
N1—C2—H2B109.8C16—C15—C20115.62 (16)
C3—C2—H2B109.8C16—C15—C14121.18 (16)
H2A—C2—H2B108.3C20—C15—C14123.11 (17)
C14—C3—C2124.42 (14)F1—C16—C17117.83 (19)
C14—C3—C4118.45 (14)F1—C16—C15117.70 (16)
C2—C3—C4117.12 (14)C17—C16—C15124.47 (19)
O1—C4—C5121.80 (14)C18—C17—C16118.1 (2)
O1—C4—C3121.17 (16)C18—C17—H17121.0
C5—C4—C3116.93 (14)C16—C17—H17121.0
C21—C5—C4117.70 (14)C17—C18—C19120.20 (19)
C21—C5—C6125.03 (16)C17—C18—H18119.9
C4—C5—C6117.28 (13)C19—C18—H18119.9
N1—C6—C5110.11 (13)C18—C19—C20120.09 (19)
N1—C6—H6A109.6C18—C19—H19120.0
C5—C6—H6A109.6C20—C19—H19120.0
N1—C6—H6B109.6C19—C20—C15121.52 (19)
C5—C6—H6B109.6C19—C20—H20119.2
H6A—C6—H6B108.2C15—C20—H20119.2
N1—C7—C8112.87 (13)C5—C21—C22128.35 (16)
N1—C7—H7A109.0C5—C21—H21115.8
C8—C7—H7A109.0C22—C21—H21115.8
N1—C7—H7B109.0C23—C22—C27115.28 (16)
C8—C7—H7B109.0C23—C22—C21120.75 (17)
H7A—C7—H7B107.8C27—C22—C21123.82 (15)
C9—C8—C13118.18 (19)F2—C23—C24118.37 (17)
C9—C8—C7120.25 (18)F2—C23—C22117.63 (17)
C13—C8—C7121.45 (17)C24—C23—C22124.0 (2)
C8—C9—C10120.5 (2)C23—C24—C25118.71 (19)
C8—C9—H9119.8C23—C24—H24120.6
C10—C9—H9119.8C25—C24—H24120.6
C11—C10—C9119.6 (3)C24—C25—C26120.0 (2)
C11—C10—H10120.2C24—C25—H25120.0
C9—C10—H10120.2C26—C25—H25120.0
C12—C11—C10120.1 (3)C25—C26—C27120.1 (2)
C12—C11—H11119.9C25—C26—H26120.0
C10—C11—H11119.9C27—C26—H26120.0
C11—C12—C13120.5 (3)C26—C27—C22121.99 (18)
C11—C12—H12119.8C26—C27—H27119.0
C13—C12—H12119.8C22—C27—H27119.0
C6—N1—C2—C369.01 (16)C4—C3—C14—C15175.34 (16)
C7—N1—C2—C3167.39 (13)C3—C14—C15—C16147.49 (19)
N1—C2—C3—C14149.89 (16)C3—C14—C15—C2036.2 (3)
N1—C2—C3—C428.8 (2)C20—C15—C16—F1179.24 (16)
C14—C3—C4—O16.7 (2)C14—C15—C16—F12.6 (3)
C2—C3—C4—O1172.07 (15)C20—C15—C16—C170.9 (3)
C14—C3—C4—C5169.87 (14)C14—C15—C16—C17177.48 (18)
C2—C3—C4—C511.4 (2)F1—C16—C17—C18179.90 (19)
O1—C4—C5—C219.8 (2)C15—C16—C17—C180.2 (3)
C3—C4—C5—C21166.67 (14)C16—C17—C18—C190.7 (3)
O1—C4—C5—C6169.55 (15)C17—C18—C19—C200.9 (3)
C3—C4—C5—C613.9 (2)C18—C19—C20—C150.2 (3)
C2—N1—C6—C566.60 (16)C16—C15—C20—C190.7 (3)
C7—N1—C6—C5169.78 (12)C14—C15—C20—C19177.20 (17)
C21—C5—C6—N1155.39 (15)C4—C5—C21—C22172.85 (15)
C4—C5—C6—N123.94 (19)C6—C5—C21—C227.8 (3)
C6—N1—C7—C875.65 (17)C5—C21—C22—C23151.13 (17)
C2—N1—C7—C8162.82 (14)C5—C21—C22—C2733.5 (3)
N1—C7—C8—C9153.28 (15)C27—C22—C23—F2179.31 (16)
N1—C7—C8—C1330.8 (2)C21—C22—C23—F25.0 (3)
C13—C8—C9—C100.8 (3)C27—C22—C23—C240.1 (3)
C7—C8—C9—C10175.21 (17)C21—C22—C23—C24175.57 (17)
C8—C9—C10—C110.7 (3)F2—C23—C24—C25179.65 (19)
C9—C10—C11—C120.2 (4)C22—C23—C24—C250.2 (3)
C10—C11—C12—C130.1 (4)C23—C24—C25—C260.5 (3)
C11—C12—C13—C80.1 (3)C24—C25—C26—C270.5 (3)
C9—C8—C13—C120.5 (3)C25—C26—C27—C220.2 (3)
C7—C8—C13—C12175.46 (17)C23—C22—C27—C260.2 (3)
C2—C3—C14—C156.0 (3)C21—C22—C27—C26175.40 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.402.772 (2)104
C21—H21···O10.932.392.768 (2)104
C7—H7B···Cg2i0.972.783.7315 (19)168
C13—H13···N10.932.562.873 (3)100
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC26H21F2NO
Mr401.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.7738 (4), 12.5652 (7), 12.8535 (7)
α, β, γ (°)71.051 (1), 88.057 (2), 89.117 (2)
V3)1034.12 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.966, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13326, 4281, 2531
Rint0.029
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.12
No. of reflections4281
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.402.772 (2)104
C21—H21···O10.932.392.768 (2)104
C7—H7B···Cg2i0.972.783.7315 (19)168
C13—H13···N10.932.562.873 (3)100
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

RSR thanks the Council for Scientific and Industrial Research, New Delhi, for funding under the scientist's pool scheme, and the Bioinformatics Infrastructure Facility of the University of Hyderabad, Hyderabad for computational resources.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDas, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New Jersey: John Wiley.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrapcho, J. & Turk, C. F. (1979). J. Med. Chem. 22, 207–210.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315–o318.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds