organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[4-(tri­fluoro­meth­yl)phen­yl]pyridine-2,6-dicarboxamide

aKey Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
*Correspondence e-mail: penghao@mail.ccnu.edu.cn

(Received 28 November 2009; accepted 14 January 2010; online 20 January 2010)

In the title mol­ecule, C21H13F6N3O2, the pyridine ring forms dihedral angles of 1.7 (1) and 5.2 (1)° with the two benzene rings. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance of 3.628 (3) Å between aromatic rings] link mol­ecules into stacks along the c axis. The two trifluoro­methyl groups are each rotationally disordered between two orientations, with occupancy ratios of 0.58 (1):0.42 (1) and 0.55 (1):0.45 (1).

Related literature

For the synthesis and biological activity of acyl thio­urea derivatives, see: Duan et al. (2003[Duan, Z. F., Gu, L. Q., Huang, Z. S., Xie, W. L. & Ma, L. (2003). Chin. J. Appl. Chem. 20, 80-82.]); Li et al. (2007[Li, Y. J., Zhang, Z. G., Jin, K., Peng, Q. J., Ding, W. G. & Liu, J. (2007). Acta Chim. Sin. 65, 834-840.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13F6N3O2

  • Mr = 453.34

  • Monoclinic, P 21 /c

  • a = 9.8308 (10) Å

  • b = 23.787 (3) Å

  • c = 8.9577 (10) Å

  • β = 109.474 (2)°

  • V = 1974.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 12033 measured reflections

  • 3653 independent reflections

  • 3138 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.181

  • S = 1.17

  • 3653 reflections

  • 351 parameters

  • 96 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.84 (3) 2.58 (3) 3.303 (4) 144 (3)
N3—H3A⋯O2ii 0.85 (4) 2.36 (4) 3.051 (3) 139 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Acyl thiourea derivatives have attracted considerable attention from chemists and biologists because of their wide range of biological activities and potential therapeutic value (Duan et al., 2003; Li et al., 2007). In our research work aimed at searching for novel agrochemicals, we attempted to synthesize the pyridine-2,6-dicarbonyl thiourea derivatives,and the title compound, (I), was obtained as byproduct. Here we report its crystal structure.

In (I) (Fig.1), the central pyridine ring makes the dihedral angles of 1.7 (1) and 5.2 (1)° with the two benzene rings, respectively. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) and ππ interactions proved by short distance of 3.628 (3) Å between the centroids of aromatic rings link molecules into stacks along axis c.

Related literature top

For the synthesis and biological activity of acyl thiourea derivatives, see: Duan et al. (2003); Li et al. (2007).

Experimental top

Pyridine-2,6-dicarbonyl chloride (II) was prepared according to the literature procedures (Duan et al., 2003). To a solution of (II) (5 mmol) in dichloromethane (30 ml) was added KSCN (15 mmol) and PEG-400 (0.2 g). The mixture was stirred at room temperature for 2 h, then 4-trifluoroaniline (10 mmol) was added and the suspension was stirred for 1 h. The mixture was filtered and the precipitate was washed with a little ethanol. The solvent was removed under reduced pressure and the residue was purified by recrystallization from DMF and water (20:1,v/v). Then recrystallization from actone over a period of one week gave colourless crystals of (I).

Refinement top

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined as riding, with Uiso(H) =1.2Ueq(C). H atoms bonded to N atoms were located at the difference map, and refined with bond restrains N—H = 0.84 (3) Å, and with constrains of Uiso(H) = 1.2Ueq(N). Two trifluoromethyl groups were treated as rotationally disordered between two orientations each with the ratios refined to 0.58 (1):0.42 (1) and 0.55 (1):0.45 (1), respectively.

Structure description top

Acyl thiourea derivatives have attracted considerable attention from chemists and biologists because of their wide range of biological activities and potential therapeutic value (Duan et al., 2003; Li et al., 2007). In our research work aimed at searching for novel agrochemicals, we attempted to synthesize the pyridine-2,6-dicarbonyl thiourea derivatives,and the title compound, (I), was obtained as byproduct. Here we report its crystal structure.

In (I) (Fig.1), the central pyridine ring makes the dihedral angles of 1.7 (1) and 5.2 (1)° with the two benzene rings, respectively. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) and ππ interactions proved by short distance of 3.628 (3) Å between the centroids of aromatic rings link molecules into stacks along axis c.

For the synthesis and biological activity of acyl thiourea derivatives, see: Duan et al. (2003); Li et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the labeling scheme with 50% probability displacement ellipsoids. Only major parts of disordered fluorine atoms are shown.
[Figure 2] Fig. 2. Part of the crystal packing, showing the intermolecular hydrogen bonds as dashed lines.
N,N'-Bis[4-(trifluoromethyl)phenyl]pyridine-2,6-dicarboxamide top
Crystal data top
C21H13F6N3O2F(000) = 920
Mr = 453.34Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3607 reflections
a = 9.8308 (10) Åθ = 2.4–25.0°
b = 23.787 (3) ŵ = 0.14 mm1
c = 8.9577 (10) ÅT = 298 K
β = 109.474 (2)°Block, colourless
V = 1974.8 (4) Å30.20 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3138 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
phi and ω scansh = 1111
12033 measured reflectionsk = 2822
3653 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.4024P]
where P = (Fo2 + 2Fc2)/3
3653 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.32 e Å3
96 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H13F6N3O2V = 1974.8 (4) Å3
Mr = 453.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8308 (10) ŵ = 0.14 mm1
b = 23.787 (3) ÅT = 298 K
c = 8.9577 (10) Å0.20 × 0.12 × 0.10 mm
β = 109.474 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3138 reflections with I > 2σ(I)
12033 measured reflectionsRint = 0.043
3653 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07896 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.32 e Å3
3653 reflectionsΔρmin = 0.25 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1924 (3)0.17950 (12)0.0978 (3)0.0384 (7)
C20.1982 (4)0.12169 (14)0.1004 (4)0.0491 (8)
H20.14470.10090.14920.059*
C30.2849 (4)0.09535 (14)0.0289 (4)0.0557 (9)
H30.29020.05630.02820.067*
C40.3637 (3)0.12687 (13)0.0413 (4)0.0461 (8)
H40.42180.10970.09140.055*
C50.3546 (3)0.18462 (12)0.0356 (3)0.0356 (6)
C60.0990 (3)0.21071 (13)0.1728 (3)0.0400 (7)
C70.0025 (3)0.30625 (13)0.1730 (3)0.0394 (7)
C80.1031 (3)0.29432 (15)0.2475 (4)0.0498 (8)
H80.12440.25730.26430.060*
C90.1704 (3)0.33774 (17)0.2959 (4)0.0581 (9)
H90.23730.32980.34580.070*
C100.1409 (3)0.39243 (16)0.2721 (4)0.0565 (9)
C110.0435 (4)0.40445 (15)0.1948 (5)0.0620 (10)
H110.02360.44160.17720.074*
C120.0234 (4)0.36158 (14)0.1444 (4)0.0535 (9)
H120.08690.36980.09040.064*
C130.2060 (4)0.4394 (2)0.3348 (5)0.0853 (14)
C140.4430 (3)0.22150 (13)0.1048 (3)0.0377 (7)
C150.5242 (3)0.32122 (13)0.0892 (3)0.0400 (7)
C160.4878 (4)0.37330 (15)0.0475 (4)0.0564 (9)
H160.42150.37600.00570.068*
C170.5477 (4)0.42116 (16)0.0833 (5)0.0661 (10)
H170.52000.45610.05670.079*
C180.6488 (4)0.41772 (16)0.1585 (4)0.0599 (10)
C190.6873 (4)0.36594 (17)0.1989 (4)0.0620 (10)
H190.75600.36350.24920.074*
C200.6258 (3)0.31734 (15)0.1662 (4)0.0491 (8)
H200.65180.28250.19520.059*
C210.7100 (6)0.4701 (2)0.2000 (5)0.0930 (16)
N10.2702 (2)0.21094 (10)0.0320 (3)0.0357 (6)
N20.0727 (3)0.26423 (11)0.1232 (3)0.0430 (6)
H2A0.110 (4)0.2753 (14)0.057 (4)0.052*
N30.4573 (3)0.27437 (11)0.0487 (3)0.0442 (7)
H3A0.420 (4)0.2803 (14)0.022 (4)0.053*
O10.0553 (3)0.18852 (10)0.2706 (3)0.0663 (7)
O20.4942 (3)0.20366 (10)0.2017 (3)0.0566 (7)
F10.3471 (7)0.4321 (5)0.3055 (10)0.104 (3)0.55 (1)
F20.1415 (10)0.4449 (5)0.4902 (8)0.130 (4)0.55 (1)
F30.1944 (10)0.4899 (3)0.2690 (12)0.127 (4)0.55 (1)
F40.7508 (11)0.5071 (4)0.0789 (9)0.143 (4)0.58 (1)
F50.6273 (14)0.4946 (5)0.3320 (9)0.122 (4)0.58 (1)
F60.8385 (8)0.4579 (5)0.2243 (14)0.133 (4)0.58 (1)
F4'0.8527 (8)0.4711 (6)0.1667 (18)0.119 (5)0.45 (1)
F1'0.3145 (10)0.4220 (6)0.3872 (14)0.130 (5)0.45 (1)
F5'0.6697 (11)0.5178 (4)0.1386 (12)0.109 (3)0.45 (1)
F3'0.1123 (11)0.4662 (5)0.4586 (11)0.088 (3)0.42 (1)
F2'0.2616 (11)0.4801 (5)0.2255 (12)0.110 (4)0.42 (1)
F6'0.6506 (17)0.4783 (6)0.3602 (9)0.102 (4)0.42 (1)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (16)0.0387 (17)0.0408 (16)0.0035 (12)0.0182 (13)0.0019 (13)
C20.0565 (19)0.0434 (19)0.0562 (19)0.0060 (15)0.0305 (16)0.0004 (15)
C30.073 (2)0.0319 (17)0.072 (2)0.0011 (15)0.038 (2)0.0021 (16)
C40.0534 (18)0.0430 (18)0.0489 (18)0.0050 (14)0.0265 (15)0.0026 (14)
C50.0329 (14)0.0392 (16)0.0366 (15)0.0050 (12)0.0141 (12)0.0006 (12)
C60.0395 (16)0.0422 (18)0.0456 (17)0.0055 (13)0.0240 (14)0.0025 (13)
C70.0328 (15)0.0467 (18)0.0411 (16)0.0030 (13)0.0156 (13)0.0040 (13)
C80.0390 (17)0.055 (2)0.063 (2)0.0000 (15)0.0275 (16)0.0046 (16)
C90.0402 (18)0.079 (3)0.065 (2)0.0021 (17)0.0302 (17)0.0110 (19)
C100.0404 (18)0.064 (2)0.066 (2)0.0063 (16)0.0181 (16)0.0184 (18)
C110.053 (2)0.048 (2)0.089 (3)0.0048 (16)0.029 (2)0.0085 (19)
C120.0492 (19)0.050 (2)0.071 (2)0.0047 (15)0.0340 (17)0.0023 (17)
C130.063 (3)0.097 (4)0.100 (4)0.010 (3)0.033 (3)0.036 (3)
C140.0383 (15)0.0421 (17)0.0366 (15)0.0093 (12)0.0176 (13)0.0027 (13)
C150.0410 (16)0.0450 (18)0.0356 (15)0.0033 (13)0.0148 (13)0.0016 (13)
C160.065 (2)0.052 (2)0.064 (2)0.0091 (17)0.0378 (19)0.0066 (17)
C170.084 (3)0.047 (2)0.076 (3)0.0112 (19)0.039 (2)0.0073 (18)
C180.069 (2)0.060 (2)0.051 (2)0.0187 (18)0.0202 (18)0.0026 (17)
C190.062 (2)0.077 (3)0.059 (2)0.0150 (19)0.0363 (19)0.0027 (19)
C200.0469 (18)0.054 (2)0.0533 (19)0.0017 (15)0.0264 (16)0.0008 (16)
C210.127 (5)0.078 (4)0.087 (4)0.039 (3)0.053 (4)0.003 (3)
N10.0353 (12)0.0357 (13)0.0395 (13)0.0021 (10)0.0172 (10)0.0003 (10)
N20.0471 (15)0.0428 (16)0.0516 (15)0.0024 (11)0.0330 (13)0.0022 (12)
N30.0548 (16)0.0436 (15)0.0489 (15)0.0040 (12)0.0371 (13)0.0027 (12)
O10.0879 (18)0.0535 (15)0.0839 (18)0.0034 (13)0.0640 (16)0.0105 (13)
O20.0733 (16)0.0520 (14)0.0635 (15)0.0044 (12)0.0482 (13)0.0026 (11)
F10.063 (4)0.126 (6)0.131 (6)0.029 (4)0.044 (4)0.042 (5)
F20.124 (7)0.159 (10)0.107 (5)0.023 (5)0.040 (5)0.073 (5)
F30.128 (8)0.071 (4)0.203 (11)0.015 (5)0.084 (7)0.041 (6)
F40.209 (10)0.102 (6)0.134 (6)0.089 (6)0.078 (7)0.024 (5)
F50.175 (7)0.070 (7)0.137 (7)0.004 (4)0.072 (6)0.036 (5)
F60.147 (7)0.129 (8)0.147 (8)0.095 (5)0.081 (5)0.024 (5)
F4'0.115 (7)0.088 (7)0.157 (11)0.060 (5)0.049 (6)0.004 (7)
F1'0.091 (7)0.134 (9)0.197 (12)0.011 (6)0.092 (7)0.084 (9)
F5'0.168 (9)0.055 (4)0.127 (7)0.043 (5)0.082 (7)0.019 (5)
F3'0.071 (4)0.078 (6)0.111 (7)0.003 (4)0.024 (5)0.050 (4)
F2'0.097 (8)0.094 (8)0.118 (6)0.052 (6)0.007 (6)0.025 (6)
F6'0.171 (10)0.067 (8)0.090 (6)0.008 (5)0.075 (6)0.022 (4)
Geometric parameters (Å, º) top
C1—N11.339 (4)C13—F3'1.342 (8)
C1—C21.376 (4)C13—F2'1.355 (8)
C1—C61.502 (4)C13—F31.358 (7)
C2—C31.376 (4)C13—F1'1.365 (8)
C2—H20.9300C14—O21.216 (3)
C3—C41.372 (4)C14—N31.344 (4)
C3—H30.9300C15—C161.375 (5)
C4—C51.379 (4)C15—C201.393 (4)
C4—H40.9300C15—N31.402 (4)
C5—N11.335 (3)C16—C171.368 (5)
C5—C141.506 (4)C16—H160.9300
C6—O11.217 (3)C17—C181.377 (5)
C6—N21.345 (4)C17—H170.9300
C7—C121.381 (5)C18—C191.372 (5)
C7—C81.394 (4)C18—C211.484 (5)
C7—N21.402 (4)C19—C201.380 (5)
C8—C91.373 (5)C19—H190.9300
C8—H80.9300C20—H200.9300
C9—C101.365 (5)C21—F51.326 (8)
C9—H90.9300C21—F4'1.334 (8)
C10—C111.386 (5)C21—F41.350 (7)
C10—C131.488 (5)C21—F6'1.371 (8)
C11—C121.369 (5)C21—F5'1.375 (8)
C11—H110.9300C21—F61.383 (8)
C12—H120.9300N2—H2A0.84 (3)
C13—F21.330 (7)N3—H3A0.85 (4)
C13—F11.335 (7)
N1—C1—C2122.6 (3)F3'—C13—C10113.9 (6)
N1—C1—C6116.4 (2)F2'—C13—C10112.7 (7)
C2—C1—C6120.9 (3)F3—C13—C10113.1 (6)
C1—C2—C3118.4 (3)F1'—C13—C10112.7 (7)
C1—C2—H2120.8O2—C14—N3125.2 (3)
C3—C2—H2120.8O2—C14—C5121.6 (3)
C4—C3—C2119.8 (3)N3—C14—C5113.2 (2)
C4—C3—H3120.1C16—C15—C20119.2 (3)
C2—C3—H3120.1C16—C15—N3117.3 (3)
C3—C4—C5118.3 (3)C20—C15—N3123.5 (3)
C3—C4—H4120.8C17—C16—C15121.0 (3)
C5—C4—H4120.8C17—C16—H16119.5
N1—C5—C4122.8 (3)C15—C16—H16119.5
N1—C5—C14116.4 (2)C16—C17—C18120.2 (4)
C4—C5—C14120.8 (3)C16—C17—H17119.9
O1—C6—N2125.0 (3)C18—C17—H17119.9
O1—C6—C1121.5 (3)C19—C18—C17119.3 (3)
N2—C6—C1113.5 (2)C19—C18—C21121.2 (4)
C12—C7—C8119.1 (3)C17—C18—C21119.4 (4)
C12—C7—N2118.1 (3)C18—C19—C20121.1 (3)
C8—C7—N2122.7 (3)C18—C19—H19119.4
C9—C8—C7119.5 (3)C20—C19—H19119.4
C9—C8—H8120.3C19—C20—C15119.1 (3)
C7—C8—H8120.3C19—C20—H20120.4
C10—C9—C8121.2 (3)C15—C20—H20120.4
C10—C9—H9119.4F5—C21—F4'118.5 (12)
C8—C9—H9119.4F5—C21—F4111.1 (7)
C9—C10—C11119.6 (3)F4'—C21—F478.5 (7)
C9—C10—C13121.1 (3)F5—C21—F6'23.6 (8)
C11—C10—C13119.3 (4)F4'—C21—F6'106.3 (8)
C12—C11—C10119.9 (3)F4—C21—F6'131.1 (9)
C12—C11—H11120.0F5—C21—F5'79.7 (7)
C10—C11—H11120.0F4'—C21—F5'108.5 (7)
C11—C12—C7120.7 (3)F4—C21—F5'35.8 (6)
C11—C12—H12119.7F6'—C21—F5'102.9 (7)
C7—C12—H12119.7F5—C21—F6105.8 (7)
F2—C13—F1108.7 (6)F4'—C21—F624.6 (7)
F2—C13—F3'29.8 (7)F4—C21—F6102.8 (6)
F1—C13—F3'127.3 (8)F6'—C21—F687.6 (10)
F2—C13—F2'128.5 (8)F5'—C21—F6129.5 (7)
F1—C13—F2'79.0 (7)F5—C21—C18114.4 (8)
F3'—C13—F2'105.0 (7)F4'—C21—C18116.3 (8)
F2—C13—F3106.7 (6)F4—C21—C18112.5 (6)
F1—C13—F3105.2 (6)F6'—C21—C18108.3 (8)
F3'—C13—F378.8 (7)F5'—C21—C18113.5 (6)
F2'—C13—F329.3 (5)F6—C21—C18109.3 (6)
F2—C13—F1'79.9 (7)C5—N1—C1118.1 (2)
F1—C13—F1'31.5 (6)C6—N2—C7129.3 (3)
F3'—C13—F1'105.0 (7)C6—N2—H2A117 (2)
F2'—C13—F1'106.9 (7)C7—N2—H2A114 (2)
F3—C13—F1'127.2 (8)C14—N3—C15130.2 (3)
F2—C13—C10110.7 (6)C14—N3—H3A115 (2)
F1—C13—C10112.1 (6)C15—N3—H3A115 (2)
N1—C1—C2—C31.6 (5)C4—C5—C14—N3160.5 (3)
C6—C1—C2—C3179.6 (3)C20—C15—C16—C171.3 (5)
C1—C2—C3—C40.5 (5)N3—C15—C16—C17179.7 (3)
C2—C3—C4—C50.9 (5)C15—C16—C17—C181.7 (6)
C3—C4—C5—N11.5 (5)C16—C17—C18—C190.9 (6)
C3—C4—C5—C14177.6 (3)C16—C17—C18—C21178.5 (4)
N1—C1—C6—O1159.9 (3)C17—C18—C19—C200.3 (6)
C2—C1—C6—O119.0 (5)C21—C18—C19—C20177.2 (4)
N1—C1—C6—N218.9 (4)C18—C19—C20—C150.7 (5)
C2—C1—C6—N2162.2 (3)C16—C15—C20—C190.0 (5)
C12—C7—C8—C92.3 (5)N3—C15—C20—C19179.0 (3)
N2—C7—C8—C9178.7 (3)C19—C18—C21—F596.4 (7)
C7—C8—C9—C100.1 (5)C17—C18—C21—F581.2 (7)
C8—C9—C10—C111.3 (5)C19—C18—C21—F4'47.7 (8)
C8—C9—C10—C13175.6 (3)C17—C18—C21—F4'134.7 (8)
C9—C10—C11—C120.6 (5)C19—C18—C21—F4135.6 (6)
C13—C10—C11—C12176.3 (4)C17—C18—C21—F446.8 (7)
C10—C11—C12—C71.5 (5)C19—C18—C21—F6'71.8 (8)
C8—C7—C12—C113.0 (5)C17—C18—C21—F6'105.7 (7)
N2—C7—C12—C11178.0 (3)C19—C18—C21—F5'174.6 (6)
C9—C10—C13—F275.5 (6)C17—C18—C21—F5'7.8 (7)
C11—C10—C13—F2101.4 (6)C19—C18—C21—F622.1 (7)
C9—C10—C13—F146.1 (7)C17—C18—C21—F6160.3 (6)
C11—C10—C13—F1137.0 (6)C4—C5—N1—C10.6 (4)
C9—C10—C13—F3'107.6 (7)C14—C5—N1—C1178.6 (2)
C11—C10—C13—F3'69.4 (7)C2—C1—N1—C51.0 (4)
C9—C10—C13—F2'133.0 (6)C6—C1—N1—C5179.9 (2)
C11—C10—C13—F2'50.1 (7)O1—C6—N2—C72.6 (5)
C9—C10—C13—F3164.8 (6)C1—C6—N2—C7176.2 (3)
C11—C10—C13—F318.2 (7)C12—C7—N2—C6159.3 (3)
C9—C10—C13—F1'11.9 (7)C8—C7—N2—C621.7 (5)
C11—C10—C13—F1'171.2 (6)O2—C14—N3—C153.4 (5)
N1—C5—C14—O2161.2 (3)C5—C14—N3—C15176.4 (3)
C4—C5—C14—O219.7 (4)C16—C15—N3—C14161.7 (3)
N1—C5—C14—N318.6 (4)C20—C15—N3—C1419.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.84 (3)2.58 (3)3.303 (4)144 (3)
N3—H3A···O2ii0.85 (4)2.36 (4)3.051 (3)139 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H13F6N3O2
Mr453.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.8308 (10), 23.787 (3), 8.9577 (10)
β (°) 109.474 (2)
V3)1974.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12033, 3653, 3138
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.181, 1.17
No. of reflections3653
No. of parameters351
No. of restraints96
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.84 (3)2.58 (3)3.303 (4)144 (3)
N3—H3A···O2ii0.85 (4)2.36 (4)3.051 (3)139 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the financial support of this work by the Opening Foundation of the Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University (grant No. 2009GDGP0101), the National Basic Research Program of China (2010CB126100) and the National Natural Science Foundation of China (No. 20772042).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, Z. F., Gu, L. Q., Huang, Z. S., Xie, W. L. & Ma, L. (2003). Chin. J. Appl. Chem. 20, 80–82.  CAS Google Scholar
First citationLi, Y. J., Zhang, Z. G., Jin, K., Peng, Q. J., Ding, W. G. & Liu, J. (2007). Acta Chim. Sin. 65, 834–840.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds