organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[(E)-3-(4-Hydr­­oxy-3-meth­oxy­phen­yl)allyl­­idene]isonicotinohydrazide

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2010; accepted 5 January 2010; online 9 January 2010)

In the title compound, C16H15N3O3, the dihedral angle between the pyridine and benzene rings is 7.66 (5)°. The crystal packing is consolidated by inter­molecular C—H⋯O and O—H⋯N inter­actions, which link the mol­ecules into zigzag chains propagating along [010]. The chains are further linked into a three-dimensional network by N—H⋯O, C—H⋯N, C—H⋯O and C—H⋯π inter­actions.

Related literature

For the synthesis, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For the tuberculostatic activities of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]). For related structures, see: Naveenkumar et al. (2009a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Goh, J. H. & Fun, H.-K. (2009a). Acta Cryst. E65, o2235-o2236.],b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009b). Acta Cryst. E65, o2540-o2541.],c[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2009c). Acta Cryst. E65, o1912.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O3

  • Mr = 297.31

  • Monoclinic, P 21 /c

  • a = 5.0470 (1) Å

  • b = 28.9314 (6) Å

  • c = 9.6446 (2) Å

  • β = 90.010 (1)°

  • V = 1408.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.53 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.992

  • 33857 measured reflections

  • 4144 independent reflections

  • 3534 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.05

  • 4144 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.886 (15) 1.999 (15) 2.8622 (12) 164.4 (14)
O2—H1O2⋯N1ii 0.87 (2) 1.96 (2) 2.7750 (13) 156.9 (19)
C2—H2A⋯O3iii 0.93 2.55 3.1651 (14) 124
C4—H4A⋯N3iv 0.93 2.60 3.4747 (14) 156
C7—H7A⋯O1i 0.93 2.52 3.2405 (14) 135
C16—H16BCg1v 0.96 2.65 3.4556 (12) 142
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activities (e.g. Janin, 2007). As a part of a current work of synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, we present the crystal structure of the title compound, (I), (Fig. 1).

The pyridine ring (N1/C1–C5) in (I) forms dihedral angle of 7.66 (5)° with the benzene ring (C10–C15), indicating that they are almost co-planar to each other. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Naveenkumar et al., 2009a,b,c; Shi, 2005).

The crystal packing is consolidated by intermolecular C2—H2A···O3 and O2—H1O2···N1 interactions (Fig. 2) which link the independent molecules into zig-zag chains along the [0 1 0] direction. The crystal structure is further linked via N2—H1N2···O1, C4—H4A···N3 and C7—H7A···O1 interactions, into three-dimensional network. The structure is also stabilized by C—H···π interactions (Table 1).

Related literature top

For the synthesis, see: Lourenco et al. (2008). For the tuberculostatic activities of isoniazid derivatives, see: Janin (2007). For related structures, see: Naveenkumar et al. (2009a,b,c); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid derivative was prepared following the procedure by Lourenco et al. (2008). (E)-N'-[(E)-3-(4-hydroxy-3-methoxyphenyl) allylidene]isonicotinohydrazide was prepared by reaction between the 4-hydroxy-3-methoxy cinnamaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. Yellow needles of (I) were obtained by recrystallization from methanol.

Refinement top

Atoms H1N2 and H1O2 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. H atoms not involving in hydrogen bonds (dashed lines) have been omitted for clarity.
(E)-N'-[(E)-3-(4-Hydroxy-3- methoxyphenyl)allylidene]isonicotinohydrazide top
Crystal data top
C16H15N3O3F(000) = 624
Mr = 297.31Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9970 reflections
a = 5.0470 (1) Åθ = 2.2–30.1°
b = 28.9314 (6) ŵ = 0.10 mm1
c = 9.6446 (2) ÅT = 100 K
β = 90.010 (1)°Needle, yellow
V = 1408.27 (5) Å30.53 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4144 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.950, Tmax = 0.992k = 4040
33857 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.5887P]
where P = (Fo2 + 2Fc2)/3
4144 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H15N3O3V = 1408.27 (5) Å3
Mr = 297.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0470 (1) ŵ = 0.10 mm1
b = 28.9314 (6) ÅT = 100 K
c = 9.6446 (2) Å0.53 × 0.20 × 0.08 mm
β = 90.010 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4144 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3534 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.992Rint = 0.030
33857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
4144 reflectionsΔρmin = 0.22 e Å3
208 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.08233 (15)0.46282 (3)0.88942 (9)0.01916 (18)
O20.21767 (17)0.74390 (3)0.22611 (9)0.01855 (18)
O30.60188 (15)0.73516 (3)0.41721 (8)0.01721 (17)
N10.7016 (2)0.32923 (3)1.14947 (11)0.0203 (2)
N20.64104 (19)0.47193 (3)0.84655 (10)0.01645 (19)
N30.68169 (19)0.51003 (3)0.76213 (10)0.0175 (2)
C10.5730 (2)0.38057 (4)0.96577 (15)0.0242 (3)
H1A0.45550.38730.89430.029*
C20.5420 (2)0.34088 (4)1.04462 (15)0.0260 (3)
H2A0.40200.32121.02330.031*
C30.8987 (3)0.35853 (4)1.17893 (13)0.0235 (3)
H3A1.00930.35151.25310.028*
C40.9479 (2)0.39885 (4)1.10550 (12)0.0213 (2)
H4A1.08870.41801.12940.026*
C50.7823 (2)0.41004 (4)0.99545 (11)0.0149 (2)
C60.8505 (2)0.45104 (4)0.90682 (11)0.0144 (2)
C70.4745 (2)0.52317 (4)0.69452 (12)0.0179 (2)
H7A0.31810.50630.70020.021*
C80.4869 (2)0.56419 (4)0.61002 (12)0.0184 (2)
H8A0.64250.58140.60960.022*
C90.2819 (2)0.57851 (4)0.53159 (12)0.0181 (2)
H9A0.13490.55920.52730.022*
C100.2689 (2)0.62152 (4)0.45276 (11)0.0158 (2)
C110.4478 (2)0.65790 (4)0.47779 (11)0.0158 (2)
H11A0.57620.65460.54630.019*
C120.4357 (2)0.69838 (4)0.40220 (11)0.0141 (2)
C130.2379 (2)0.70419 (4)0.29982 (11)0.0144 (2)
C140.0603 (2)0.66845 (4)0.27564 (12)0.0173 (2)
H14A0.06950.67190.20800.021*
C150.0737 (2)0.62759 (4)0.35120 (12)0.0173 (2)
H15A0.04780.60410.33420.021*
C160.7875 (2)0.73391 (4)0.52991 (12)0.0176 (2)
H16A0.90590.75980.52290.026*
H16B0.88730.70570.52590.026*
H16C0.69340.73540.61630.026*
H1N20.476 (3)0.4640 (5)0.8667 (16)0.025 (4)*
H1O20.284 (4)0.7669 (7)0.272 (2)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0127 (4)0.0203 (4)0.0245 (4)0.0018 (3)0.0008 (3)0.0028 (3)
O20.0221 (4)0.0158 (4)0.0178 (4)0.0010 (3)0.0061 (3)0.0024 (3)
O30.0162 (4)0.0151 (4)0.0203 (4)0.0022 (3)0.0061 (3)0.0015 (3)
N10.0241 (5)0.0162 (5)0.0204 (5)0.0010 (4)0.0014 (4)0.0014 (4)
N20.0127 (4)0.0140 (4)0.0226 (5)0.0011 (3)0.0009 (3)0.0045 (4)
N30.0172 (4)0.0131 (4)0.0221 (5)0.0014 (3)0.0008 (3)0.0035 (4)
C10.0188 (5)0.0180 (6)0.0358 (7)0.0030 (4)0.0089 (5)0.0068 (5)
C20.0201 (6)0.0178 (6)0.0400 (7)0.0052 (4)0.0061 (5)0.0068 (5)
C30.0312 (6)0.0218 (6)0.0175 (5)0.0057 (5)0.0059 (4)0.0030 (5)
C40.0249 (6)0.0206 (6)0.0183 (5)0.0066 (4)0.0042 (4)0.0012 (4)
C50.0139 (5)0.0130 (5)0.0178 (5)0.0010 (4)0.0029 (4)0.0013 (4)
C60.0139 (5)0.0128 (5)0.0163 (5)0.0004 (4)0.0009 (4)0.0009 (4)
C70.0162 (5)0.0154 (5)0.0220 (5)0.0018 (4)0.0009 (4)0.0018 (4)
C80.0169 (5)0.0154 (5)0.0228 (6)0.0009 (4)0.0011 (4)0.0025 (4)
C90.0170 (5)0.0153 (5)0.0221 (6)0.0014 (4)0.0006 (4)0.0018 (4)
C100.0154 (5)0.0155 (5)0.0166 (5)0.0012 (4)0.0008 (4)0.0006 (4)
C110.0136 (5)0.0168 (5)0.0171 (5)0.0015 (4)0.0021 (4)0.0010 (4)
C120.0124 (4)0.0149 (5)0.0149 (5)0.0004 (4)0.0003 (3)0.0018 (4)
C130.0157 (5)0.0152 (5)0.0122 (5)0.0018 (4)0.0003 (3)0.0003 (4)
C140.0178 (5)0.0186 (5)0.0155 (5)0.0005 (4)0.0042 (4)0.0015 (4)
C150.0166 (5)0.0164 (5)0.0190 (5)0.0018 (4)0.0013 (4)0.0022 (4)
C160.0154 (5)0.0197 (5)0.0178 (5)0.0003 (4)0.0045 (4)0.0015 (4)
Geometric parameters (Å, º) top
O1—C61.2301 (13)C5—C61.5021 (15)
O2—C131.3550 (13)C7—C81.4410 (16)
O2—H1O20.87 (2)C7—H7A0.9300
O3—C121.3626 (13)C8—C91.3470 (16)
O3—C161.4352 (13)C8—H8A0.9300
N1—C21.3360 (16)C9—C101.4598 (15)
N1—C31.3373 (16)C9—H9A0.9300
N2—C61.3494 (14)C10—C151.4000 (15)
N2—N31.3856 (13)C10—C111.4075 (15)
N2—H1N20.884 (17)C11—C121.3808 (15)
N3—C71.2895 (15)C11—H11A0.9300
C1—C21.3862 (17)C12—C131.4142 (15)
C1—C51.3875 (16)C13—C141.3881 (15)
C1—H1A0.9300C14—C151.3904 (16)
C2—H2A0.9300C14—H14A0.9300
C3—C41.3871 (17)C15—H15A0.9300
C3—H3A0.9300C16—H16A0.9600
C4—C51.3889 (16)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C13—O2—H1O2110.8 (13)C9—C8—H8A118.7
C12—O3—C16117.55 (9)C7—C8—H8A118.7
C2—N1—C3116.70 (10)C8—C9—C10126.10 (10)
C6—N2—N3119.56 (9)C8—C9—H9A117.0
C6—N2—H1N2121.8 (10)C10—C9—H9A117.0
N3—N2—H1N2118.3 (10)C15—C10—C11118.52 (10)
C7—N3—N2114.31 (9)C15—C10—C9120.18 (10)
C2—C1—C5118.81 (11)C11—C10—C9121.29 (10)
C2—C1—H1A120.6C12—C11—C10121.02 (10)
C5—C1—H1A120.6C12—C11—H11A119.5
N1—C2—C1123.79 (11)C10—C11—H11A119.5
N1—C2—H2A118.1O3—C12—C11125.39 (10)
C1—C2—H2A118.1O3—C12—C13114.57 (9)
N1—C3—C4123.91 (11)C11—C12—C13120.04 (10)
N1—C3—H3A118.0O2—C13—C14119.67 (10)
C4—C3—H3A118.0O2—C13—C12121.34 (10)
C3—C4—C5118.58 (11)C14—C13—C12118.99 (10)
C3—C4—H4A120.7C13—C14—C15120.91 (10)
C5—C4—H4A120.7C13—C14—H14A119.5
C1—C5—C4118.19 (11)C15—C14—H14A119.5
C1—C5—C6122.84 (10)C14—C15—C10120.51 (10)
C4—C5—C6118.76 (10)C14—C15—H15A119.7
O1—C6—N2124.21 (10)C10—C15—H15A119.7
O1—C6—C5120.96 (10)O3—C16—H16A109.5
N2—C6—C5114.79 (9)O3—C16—H16B109.5
N3—C7—C8119.57 (10)H16A—C16—H16B109.5
N3—C7—H7A120.2O3—C16—H16C109.5
C8—C7—H7A120.2H16A—C16—H16C109.5
C9—C8—C7122.51 (10)H16B—C16—H16C109.5
C6—N2—N3—C7170.58 (10)C8—C9—C10—C15165.29 (12)
C3—N1—C2—C11.0 (2)C8—C9—C10—C1115.62 (18)
C5—C1—C2—N10.6 (2)C15—C10—C11—C121.36 (16)
C2—N1—C3—C41.61 (19)C9—C10—C11—C12179.53 (10)
N1—C3—C4—C50.7 (2)C16—O3—C12—C116.79 (15)
C2—C1—C5—C41.55 (18)C16—O3—C12—C13172.87 (9)
C2—C1—C5—C6173.17 (11)C10—C11—C12—O3178.97 (10)
C3—C4—C5—C10.97 (18)C10—C11—C12—C131.38 (16)
C3—C4—C5—C6173.96 (11)O3—C12—C13—O21.11 (15)
N3—N2—C6—O11.93 (17)C11—C12—C13—O2178.58 (10)
N3—N2—C6—C5179.76 (9)O3—C12—C13—C14179.36 (10)
C1—C5—C6—O1144.63 (12)C11—C12—C13—C140.95 (16)
C4—C5—C6—O130.05 (16)O2—C13—C14—C15179.00 (10)
C1—C5—C6—N233.28 (15)C12—C13—C14—C150.54 (16)
C4—C5—C6—N2152.04 (11)C13—C14—C15—C100.54 (17)
N2—N3—C7—C8176.04 (10)C11—C10—C15—C140.93 (16)
N3—C7—C8—C9176.67 (11)C9—C10—C15—C14179.95 (10)
C7—C8—C9—C10174.30 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.886 (15)1.999 (15)2.8622 (12)164.4 (14)
O2—H1O2···N1ii0.87 (2)1.96 (2)2.7750 (13)156.9 (19)
C2—H2A···O3iii0.932.553.1651 (14)124
C4—H4A···N3iv0.932.603.4747 (14)156
C7—H7A···O1i0.932.523.2405 (14)135
C16—H16B···Cg1v0.962.653.4556 (12)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15N3O3
Mr297.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.0470 (1), 28.9314 (6), 9.6446 (2)
β (°) 90.010 (1)
V3)1408.27 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
33857, 4144, 3534
Rint0.030
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.05
No. of reflections4144
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.886 (15)1.999 (15)2.8622 (12)164.4 (14)
O2—H1O2···N1ii0.87 (2)1.96 (2)2.7750 (13)156.9 (19)
C2—H2A···O3iii0.932.553.1651 (14)124
C4—H4A···N3iv0.932.603.4747 (14)156
C7—H7A···O1i0.932.523.2405 (14)135
C16—H16B···Cg1v0.962.653.4556 (12)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815005). HKF and CKQ thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). HSNK and CKQ are grateful financial assistance through a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Goh, J. H. & Fun, H.-K. (2009a). Acta Cryst. E65, o2235–o2236.  Web of Science CSD CrossRef IUCr Journals
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009b). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef IUCr Journals
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2009c). Acta Cryst. E65, o1912.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds