supplementary materials


bg2341 scheme

Acta Cryst. (2010). E66, o1094    [ doi:10.1107/S1600536810013668 ]

3-(4-Chlorophenyl)-5-phenyl-1,2,4-triazolo[3,4-a]isoquinoline

F. N. Khan, P. Manivel, K. Prabakaran, V. R. Hathwar and M. Akkurt

Abstract top

In the title molecule, C22H14ClN3, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.033 (2) Å and a maximum departure from the mean plane of 0.062 (1) Å for the triazole ring C atom, bonded to the benzene ring. The benzene and phenyl rings are twisted by 57.02 (6) and 62.16 (6)°, respectively, to the mean plane of the triazoloisoquinoline ring system. The molecule is stabilized by a weak intramolecular [pi]-[pi] interaction [centroid-centroid distance = 3.7089 (10) Å] between the benzene and phenyl rings. In the crystal structure, weak intermolecular C-H...N hydrogen bonds and C-H...[pi] interactions link the molecules.

Comment top

As part of our search for new isoquinoline analogues, we focused on the synthesis of the titled compound, which crystal structure is reported.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is approximately planar, with an r.m.s. deviation of 0.033 (2) Å and a maximum departure from the mean plane of -0.062 (1) Å for the triazole ring C16 atom, bonded to the benzene ring (C17–C22). The benzene (C17–C22) and phenyl (C10–C15) rings are twisted by 57.02 (6) and 62.16 (6) ° with respect to the mean plane of the triazoloisoquinoline ring system. The dihedral angle betwen the benzene (C17–C22) and phenyl (C10–C15) rings is 22.21 (8)° .

The molecule is stabilized by a weak intramolecular π-π interaction [Cg4···Cg5(x, y, z) = 3.7089 (10) Å; Cg4 and Cg5 are the centroids of the rings C10–C15 and C17–C22, respectively]. In the crystal structure, weak intermolecular C—H···N hydrogen bonds and C—H···π interactions (Table 1, Fig. 2) link the molecules to each other.

Related literature top

For the synthesis and antihelmintic activity of triazolo compounds similar to the title compound, see: Nadkarni et al. (2001); Hui et al. (1999). For related structures, see: Khan et al. (2010); Zou et al. (2004).

Experimental top

2-(3-Phenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with, 4-chlorobenzaldehyde (1.1 mmol) under refluxing conditions in isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of the solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement top

H atoms were placed at calculated positions with C–H = 0.93 Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A generel view of the packing diagram and the hydrogen bonding of (I). H atoms not involved in the motif shown have been omitted for clarity.
3-(4-Chlorophenyl)-5-phenyl-1,2,4-triazolo[3,4-a]isoquinoline top
Crystal data top
C22H14ClN3F(000) = 736
Mr = 355.81Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 953 reflections
a = 7.9841 (3) Åθ = 1.7–20.4°
b = 9.0679 (4) ŵ = 0.23 mm1
c = 23.9881 (11) ÅT = 290 K
β = 93.078 (4)°Block, colourless
V = 1734.20 (13) Å30.40 × 0.32 × 0.25 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3216 independent reflections
Radiation source: Enhance (Mo) X-ray Source2090 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.902, Tmax = 0.945k = 1010
19413 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
3216 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H14ClN3V = 1734.20 (13) Å3
Mr = 355.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9841 (3) ŵ = 0.23 mm1
b = 9.0679 (4) ÅT = 290 K
c = 23.9881 (11) Å0.40 × 0.32 × 0.25 mm
β = 93.078 (4)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3216 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2090 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.945Rint = 0.042
19413 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.11 e Å3
S = 0.97Δρmin = 0.20 e Å3
3216 reflectionsAbsolute structure: ?
235 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31231 (8)0.36657 (7)0.47872 (2)0.0881 (2)
N10.59862 (15)0.38872 (12)0.21077 (5)0.0397 (3)
C90.76959 (18)0.38731 (15)0.23083 (7)0.0420 (4)
C70.84736 (19)0.37494 (16)0.13340 (7)0.0438 (4)
C80.8862 (2)0.37965 (16)0.19258 (7)0.0465 (4)
H80.99840.37730.20510.056*
C20.67799 (19)0.38170 (16)0.11339 (7)0.0428 (4)
C10.55381 (19)0.39096 (16)0.15404 (7)0.0421 (4)
C100.81034 (19)0.39579 (17)0.29162 (7)0.0434 (4)
C170.41623 (19)0.38678 (16)0.29626 (7)0.0438 (4)
C160.44668 (19)0.39497 (16)0.23649 (7)0.0435 (4)
N20.38951 (16)0.40120 (14)0.14584 (6)0.0515 (4)
N30.32375 (16)0.40415 (15)0.19789 (6)0.0514 (4)
C60.9712 (2)0.36397 (18)0.09438 (8)0.0555 (5)
H61.08370.36160.10660.067*
C200.3518 (2)0.3739 (2)0.40853 (7)0.0543 (5)
C180.4740 (2)0.26909 (18)0.32926 (7)0.0484 (4)
H180.53490.19400.31330.058*
C30.6365 (2)0.37670 (19)0.05624 (8)0.0577 (5)
H30.52480.38230.04320.069*
C190.4425 (2)0.26216 (19)0.38509 (7)0.0536 (5)
H190.48190.18320.40680.064*
C210.2899 (2)0.4902 (2)0.37646 (8)0.0608 (5)
H210.22710.56400.39230.073*
C50.9281 (2)0.3568 (2)0.03855 (8)0.0668 (5)
H51.01150.34730.01320.080*
C110.7686 (2)0.51875 (18)0.32226 (7)0.0519 (4)
H110.71760.59910.30420.062*
C220.3224 (2)0.49554 (19)0.32059 (8)0.0541 (5)
H220.28060.57350.29890.065*
C150.8920 (2)0.27925 (19)0.31932 (7)0.0552 (5)
H150.92450.19710.29930.066*
C120.8017 (2)0.5234 (2)0.37932 (8)0.0627 (5)
H120.77190.60620.39940.075*
C40.7606 (3)0.3635 (2)0.01925 (8)0.0705 (6)
H40.73290.35910.01890.085*
C140.9250 (2)0.2852 (2)0.37642 (8)0.0679 (6)
H140.97910.20670.39470.081*
C130.8784 (3)0.4062 (2)0.40646 (8)0.0692 (6)
H130.89880.40860.44500.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0944 (4)0.1095 (5)0.0616 (4)0.0059 (3)0.0163 (3)0.0034 (3)
N10.0311 (7)0.0376 (8)0.0498 (8)0.0006 (5)0.0026 (6)0.0017 (6)
C90.0333 (8)0.0365 (9)0.0552 (11)0.0003 (7)0.0060 (8)0.0025 (7)
C70.0389 (9)0.0396 (10)0.0527 (11)0.0010 (7)0.0007 (8)0.0034 (8)
C80.0324 (8)0.0480 (10)0.0579 (11)0.0006 (7)0.0081 (8)0.0035 (8)
C20.0394 (9)0.0379 (10)0.0506 (11)0.0012 (7)0.0031 (8)0.0051 (8)
C10.0369 (9)0.0377 (10)0.0507 (11)0.0006 (7)0.0077 (8)0.0028 (7)
C100.0359 (8)0.0429 (10)0.0505 (10)0.0047 (7)0.0054 (7)0.0001 (8)
C170.0349 (8)0.0376 (10)0.0590 (11)0.0045 (7)0.0047 (8)0.0024 (8)
C160.0346 (8)0.0368 (10)0.0589 (11)0.0023 (7)0.0011 (8)0.0003 (8)
N20.0355 (8)0.0589 (10)0.0593 (10)0.0008 (6)0.0046 (7)0.0029 (7)
N30.0361 (7)0.0562 (9)0.0614 (10)0.0033 (6)0.0009 (7)0.0018 (7)
C60.0410 (9)0.0599 (12)0.0654 (13)0.0036 (8)0.0017 (9)0.0061 (9)
C200.0513 (10)0.0557 (12)0.0565 (12)0.0062 (9)0.0074 (9)0.0003 (9)
C180.0453 (10)0.0369 (10)0.0634 (12)0.0004 (7)0.0058 (8)0.0005 (9)
C30.0483 (10)0.0688 (13)0.0549 (12)0.0052 (9)0.0065 (9)0.0086 (9)
C190.0523 (11)0.0455 (11)0.0629 (12)0.0016 (8)0.0012 (9)0.0083 (9)
C210.0576 (11)0.0516 (12)0.0750 (14)0.0062 (9)0.0187 (10)0.0001 (10)
C50.0571 (12)0.0837 (14)0.0604 (13)0.0074 (10)0.0111 (10)0.0074 (11)
C110.0538 (11)0.0430 (10)0.0582 (12)0.0032 (8)0.0030 (9)0.0006 (9)
C220.0489 (10)0.0447 (11)0.0695 (13)0.0059 (8)0.0103 (9)0.0087 (9)
C150.0503 (11)0.0506 (11)0.0636 (12)0.0043 (8)0.0075 (9)0.0006 (9)
C120.0687 (12)0.0608 (13)0.0586 (13)0.0125 (10)0.0018 (10)0.0137 (10)
C40.0704 (14)0.0933 (16)0.0473 (11)0.0114 (11)0.0019 (10)0.0106 (10)
C140.0628 (12)0.0744 (14)0.0644 (14)0.0050 (11)0.0154 (10)0.0145 (11)
C130.0693 (13)0.0853 (17)0.0517 (12)0.0141 (12)0.0087 (10)0.0011 (12)
Geometric parameters (Å, °) top
Cl1—C201.7307 (18)C20—C211.381 (2)
N1—C11.3886 (19)C20—C191.383 (2)
N1—C161.3913 (19)C18—C191.377 (2)
N1—C91.4228 (18)C18—H180.9300
C9—C81.343 (2)C3—C41.371 (3)
C9—C101.479 (2)C3—H30.9300
C7—C61.401 (2)C19—H190.9300
C7—C21.412 (2)C21—C221.380 (2)
C7—C81.437 (2)C21—H210.9300
C8—H80.9300C5—C41.393 (3)
C2—C31.394 (2)C5—H50.9300
C2—C11.430 (2)C11—C121.381 (2)
C1—N21.3193 (19)C11—H110.9300
C10—C111.386 (2)C22—H220.9300
C10—C151.392 (2)C15—C141.382 (2)
C17—C221.386 (2)C15—H150.9300
C17—C181.393 (2)C12—C131.374 (3)
C17—C161.469 (2)C12—H120.9300
C16—N31.315 (2)C4—H40.9300
N2—N31.3804 (19)C14—C131.375 (3)
C6—C51.366 (2)C14—H140.9300
C6—H60.9300C13—H130.9300
C1—N1—C16104.42 (12)C19—C18—H18119.5
C1—N1—C9121.57 (13)C17—C18—H18119.5
C16—N1—C9133.95 (14)C4—C3—C2119.83 (17)
C8—C9—N1117.18 (14)C4—C3—H3120.1
C8—C9—C10123.53 (14)C2—C3—H3120.1
N1—C9—C10119.28 (14)C18—C19—C20119.27 (16)
C6—C7—C2118.25 (15)C18—C19—H19120.4
C6—C7—C8122.66 (15)C20—C19—H19120.4
C2—C7—C8119.09 (15)C22—C21—C20119.20 (17)
C9—C8—C7123.76 (14)C22—C21—H21120.4
C9—C8—H8118.1C20—C21—H21120.4
C7—C8—H8118.1C6—C5—C4120.67 (18)
C3—C2—C7120.39 (16)C6—C5—H5119.7
C3—C2—C1122.38 (14)C4—C5—H5119.7
C7—C2—C1117.21 (14)C12—C11—C10120.77 (16)
N2—C1—N1110.42 (15)C12—C11—H11119.6
N2—C1—C2128.52 (15)C10—C11—H11119.6
N1—C1—C2121.06 (13)C21—C22—C17121.20 (16)
C11—C10—C15118.54 (15)C21—C22—H22119.4
C11—C10—C9121.21 (14)C17—C22—H22119.4
C15—C10—C9120.25 (14)C14—C15—C10120.20 (17)
C22—C17—C18118.43 (16)C14—C15—H15119.9
C22—C17—C16119.77 (15)C10—C15—H15119.9
C18—C17—C16121.76 (15)C13—C12—C11120.20 (18)
N3—C16—N1109.02 (14)C13—C12—H12119.9
N3—C16—C17122.28 (14)C11—C12—H12119.9
N1—C16—C17128.65 (14)C3—C4—C5120.23 (18)
C1—N2—N3106.85 (13)C3—C4—H4119.9
C16—N3—N2109.26 (13)C5—C4—H4119.9
C5—C6—C7120.60 (16)C13—C14—C15120.54 (17)
C5—C6—H6119.7C13—C14—H14119.7
C7—C6—H6119.7C15—C14—H14119.7
C21—C20—C19120.84 (17)C12—C13—C14119.70 (18)
C21—C20—Cl1119.56 (15)C12—C13—H13120.2
C19—C20—Cl1119.60 (14)C14—C13—H13120.2
C19—C18—C17121.02 (16)
C1—N1—C9—C83.74 (19)C18—C17—C16—N155.3 (2)
C16—N1—C9—C8179.68 (14)N1—C1—N2—N30.67 (16)
C1—N1—C9—C10175.62 (12)C2—C1—N2—N3178.84 (14)
C16—N1—C9—C101.0 (2)N1—C16—N3—N21.22 (16)
N1—C9—C8—C70.9 (2)C17—C16—N3—N2176.41 (12)
C10—C9—C8—C7178.46 (13)C1—N2—N3—C160.35 (16)
C6—C7—C8—C9178.68 (15)C2—C7—C6—C51.4 (2)
C2—C7—C8—C91.4 (2)C8—C7—C6—C5178.64 (15)
C6—C7—C2—C30.3 (2)C22—C17—C18—C191.5 (2)
C8—C7—C2—C3179.71 (13)C16—C17—C18—C19179.15 (14)
C6—C7—C2—C1179.22 (14)C7—C2—C3—C40.7 (2)
C8—C7—C2—C10.8 (2)C1—C2—C3—C4178.11 (16)
C16—N1—C1—N21.37 (15)C17—C18—C19—C200.1 (2)
C9—N1—C1—N2176.09 (12)C21—C20—C19—C181.3 (3)
C16—N1—C1—C2178.19 (13)Cl1—C20—C19—C18179.73 (12)
C9—N1—C1—C24.4 (2)C19—C20—C21—C221.3 (3)
C3—C2—C1—N22.6 (2)Cl1—C20—C21—C22179.77 (13)
C7—C2—C1—N2178.59 (14)C7—C6—C5—C41.5 (3)
C3—C2—C1—N1176.91 (13)C15—C10—C11—C122.3 (2)
C7—C2—C1—N11.9 (2)C9—C10—C11—C12177.63 (15)
C8—C9—C10—C11116.02 (18)C20—C21—C22—C170.2 (3)
N1—C9—C10—C1163.30 (19)C18—C17—C22—C211.6 (2)
C8—C9—C10—C1564.0 (2)C16—C17—C22—C21179.24 (15)
N1—C9—C10—C15116.67 (16)C11—C10—C15—C142.2 (2)
C1—N1—C16—N31.56 (15)C9—C10—C15—C14177.82 (15)
C9—N1—C16—N3175.42 (14)C10—C11—C12—C130.7 (3)
C1—N1—C16—C17175.88 (14)C2—C3—C4—C50.7 (3)
C9—N1—C16—C177.1 (2)C6—C5—C4—C30.4 (3)
C22—C17—C16—N355.7 (2)C10—C15—C14—C130.3 (3)
C18—C17—C16—N3121.87 (17)C11—C12—C13—C141.2 (3)
C22—C17—C16—N1127.15 (17)C15—C14—C13—C121.4 (3)
Hydrogen-bond geometry (Å, °) top
Cg1, Cg2 and Cg3 are the centroids of the N1–N3/C1/C16, N1/C1/C2/C7–C9 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.593.514 (2)170
C8—H8···N3i0.932.623.496 (2)156
C18—H18···Cg1ii0.932.703.4524 (17)138
C21—H21···Cg3iii0.932.893.7139 (19)149
C22—H22···Cg2iii0.932.903.5442 (18)128
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1, Cg2 and Cg3 are the centroids of the N1–N3/C1/C16, N1/C1/C2/C7–C9 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.593.514 (2)170
C8—H8···N3i0.932.623.496 (2)156
C18—H18···Cg1ii0.932.703.4524 (17)138
C21—H21···Cg3iii0.932.893.7139 (19)149
C22—H22···Cg2iii0.932.903.5442 (18)128
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2.
Acknowledgements top

We thank the FIST program for the data collection at SSCU, IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

references
References top

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Hui, X. P., Zhang, L. M. & Zhang, Z. Y. (1999). Indian J. Chem. Sect. B, 38, 1066–1069.

Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.

Nadkarni, B. A., Kamat, V. R. & Khadse, B. G. (2001). Arzneim. Forsch. 51, 569–573.

Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zou, K.-H., Cai, X.-Q., Chen, J.-X., Zhang, L.-X., Zhang, A.-J. & Hu, M.-L. (2004). Acta Cryst. E60, o1736–o1738.