organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3β-Acet­­oxy-8β,10β-dihy­dr­oxy-6β-meth­­oxy­eremophil-7(11)-en-8,12-olide

aCollege of Life and Environment Science, Minzu University of China, Beijing 100081, People's Republic of China
*Correspondence e-mail: wangwshu@gmail.com

(Received 5 July 2010; accepted 27 July 2010; online 31 July 2010)

The title compound, C18H26O7, is an eremophilenolide which has been isolated from the plant Ligularia duciformis for the first time. The present study confirms the atomic connectivity assigned on the basis of 1H and 13C NMR spectroscopy. The mol­ecule contains three fused rings, two six-membered rings in chair confomations and a five-membered ring in a flattened envelope conformation. Two hy­droxy groups are involved in formation of intra- and inter­molecular O—H⋯O hydrogen bonds. The latter ones link mol­ecules into chains propagating in [010].

Related literature

For related compounds extracted from Ligularia duciformis and Cacalia roborowski, see Wang et al. (2008[Wang, W. S., Dai, X., Hong, L. Y., Lu, P., Feng, J. C. & Jiao, Y. G. (2008). Helv. Chim. Acta, 91, 1118-1123.]) and Zhang et al. (1998[Zhang, S. M., Zhao, G. L., Li, R. & Lin, G. Q. (1998). Phytochemistry, 48, 519-524.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C18H26O7

  • Mr = 354.39

  • Orthorhombic, P 21 21 21

  • a = 7.3036 (15) Å

  • b = 9.789 (2) Å

  • c = 25.553 (5) Å

  • V = 1826.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.50 × 0.50 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.952, Tmax = 0.980

  • 12058 measured reflections

  • 1885 independent reflections

  • 1203 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 0.89

  • 1885 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.82 2.19 2.879 (4) 142
O3—H3A⋯O2i 0.82 2.06 2.755 (4) 143
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). Crystal Structure. Rigaku/MSC, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ligularia duciformis(C. Winkl.) Hand.-Mazz. grows in the western area of mainland China. It is used in traditional Chinese medicine having effects on dispelling phlegm and relieving cough activities. As a part of our research on biological resource by ethnic minorities in China, the title compound was isolated. Its structure was identified by NMR spectra data and compared with the previous reports (Zhang et al., 1998; Wang et al., 2008). Herewith we present its crystal structure.

The molecule of the title compound contains a three-ring system A/B/C(Fig.1). There is a cis junction between the rings A(C9–C5/C10) and B (C5–C3/C12–C10), while the methoxy group at C4 site and the hydroxyl group at C12 site are in the same orientation with two methyl groups at C6 and C5 sites. Rings A and B are both in chair conformations. The furan ring C (C12–C3/C2–C1/O1), of course, is in envelope-like conformations. Two hydroxy groups are involved in formation of intra- and intermolecular O—H···O hydrogen bonds (Table 1). The latter ones link molecules into chains propagated in direction [010].

Related literature top

For related compounds extracted from Ligularia duciformis and Cacalia roborowski, see Wang et al. (2008) and Zhang et al. (1998), respectively.

Experimental top

The air-dried whole plant of Ligularia duciformis (1.5 kg) were pulverized and extracted three times with MeOH (each for 7 days) at room temperature. The extract was concentrated to give a residue (110 g), which was further separated by CC (SiO2, 200–300mesh, petroleum ether/EtOAc (30:1, 20:1, 15:1, 10:1, 8:1, 5:1, 3:1, 2:1, 1:1, 1:1.5 (v/v)) to yield 10 fractions: Fr. 1–10. Each fraction was examined by TLC and combined to afford many subfractions. Fr.8a (1.4 g) was subjected to CC (SiO2, 200–300mesh, petroleum ether/ EtOAc 8:1, 5:1 (v/v)) to provide the title compound (80 mg). 1H and 13C NMR spectral data of this compounds was recorded on Bruker-AV-500 s pectrometer, using CDCl3 as solvent and Me4Si as internal standard. The stereochemistry can be observed by X-ray diffraction experiment.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.98-1.00 Å and O—H = 0.82 Å, and refined as riding with Uiso(H) = 1.2-1.5Ueq(C,O). In the absence of any significant anomalous scatterers in the molecule, the absolute configuration has been arbitrarily assigned.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
3β-Acetoxy-8β,10β-dihydroxy-6β-methoxyeremophil-7(11)-en-8,12-olide top
Crystal data top
C18H26O7F(000) = 760
Mr = 354.39Dx = 1.288 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12058 reflections
a = 7.3036 (15) Åθ = 2.2–25.0°
b = 9.789 (2) ŵ = 0.10 mm1
c = 25.553 (5) ÅT = 293 K
V = 1826.9 (6) Å3Block, colourless
Z = 40.50 × 0.50 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1885 independent reflections
Radiation source: fine-focus sealed tube1203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 08
Tmin = 0.952, Tmax = 0.980k = 011
12058 measured reflectionsl = 030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0856P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
1885 reflectionsΔρmax = 0.29 e Å3
227 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.130 (8)
Crystal data top
C18H26O7V = 1826.9 (6) Å3
Mr = 354.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3036 (15) ŵ = 0.10 mm1
b = 9.789 (2) ÅT = 293 K
c = 25.553 (5) Å0.50 × 0.50 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1885 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1203 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.980Rint = 0.061
12058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.89Δρmax = 0.29 e Å3
1885 reflectionsΔρmin = 0.36 e Å3
227 parameters
Special details top

Experimental. Since the two skeleton methyl group in eremophilenolides are biogenic b position, we draw the relative stereochemistry of the title eremophilenolide, by reference to the structures of related eremophilenolides in Wang at al. (2008) and Zhang, et al. (1998) although the absolute configuration could not be reliably determined from anomalous dispersion effects. Furthermore, the relative stereochemistry in the title compound was confirmed by NMR data. 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 177.0(C17), 170.2(C1), 152.9(C3), 129.7(C2), 103.4(C12), 79.8(C4), 74.7(C10), 71.4(C7), 57.9(C16), 47.4(C5), 44.3(C11), 36.5(C6), 30.0(C8), 27.5(C9), 21.3(C18), 12.8(C14), 12.5(C15), 8.8(C13).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1967 (4)0.0086 (3)0.16487 (12)0.0560 (9)
O20.1302 (4)0.1257 (3)0.23691 (10)0.0499 (8)
H2A0.10810.20510.24500.075*
O30.0053 (4)0.3976 (2)0.21312 (9)0.0431 (7)
H3A0.02920.47730.21390.065*
O40.2582 (4)0.2059 (3)0.23680 (10)0.0500 (8)
O50.3015 (4)0.4876 (3)0.05334 (11)0.0554 (9)
O60.1385 (6)0.2075 (3)0.12421 (14)0.0870 (13)
O70.4013 (7)0.4379 (4)0.02711 (15)0.0977 (14)
C10.0818 (8)0.1056 (4)0.14538 (19)0.0605 (14)
C20.1101 (7)0.0616 (4)0.15266 (18)0.0525 (12)
C30.1075 (6)0.0623 (4)0.17441 (15)0.0377 (10)
C40.2533 (6)0.1666 (4)0.18310 (14)0.0385 (9)
H4A0.37480.12780.17280.046*
C50.2130 (5)0.2971 (4)0.14977 (15)0.0331 (9)
C60.2322 (6)0.2612 (4)0.09058 (14)0.0400 (10)
H6A0.14750.18250.08440.048*
C70.1687 (6)0.3740 (4)0.05353 (15)0.0463 (11)
H7A0.16300.33510.01740.056*
C80.0162 (6)0.4317 (5)0.06655 (15)0.0482 (11)
H8A0.11150.36450.05670.058*
H8B0.03650.51530.04560.058*
C90.0369 (6)0.4666 (3)0.12460 (15)0.0408 (10)
H9A0.04310.54510.13310.049*
H9B0.16500.49420.13150.049*
C100.0124 (5)0.3469 (3)0.16006 (14)0.0322 (9)
C110.1312 (6)0.2326 (3)0.15316 (15)0.0374 (9)
H11A0.25250.26760.16410.045*
H11B0.13920.20830.11560.045*
C120.0877 (6)0.1053 (4)0.18429 (16)0.0409 (10)
C130.2662 (9)0.1493 (5)0.1353 (2)0.0872 (19)
H13A0.38210.10350.14340.131*
H13B0.25780.16480.09750.131*
H13C0.26110.23710.15370.131*
C140.4250 (6)0.2095 (5)0.07529 (16)0.0563 (12)
H14A0.42780.18880.03780.084*
H14B0.45360.12660.09520.084*
H14C0.51590.28020.08320.084*
C150.3518 (6)0.4075 (4)0.16654 (16)0.0459 (11)
H15A0.47650.37480.15990.069*
H15B0.33720.42670.20400.069*
H15C0.32990.49120.14650.069*
C160.3729 (6)0.1197 (5)0.26786 (17)0.0645 (13)
H16A0.37100.15130.30430.097*
H16B0.49850.12330.25450.097*
H16C0.32770.02560.26620.097*
C170.4023 (8)0.5098 (6)0.0103 (2)0.0668 (14)
C180.5228 (10)0.6339 (6)0.0173 (2)0.099 (2)
H18A0.59560.64830.01450.149*
H18B0.60480.61960.04710.149*
H18C0.44620.71440.02370.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.058 (2)0.0380 (14)0.072 (2)0.0132 (17)0.0068 (17)0.0012 (15)
O20.0555 (19)0.0408 (14)0.0533 (17)0.0006 (15)0.0123 (15)0.0028 (14)
O30.0529 (17)0.0325 (13)0.0438 (14)0.0023 (15)0.0055 (15)0.0100 (12)
O40.0542 (19)0.0575 (16)0.0385 (15)0.0164 (17)0.0133 (15)0.0020 (14)
O50.065 (2)0.0504 (16)0.0505 (17)0.0109 (17)0.0103 (16)0.0007 (14)
O60.123 (3)0.0371 (17)0.101 (3)0.020 (2)0.010 (3)0.0107 (18)
O70.136 (4)0.086 (3)0.071 (2)0.007 (3)0.051 (3)0.005 (2)
C10.084 (4)0.027 (2)0.070 (3)0.005 (3)0.001 (3)0.003 (2)
C20.072 (3)0.029 (2)0.057 (3)0.010 (2)0.003 (3)0.006 (2)
C30.044 (2)0.029 (2)0.040 (2)0.011 (2)0.003 (2)0.0035 (17)
C40.040 (2)0.038 (2)0.037 (2)0.011 (2)0.009 (2)0.0018 (17)
C50.030 (2)0.0316 (17)0.038 (2)0.0008 (17)0.0052 (19)0.0009 (17)
C60.041 (2)0.039 (2)0.040 (2)0.000 (2)0.001 (2)0.0067 (17)
C70.051 (3)0.050 (2)0.038 (2)0.001 (2)0.003 (2)0.0031 (19)
C80.049 (3)0.054 (2)0.042 (2)0.004 (2)0.003 (2)0.015 (2)
C90.043 (2)0.031 (2)0.049 (2)0.0072 (18)0.000 (2)0.0053 (17)
C100.036 (2)0.0272 (18)0.0331 (19)0.0036 (18)0.0028 (19)0.0041 (16)
C110.033 (2)0.0353 (19)0.044 (2)0.0033 (19)0.001 (2)0.0067 (18)
C120.044 (2)0.032 (2)0.046 (2)0.004 (2)0.002 (2)0.0001 (18)
C130.100 (5)0.048 (3)0.113 (5)0.029 (3)0.011 (4)0.019 (3)
C140.053 (3)0.063 (3)0.053 (3)0.014 (2)0.007 (2)0.007 (2)
C150.040 (2)0.048 (2)0.050 (2)0.004 (2)0.007 (2)0.010 (2)
C160.049 (3)0.083 (3)0.061 (3)0.007 (3)0.017 (2)0.024 (3)
C170.075 (4)0.068 (3)0.058 (3)0.007 (3)0.021 (3)0.015 (3)
C180.100 (5)0.085 (4)0.113 (5)0.021 (4)0.035 (4)0.019 (4)
Geometric parameters (Å, º) top
O1—C11.361 (6)C8—C91.530 (5)
O1—C121.458 (5)C8—H8A0.9900
O2—C121.394 (5)C8—H8B0.9900
O2—H2A0.8200C9—C101.524 (5)
O3—C101.450 (4)C9—H9A0.9900
O3—H3A0.8200C9—H9B0.9900
O4—C41.425 (4)C10—C111.544 (5)
O4—C161.429 (5)C11—C121.512 (5)
O5—C171.342 (5)C11—H11A0.9900
O5—C71.476 (5)C11—H11B0.9900
O6—C11.208 (5)C13—H13A0.9800
O7—C171.186 (6)C13—H13B0.9800
C1—C21.478 (7)C13—H13C0.9800
C2—C31.334 (5)C14—H14A0.9800
C2—C131.494 (7)C14—H14B0.9800
C3—C41.492 (5)C14—H14C0.9800
C3—C121.508 (6)C15—H15A0.9800
C4—C51.563 (5)C15—H15B0.9800
C4—H4A1.0000C15—H15C0.9800
C5—C151.543 (5)C16—H16A0.9800
C5—C61.559 (5)C16—H16B0.9800
C5—C101.566 (5)C16—H16C0.9800
C6—C71.526 (5)C17—C181.511 (8)
C6—C141.547 (6)C18—H18A0.9800
C6—H6A1.0000C18—H18B0.9800
C7—C81.501 (6)C18—H18C0.9800
C7—H7A1.0000
C1—O1—C12108.7 (3)O3—C10—C11107.1 (3)
C12—O2—H2A109.5C9—C10—C11109.2 (3)
C10—O3—H3A108.8O3—C10—C5110.3 (3)
C4—O4—C16113.0 (3)C9—C10—C5111.1 (3)
C17—O5—C7119.0 (4)C11—C10—C5113.0 (3)
O6—C1—O1121.9 (5)C12—C11—C10113.2 (3)
O6—C1—C2128.5 (5)C12—C11—H11A108.9
O1—C1—C2109.6 (4)C10—C11—H11A108.9
C3—C2—C1107.7 (4)C12—C11—H11B108.9
C3—C2—C13131.0 (5)C10—C11—H11B108.9
C1—C2—C13121.3 (4)H11A—C11—H11B107.7
C2—C3—C4132.4 (4)O2—C12—O1108.4 (3)
C2—C3—C12109.7 (4)O2—C12—C3114.3 (3)
C4—C3—C12117.3 (3)O1—C12—C3104.2 (3)
O4—C4—C3110.2 (3)O2—C12—C11110.0 (3)
O4—C4—C5108.0 (3)O1—C12—C11109.7 (3)
C3—C4—C5110.1 (3)C3—C12—C11109.9 (3)
O4—C4—H4A109.5C2—C13—H13A109.5
C3—C4—H4A109.5C2—C13—H13B109.5
C5—C4—H4A109.5H13A—C13—H13B109.5
C15—C5—C6111.6 (3)C2—C13—H13C109.5
C15—C5—C4107.3 (3)H13A—C13—H13C109.5
C6—C5—C4109.1 (3)H13B—C13—H13C109.5
C15—C5—C10110.5 (3)C6—C14—H14A109.5
C6—C5—C10108.5 (3)C6—C14—H14B109.5
C4—C5—C10109.8 (3)H14A—C14—H14B109.5
C7—C6—C14110.9 (3)C6—C14—H14C109.5
C7—C6—C5114.3 (3)H14A—C14—H14C109.5
C14—C6—C5113.6 (3)H14B—C14—H14C109.5
C7—C6—H6A105.7C5—C15—H15A109.5
C14—C6—H6A105.7C5—C15—H15B109.5
C5—C6—H6A105.7H15A—C15—H15B109.5
O5—C7—C8108.0 (3)C5—C15—H15C109.5
O5—C7—C6110.3 (3)H15A—C15—H15C109.5
C8—C7—C6114.1 (3)H15B—C15—H15C109.5
O5—C7—H7A108.1O4—C16—H16A109.5
C8—C7—H7A108.1O4—C16—H16B109.5
C6—C7—H7A108.1H16A—C16—H16B109.5
C7—C8—C9112.8 (3)O4—C16—H16C109.5
C7—C8—H8A109.0H16A—C16—H16C109.5
C9—C8—H8A109.0H16B—C16—H16C109.5
C7—C8—H8B109.0O7—C17—O5124.1 (5)
C9—C8—H8B109.0O7—C17—C18125.2 (5)
H8A—C8—H8B107.8O5—C17—C18110.6 (5)
C10—C9—C8112.4 (3)C17—C18—H18A109.5
C10—C9—H9A109.1C17—C18—H18B109.5
C8—C9—H9A109.1H18A—C18—H18B109.5
C10—C9—H9B109.1C17—C18—H18C109.5
C8—C9—H9B109.1H18A—C18—H18C109.5
H9A—C9—H9B107.9H18B—C18—H18C109.5
O3—C10—C9105.8 (3)
C12—O1—C1—O6175.9 (4)C5—C6—C7—C848.8 (5)
C12—O1—C1—C21.8 (5)O5—C7—C8—C975.5 (4)
O6—C1—C2—C3175.2 (5)C6—C7—C8—C947.6 (5)
O1—C1—C2—C32.3 (5)C7—C8—C9—C1052.6 (5)
O6—C1—C2—C133.2 (8)C8—C9—C10—O3177.3 (3)
O1—C1—C2—C13179.3 (4)C8—C9—C10—C1167.7 (4)
C1—C2—C3—C4168.7 (4)C8—C9—C10—C557.6 (4)
C13—C2—C3—C49.5 (8)C15—C5—C10—O350.2 (4)
C1—C2—C3—C121.8 (5)C6—C5—C10—O3172.8 (3)
C13—C2—C3—C12179.9 (5)C4—C5—C10—O368.0 (3)
C16—O4—C4—C387.5 (4)C15—C5—C10—C966.8 (4)
C16—O4—C4—C5152.2 (3)C6—C5—C10—C955.8 (4)
C2—C3—C4—O4126.6 (4)C4—C5—C10—C9175.0 (3)
C12—C3—C4—O463.5 (4)C15—C5—C10—C11170.1 (3)
C2—C3—C4—C5114.4 (5)C6—C5—C10—C1167.3 (4)
C12—C3—C4—C555.5 (4)C4—C5—C10—C1151.9 (4)
O4—C4—C5—C1551.6 (4)O3—C10—C11—C1269.5 (4)
C3—C4—C5—C15171.9 (3)C9—C10—C11—C12176.4 (3)
O4—C4—C5—C6172.6 (3)C5—C10—C11—C1252.2 (4)
C3—C4—C5—C667.0 (4)C1—O1—C12—O2122.9 (4)
O4—C4—C5—C1068.6 (4)C1—O1—C12—C30.7 (4)
C3—C4—C5—C1051.8 (4)C1—O1—C12—C11116.9 (4)
C15—C5—C6—C770.3 (4)C2—C3—C12—O2117.5 (4)
C4—C5—C6—C7171.4 (3)C4—C3—C12—O270.4 (4)
C10—C5—C6—C751.7 (4)C2—C3—C12—O10.7 (4)
C15—C5—C6—C1458.4 (4)C4—C3—C12—O1171.4 (3)
C4—C5—C6—C1460.0 (4)C2—C3—C12—C11118.2 (4)
C10—C5—C6—C14179.6 (3)C4—C3—C12—C1153.9 (4)
C17—O5—C7—C8124.0 (4)C10—C11—C12—O276.8 (4)
C17—O5—C7—C6110.8 (4)C10—C11—C12—O1164.0 (3)
C14—C6—C7—O557.0 (4)C10—C11—C12—C350.0 (4)
C5—C6—C7—O573.0 (4)C7—O5—C17—O75.4 (7)
C14—C6—C7—C8178.8 (3)C7—O5—C17—C18177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.822.192.879 (4)142
O3—H3A···O2i0.822.062.755 (4)143
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H26O7
Mr354.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.3036 (15), 9.789 (2), 25.553 (5)
V3)1826.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.50 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.952, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12058, 1885, 1203
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 0.89
No. of reflections1885
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.36

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.822.192.879 (4)142.3
O3—H3A···O2i0.822.062.755 (4)142.8
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The project was supported by the 985 Project (MUC985) Minzu University of China, and the Major Project for Young Teachers in Minzu University of China CUN10A, together with the `Programme of Introducing Talents of Discipline to Universities' (B08044), and the `Project for Scientific and Technical Achievements in Industrialization', Beijing Education Commission.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationRigaku/MSC (2000). Crystal Structure. Rigaku/MSC, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWang, W. S., Dai, X., Hong, L. Y., Lu, P., Feng, J. C. & Jiao, Y. G. (2008). Helv. Chim. Acta, 91, 1118–1123.  Web of Science CrossRef CAS
First citationZhang, S. M., Zhao, G. L., Li, R. & Lin, G. Q. (1998). Phytochemistry, 48, 519–524.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds