organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-formyl-1H-imidazole-1-carboxyl­ate

aThe State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: jwxu@ciac.jl.cn, yangwei1988@ciac.jl.cn

(Received 20 February 2010; accepted 22 July 2010; online 31 July 2010)

In the crystal structure of the title compound, C9H12N2O3, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains. Further weak C—H⋯O hydrogen bonds together with ππ inter­actions [centroid–centroid distance = 3.672 (4) Å] between neighbouring chains lead to a double-chain structure propagating in [100].

Related literature

For uses of imidazole direvatives, see: Matuszak et al. (1976[Matuszak, C. A. & Matuszak, A. J. (1976). J. Chem. Educ. 53, 280-284.]), Verras et al. (2004[Verras, A., Kuntz, I. D. & Ortiz de Montellano, P. R. (2004). J. Med. Chem. 47, 3572-3579.]). For the synthesis of the title compound, see: Metobo et al. (2006[Metobo, S. E., Jin, H. L., Tsiang, M. & Kim, C. U. (2006). Bioorg. Med. Chem. Lett. 16, 3985-3988.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O3

  • Mr = 196.21

  • Triclinic, [P \overline 1]

  • a = 5.972 (3) Å

  • b = 7.173 (7) Å

  • c = 12.164 (11) Å

  • α = 79.630 (16)°

  • β = 86.620 (15)°

  • γ = 89.326 (15)°

  • V = 511.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.14 × 0.11 × 0.03 mm

Data collection
  • Bruker APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.997

  • 2633 measured reflections

  • 1769 independent reflections

  • 915 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.149

  • S = 0.99

  • 1769 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.36 3.251 (5) 160
C9—H9C⋯O1ii 0.96 2.65 3.531 (5) 153
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole derivatives are very useful compounds (Matuszak et al., 1976; Verras et al., 2004), and herein we report on the molecular and crystal structure of the title compound, illustrated in Fig. 1.

In the crystal packing of the title compound (Fig. 2), C2—H2···O3 hydrogen bonds involving adjacent molecules lead to the formation of a one-dimensional chain structure. Moverover, via weak C9—H9C···O1 hydrogen bonds and π-π interactions involving two neighbouring chains [the nearest atom-to-atom distance between neighbouring imidazole rings is 3.405 (5) Å], a tubular polymer structure, propagating in [100], is formed.

Related literature top

For uses of imidazole direvatives, see: Matuszak et al. (1976), Verras et al. (2004). For the synthesis of the title compound, see: Metobo et al. (2006).

Experimental top

The title compund was synthesized according to the reported procedure (Metobo et al., 2006). Colourless plate-like crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a solution of the title compound in Diethyl ether at room temperature.

Refinement top

H atoms were placed geometrically and refined as riding atoms: C—H = 0.96 Å (CH3) and 0.93 Å (CH), with Uiso(H) = k × Ueq(C), where k = 1.5 for (CH3), and = 1.2 for (CH) H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Perspective view along the a-axis of the crystal packing of the title compound, showing the C-H···O interactions as dashed lines [H-atoms not involved in the motif shown have been omitted for clarity].
tert-Butyl 4-formyl-1H-imidazole-1-carboxylate top
Crystal data top
C9H12N2O3V = 511.7 (8) Å3
Mr = 196.21Z = 2
Triclinic, P1F(000) = 208
Hall symbol: -P 1Dx = 1.274 Mg m3
a = 5.972 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.173 (7) ÅCell parameters from 360 reflections
c = 12.164 (11) ŵ = 0.10 mm1
α = 79.630 (16)°T = 293 K
β = 86.620 (15)°Plate, colourless
γ = 89.326 (15)°0.14 × 0.11 × 0.03 mm
Data collection top
Bruker APEX CCD area detector
diffractometer
1769 independent reflections
Radiation source: fine-focus sealed tube915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.987, Tmax = 0.997k = 88
2633 measured reflectionsl = 148
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0655P)2]
where P = (Fo2 + 2Fc2)/3
1769 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H12N2O3γ = 89.326 (15)°
Mr = 196.21V = 511.7 (8) Å3
Triclinic, P1Z = 2
a = 5.972 (3) ÅMo Kα radiation
b = 7.173 (7) ŵ = 0.10 mm1
c = 12.164 (11) ÅT = 293 K
α = 79.630 (16)°0.14 × 0.11 × 0.03 mm
β = 86.620 (15)°
Data collection top
Bruker APEX CCD area detector
diffractometer
1769 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
915 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.997Rint = 0.022
2633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.99Δρmax = 0.17 e Å3
1769 reflectionsΔρmin = 0.17 e Å3
130 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3982 (5)0.3453 (4)0.8094 (2)0.0910 (9)
O20.3540 (3)0.2118 (3)0.27957 (17)0.0501 (6)
O30.0065 (4)0.2329 (4)0.34612 (19)0.0794 (9)
N10.5369 (4)0.2729 (4)0.5822 (2)0.0562 (8)
N20.2860 (4)0.2475 (4)0.4569 (2)0.0480 (7)
C10.3197 (5)0.2938 (4)0.6277 (3)0.0505 (9)
C20.5087 (5)0.2466 (4)0.4808 (3)0.0503 (9)
H20.62620.22890.43010.060*
C30.1660 (5)0.2779 (4)0.5522 (3)0.0529 (9)
H30.01100.28590.56270.063*
C40.2649 (7)0.3323 (5)0.7404 (3)0.0668 (11)
H40.11420.34800.76060.080*
C50.1920 (6)0.2290 (5)0.3551 (3)0.0519 (9)
C60.3044 (5)0.1971 (5)0.1619 (3)0.0470 (8)
C70.5376 (5)0.1878 (5)0.1061 (3)0.0634 (10)
H7A0.62020.29930.11190.095*
H7B0.52570.18060.02860.095*
H7C0.61440.07750.14260.095*
C80.1737 (5)0.0162 (5)0.1638 (3)0.0702 (11)
H8A0.25520.08990.20170.105*
H8B0.15320.00010.08840.105*
H8C0.02990.02430.20230.105*
C90.1821 (5)0.3734 (5)0.1092 (3)0.0662 (11)
H9A0.03590.37710.14600.099*
H9B0.16740.37140.03120.099*
H9C0.26540.48350.11680.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.117 (2)0.095 (2)0.0680 (19)0.0003 (17)0.0229 (17)0.0287 (16)
O20.0374 (12)0.0691 (16)0.0448 (14)0.0015 (10)0.0004 (10)0.0143 (12)
O30.0360 (14)0.139 (3)0.0686 (18)0.0020 (13)0.0019 (12)0.0330 (17)
N10.0523 (18)0.064 (2)0.0522 (19)0.0018 (13)0.0066 (14)0.0074 (15)
N20.0376 (15)0.0592 (19)0.0468 (18)0.0004 (12)0.0004 (14)0.0089 (14)
C10.057 (2)0.046 (2)0.049 (2)0.0062 (16)0.0026 (18)0.0079 (17)
C20.0387 (18)0.055 (2)0.055 (2)0.0014 (15)0.0029 (16)0.0051 (19)
C30.0437 (19)0.060 (2)0.054 (2)0.0038 (16)0.0089 (18)0.0105 (19)
C40.085 (3)0.054 (3)0.062 (3)0.007 (2)0.005 (2)0.013 (2)
C50.040 (2)0.064 (2)0.051 (2)0.0007 (16)0.0038 (18)0.0114 (18)
C60.0434 (18)0.058 (2)0.041 (2)0.0034 (16)0.0065 (15)0.0121 (17)
C70.047 (2)0.086 (3)0.057 (2)0.0012 (18)0.0030 (17)0.016 (2)
C80.055 (2)0.074 (3)0.086 (3)0.0117 (19)0.0017 (19)0.026 (2)
C90.067 (2)0.068 (3)0.063 (3)0.0089 (19)0.0101 (19)0.007 (2)
Geometric parameters (Å, º) top
O1—C41.206 (4)C4—H40.9300
O2—C51.315 (4)C6—C91.512 (4)
O2—C61.501 (4)C6—C81.518 (5)
O3—C51.196 (3)C6—C71.519 (4)
N1—C21.301 (4)C7—H7A0.9600
N1—C11.398 (4)C7—H7B0.9600
N2—C31.376 (4)C7—H7C0.9600
N2—C21.378 (4)C8—H8A0.9600
N2—C51.417 (4)C8—H8B0.9600
C1—C31.356 (4)C8—H8C0.9600
C1—C41.464 (5)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C5—O2—C6121.3 (2)C9—C6—C8113.1 (3)
C2—N1—C1104.5 (3)O2—C6—C7102.4 (2)
C3—N2—C2106.1 (3)C9—C6—C7110.8 (3)
C3—N2—C5125.2 (3)C8—C6—C7111.5 (3)
C2—N2—C5128.7 (3)C6—C7—H7A109.5
C3—C1—N1110.6 (3)C6—C7—H7B109.5
C3—C1—C4124.5 (3)H7A—C7—H7B109.5
N1—C1—C4124.9 (3)C6—C7—H7C109.5
N1—C2—N2112.7 (3)H7A—C7—H7C109.5
N1—C2—H2123.6H7B—C7—H7C109.5
N2—C2—H2123.6C6—C8—H8A109.5
C1—C3—N2106.1 (3)C6—C8—H8B109.5
C1—C3—H3126.9H8A—C8—H8B109.5
N2—C3—H3126.9C6—C8—H8C109.5
O1—C4—C1125.7 (4)H8A—C8—H8C109.5
O1—C4—H4117.2H8B—C8—H8C109.5
C1—C4—H4117.2C6—C9—H9A109.5
O3—C5—O2129.1 (3)C6—C9—H9B109.5
O3—C5—N2121.5 (3)H9A—C9—H9B109.5
O2—C5—N2109.4 (3)C6—C9—H9C109.5
O2—C6—C9109.5 (2)H9A—C9—H9C109.5
O2—C6—C8109.0 (3)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.363.251 (5)160
C9—H9C···O1ii0.962.653.531 (5)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H12N2O3
Mr196.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.972 (3), 7.173 (7), 12.164 (11)
α, β, γ (°)79.630 (16), 86.620 (15), 89.326 (15)
V3)511.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.14 × 0.11 × 0.03
Data collection
DiffractometerBruker APEX CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.987, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
2633, 1769, 915
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.149, 0.99
No. of reflections1769
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.363.251 (5)160
C9—H9C···O1ii0.962.653.531 (5)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationMatuszak, C. A. & Matuszak, A. J. (1976). J. Chem. Educ. 53, 280–284.  CrossRef CAS
First citationMetobo, S. E., Jin, H. L., Tsiang, M. & Kim, C. U. (2006). Bioorg. Med. Chem. Lett. 16, 3985–3988.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationVerras, A., Kuntz, I. D. & Ortiz de Montellano, P. R. (2004). J. Med. Chem. 47, 3572–3579.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds