organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy­quinolinium 2-carb­­oxy­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2010; accepted 3 August 2010; online 11 August 2010)

In the title compound, C9H8NO+·C3H3O4, the cation and anion are each essentially planar, with maximum deviations of 0.043 (1) and 0.060 (1) Å, respectively. The dihedral angle between these two planes is 2.20 (4)°. The conformation of the anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which forms an S(6) ring motif. The hy­droxy group of the oxine unit makes a hydrogen bond with the one of the O atoms of the carboxyl­ate group of the 2-carb­oxy­acetate anion. Two other carboxyl­ate O atoms form R22(7) ring motifs via inter­molecular C—H⋯O and N—H⋯O hydrogen bonds. The crystal structure is consolidated by weak inter­molecular C—H⋯O inter­actions, which link the cations and anions into a three-dimensional network.

Related literature

For background to and the biological activity of oxines, see: Balasubramanian & Muthiah (1996a[Balasubramanian, T. P. & Thomas Muthiah, P. (1996a). Acta Cryst. C52, 1017-1019.],b[Balasubramanian, T. & Muthiah, P. T. (1996b). Acta Cryst. C52, 2072-2073.]). For related structures, see: Banerjee et al. (1984[Banerjee, T., Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1984). Acta Cryst. C40, 507-509.]); Loh et al. (2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91-o92.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8NO+·C3H3O4

  • Mr = 249.22

  • Monoclinic, P 21 /c

  • a = 8.7089 (4) Å

  • b = 5.2930 (2) Å

  • c = 23.4672 (9) Å

  • β = 90.999 (3)°

  • V = 1081.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.52 × 0.17 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.992

  • 12061 measured reflections

  • 3170 independent reflections

  • 2552 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.04

  • 3170 reflections

  • 207 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O5i 0.97 (2) 1.67 (2) 2.6439 (12) 178.1 (14)
O2—H1O2⋯O4 0.97 (2) 1.55 (2) 2.4963 (14) 162 (2)
N1—H1N1⋯O5ii 0.95 (2) 1.74 (2) 2.6809 (14) 170.9 (17)
C2—H2A⋯O4ii 0.928 (16) 2.373 (17) 3.1735 (15) 144.4 (14)
C2—H2A⋯O2iii 0.928 (16) 2.423 (16) 3.0663 (15) 126.5 (13)
C6—H6A⋯O3iv 0.964 (16) 2.462 (16) 3.4202 (16) 172.5 (13)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y+1, z; (iii) -x+1, -y+2, -z; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions in the crystal structures of oxines (8-hydroxyquinoline), their derivatives and their complexes in a variety of crystalline environments (Balasubramanian & Muthiah, 1996a,b). Oxine is widely used as analytical reagent. The present study is aimed at understanding the hydrogen-bonding networks in the title compound, (I).

The asymmetric unit of title compound, (Fig. 1), consists of a 8-hydroxyquinolinium cation and a 2-carboxyacetate anion. 8-Hydroxyquinolinium is protonated at atom N1 leading to an enhancement of the internal angle [122.14 (11)°] at C1—N1—C2 compared with neutral quinoline moieties (Banerjee et al., 1984). The 8-hydroxyquinolinium cation and 2-carboxyacetate anion are essentially planar, with a maximum deviation of 0.043 (1) Å for atom C8 and 0.060 (1) Å for atom C11, respectively. The diheral angle between these two planes is 2.20 (4)°, indicating they are approximately parallel to each other. The anion is stabilized by an intramolecular O2–H1O2···O4 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the solid state (Fig. 2), carboxylate oxygen atoms (O4 and O5) form R22(7) ring motifs via intermolecular C2–H2A···O4 and N1–H1N1···O5 hydrogen bonds. The hydroxy group (O1–H1O1) of the oxine moiety makes a hydrogen bond with the O5 atom of the carboxylate group of the 2-carboxyacetate anion. The crystal structure is consolidated by weak intermolecular C2–H2A···O2 and C6–H6A···O3 interactions. The cations and anions are linked by these interactions into three-dimensional network.

Related literature top

For background to and the biological activity of oxines, see: Balasubramanian & Muthiah (1996a,b). For related structures, see: Banerjee et al. (1984); Loh et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 8-hydroxyquinolinine (29 mg, Merck) and malonic acid (20.8 mg, Acros) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All H atoms were located in a difference Fourier map and refined freely.

Structure description top

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions in the crystal structures of oxines (8-hydroxyquinoline), their derivatives and their complexes in a variety of crystalline environments (Balasubramanian & Muthiah, 1996a,b). Oxine is widely used as analytical reagent. The present study is aimed at understanding the hydrogen-bonding networks in the title compound, (I).

The asymmetric unit of title compound, (Fig. 1), consists of a 8-hydroxyquinolinium cation and a 2-carboxyacetate anion. 8-Hydroxyquinolinium is protonated at atom N1 leading to an enhancement of the internal angle [122.14 (11)°] at C1—N1—C2 compared with neutral quinoline moieties (Banerjee et al., 1984). The 8-hydroxyquinolinium cation and 2-carboxyacetate anion are essentially planar, with a maximum deviation of 0.043 (1) Å for atom C8 and 0.060 (1) Å for atom C11, respectively. The diheral angle between these two planes is 2.20 (4)°, indicating they are approximately parallel to each other. The anion is stabilized by an intramolecular O2–H1O2···O4 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the solid state (Fig. 2), carboxylate oxygen atoms (O4 and O5) form R22(7) ring motifs via intermolecular C2–H2A···O4 and N1–H1N1···O5 hydrogen bonds. The hydroxy group (O1–H1O1) of the oxine moiety makes a hydrogen bond with the O5 atom of the carboxylate group of the 2-carboxyacetate anion. The crystal structure is consolidated by weak intermolecular C2–H2A···O2 and C6–H6A···O3 interactions. The cations and anions are linked by these interactions into three-dimensional network.

For background to and the biological activity of oxines, see: Balasubramanian & Muthiah (1996a,b). For related structures, see: Banerjee et al. (1984); Loh et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interaction is shown in dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the b axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
8-Hydroxyquinolinium 2-carboxyacetate top
Crystal data top
C9H8NO+·C3H3O4F(000) = 520
Mr = 249.22Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3422 reflections
a = 8.7089 (4) Åθ = 3.5–30.0°
b = 5.2930 (2) ŵ = 0.12 mm1
c = 23.4672 (9) ÅT = 100 K
β = 90.999 (3)°Plate, yellow
V = 1081.58 (8) Å30.52 × 0.17 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3170 independent reflections
Radiation source: fine-focus sealed tube2552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1112
Tmin = 0.929, Tmax = 0.992k = 77
12061 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.2285P]
where P = (Fo2 + 2Fc2)/3
3170 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H8NO+·C3H3O4V = 1081.58 (8) Å3
Mr = 249.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7089 (4) ŵ = 0.12 mm1
b = 5.2930 (2) ÅT = 100 K
c = 23.4672 (9) Å0.52 × 0.17 × 0.07 mm
β = 90.999 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2552 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.992Rint = 0.041
12061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.04Δρmax = 0.33 e Å3
3170 reflectionsΔρmin = 0.29 e Å3
207 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09573 (11)0.85826 (16)0.23539 (4)0.0178 (2)
N10.16598 (13)0.89411 (19)0.12400 (4)0.0152 (2)
C10.23458 (14)0.7104 (2)0.15690 (5)0.0142 (2)
C20.19403 (16)0.9186 (2)0.06877 (5)0.0183 (3)
C30.29489 (16)0.7560 (3)0.04150 (5)0.0204 (3)
C40.36509 (16)0.5673 (2)0.07247 (5)0.0201 (3)
C50.33690 (14)0.5386 (2)0.13142 (5)0.0165 (2)
C60.40592 (15)0.3468 (2)0.16573 (6)0.0193 (3)
C70.37370 (15)0.3379 (2)0.22279 (6)0.0193 (3)
C80.27372 (15)0.5121 (2)0.24808 (5)0.0172 (2)
C90.19971 (14)0.6941 (2)0.21562 (5)0.0144 (2)
O20.79886 (13)0.74847 (19)0.03808 (4)0.0268 (2)
O30.66717 (12)0.95987 (18)0.10240 (4)0.0237 (2)
O40.96190 (11)0.38081 (17)0.06705 (4)0.0208 (2)
O50.97057 (11)0.25359 (16)0.15766 (3)0.0177 (2)
C100.75145 (15)0.7864 (2)0.09062 (5)0.0176 (2)
C110.80638 (16)0.5972 (2)0.13524 (5)0.0195 (3)
C120.92134 (14)0.3958 (2)0.11786 (5)0.0155 (2)
H1O10.073 (2)0.817 (4)0.2748 (9)0.042 (5)*
H1O20.866 (3)0.602 (4)0.0417 (9)0.057 (6)*
H1N10.098 (2)1.015 (4)0.1398 (8)0.037 (5)*
H2A0.141 (2)1.051 (3)0.0516 (7)0.022 (4)*
H3A0.3100 (19)0.781 (3)0.0005 (7)0.023 (4)*
H4A0.437 (2)0.447 (3)0.0560 (7)0.027 (4)*
H6A0.4720 (18)0.226 (3)0.1476 (7)0.019 (4)*
H7A0.4224 (19)0.207 (3)0.2466 (7)0.024 (4)*
H8A0.2547 (19)0.505 (3)0.2888 (7)0.020 (4)*
H11A0.716 (2)0.510 (4)0.1503 (8)0.039 (5)*
H11B0.852 (2)0.689 (4)0.1680 (8)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (5)0.0173 (4)0.0128 (4)0.0039 (4)0.0051 (3)0.0010 (3)
N10.0187 (5)0.0143 (4)0.0128 (5)0.0006 (4)0.0020 (4)0.0003 (4)
C10.0153 (6)0.0129 (5)0.0146 (5)0.0014 (4)0.0013 (4)0.0008 (4)
C20.0229 (7)0.0186 (6)0.0135 (5)0.0009 (5)0.0017 (4)0.0008 (4)
C30.0242 (7)0.0240 (6)0.0130 (5)0.0009 (5)0.0041 (5)0.0016 (5)
C40.0201 (7)0.0213 (6)0.0191 (6)0.0009 (5)0.0047 (5)0.0045 (5)
C50.0159 (6)0.0160 (5)0.0178 (6)0.0018 (4)0.0017 (4)0.0016 (4)
C60.0170 (6)0.0161 (5)0.0248 (6)0.0015 (5)0.0016 (5)0.0018 (5)
C70.0180 (6)0.0160 (5)0.0239 (6)0.0005 (5)0.0007 (5)0.0035 (5)
C80.0186 (6)0.0169 (5)0.0160 (5)0.0024 (5)0.0007 (4)0.0019 (4)
C90.0161 (6)0.0136 (5)0.0137 (5)0.0022 (4)0.0023 (4)0.0002 (4)
O20.0417 (7)0.0242 (5)0.0146 (4)0.0117 (4)0.0046 (4)0.0025 (4)
O30.0263 (5)0.0216 (5)0.0232 (5)0.0067 (4)0.0009 (4)0.0014 (4)
O40.0293 (5)0.0205 (4)0.0127 (4)0.0049 (4)0.0051 (3)0.0001 (3)
O50.0228 (5)0.0175 (4)0.0128 (4)0.0018 (3)0.0023 (3)0.0008 (3)
C100.0197 (6)0.0170 (5)0.0160 (5)0.0001 (5)0.0005 (4)0.0009 (4)
C110.0241 (7)0.0211 (6)0.0132 (5)0.0055 (5)0.0040 (5)0.0008 (4)
C120.0178 (6)0.0149 (5)0.0139 (5)0.0023 (4)0.0015 (4)0.0013 (4)
Geometric parameters (Å, º) top
O1—C91.3434 (15)C6—H6A0.963 (17)
O1—H1O10.97 (2)C7—C81.4066 (18)
N1—C21.3295 (15)C7—H7A0.981 (17)
N1—C11.3722 (15)C8—C91.3811 (17)
N1—H1N10.95 (2)C8—H8A0.973 (16)
C1—C51.4132 (17)O2—C101.3223 (15)
C1—C91.4187 (16)O2—H1O20.97 (2)
C2—C31.3933 (18)O3—C101.2107 (16)
C2—H2A0.928 (17)O4—C121.2521 (14)
C3—C41.3727 (19)O5—C121.2683 (14)
C3—H3A0.982 (16)C10—C111.5198 (17)
C4—C51.4174 (17)C11—C121.5231 (17)
C4—H4A0.977 (18)C11—H11A0.98 (2)
C5—C61.4222 (17)C11—H11B0.990 (19)
C6—C71.3736 (18)
C9—O1—H1O1109.3 (12)C6—C7—C8121.81 (12)
C2—N1—C1122.14 (11)C6—C7—H7A119.1 (10)
C2—N1—H1N1116.1 (11)C8—C7—H7A119.1 (10)
C1—N1—H1N1121.7 (11)C9—C8—C7120.74 (11)
N1—C1—C5119.31 (10)C9—C8—H8A118.7 (10)
N1—C1—C9119.40 (10)C7—C8—H8A120.5 (10)
C5—C1—C9121.28 (11)O1—C9—C8124.86 (11)
N1—C2—C3121.04 (12)O1—C9—C1116.96 (10)
N1—C2—H2A113.5 (10)C8—C9—C1118.17 (11)
C3—C2—H2A125.5 (10)C10—O2—H1O2103.7 (13)
C4—C3—C2119.00 (11)O3—C10—O2121.90 (12)
C4—C3—H3A123.3 (10)O3—C10—C11121.81 (11)
C2—C3—H3A117.6 (10)O2—C10—C11116.29 (11)
C3—C4—C5120.77 (12)C10—C11—C12118.50 (10)
C3—C4—H4A123.2 (10)C10—C11—H11A108.4 (12)
C5—C4—H4A116.1 (10)C12—C11—H11A107.4 (12)
C1—C5—C4117.72 (11)C10—C11—H11B109.3 (11)
C1—C5—C6118.88 (11)C12—C11—H11B107.1 (11)
C4—C5—C6123.40 (12)H11A—C11—H11B105.5 (16)
C7—C6—C5119.01 (12)O4—C12—O5124.50 (11)
C7—C6—H6A122.8 (9)O4—C12—C11119.80 (11)
C5—C6—H6A118.2 (9)O5—C12—C11115.70 (10)
C2—N1—C1—C50.90 (18)C5—C6—C7—C80.37 (19)
C2—N1—C1—C9179.97 (11)C6—C7—C8—C92.3 (2)
C1—N1—C2—C30.34 (19)C7—C8—C9—O1175.89 (11)
N1—C2—C3—C40.4 (2)C7—C8—C9—C13.83 (18)
C2—C3—C4—C50.5 (2)N1—C1—C9—O12.09 (16)
N1—C1—C5—C40.71 (17)C5—C1—C9—O1176.97 (11)
C9—C1—C5—C4179.77 (11)N1—C1—C9—C8178.17 (11)
N1—C1—C5—C6179.22 (11)C5—C1—C9—C82.77 (18)
C9—C1—C5—C60.16 (18)O3—C10—C11—C12175.64 (12)
C3—C4—C5—C10.01 (19)O2—C10—C11—C125.39 (18)
C3—C4—C5—C6179.92 (13)C10—C11—C12—O43.81 (18)
C1—C5—C6—C71.42 (18)C10—C11—C12—O5175.62 (11)
C4—C5—C6—C7178.66 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O5i0.97 (2)1.67 (2)2.6439 (12)178.1 (14)
O2—H1O2···O40.97 (2)1.55 (2)2.4963 (14)162 (2)
N1—H1N1···O5ii0.95 (2)1.74 (2)2.6809 (14)170.9 (17)
C2—H2A···O4ii0.928 (16)2.373 (17)3.1735 (15)144.4 (14)
C2—H2A···O2iii0.928 (16)2.423 (16)3.0663 (15)126.5 (13)
C6—H6A···O3iv0.964 (16)2.462 (16)3.4202 (16)172.5 (13)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1, z; (iii) x+1, y+2, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H8NO+·C3H3O4
Mr249.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.7089 (4), 5.2930 (2), 23.4672 (9)
β (°) 90.999 (3)
V3)1081.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.52 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.929, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12061, 3170, 2552
Rint0.041
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.04
No. of reflections3170
No. of parameters207
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O5i0.97 (2)1.67 (2)2.6439 (12)178.1 (14)
O2—H1O2···O40.97 (2)1.55 (2)2.4963 (14)162 (2)
N1—H1N1···O5ii0.95 (2)1.74 (2)2.6809 (14)170.9 (17)
C2—H2A···O4ii0.928 (16)2.373 (17)3.1735 (15)144.4 (14)
C2—H2A···O2iii0.928 (16)2.423 (16)3.0663 (15)126.5 (13)
C6—H6A···O3iv0.964 (16)2.462 (16)3.4202 (16)172.5 (13)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1, z; (iii) x+1, y+2, z; (iv) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ and WSL also thank USM for the award of USM fellowships and HM also thanks USM for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBalasubramanian, T. P. & Thomas Muthiah, P. (1996a). Acta Cryst. C52, 1017–1019.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBalasubramanian, T. & Muthiah, P. T. (1996b). Acta Cryst. C52, 2072–2073.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBanerjee, T., Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1984). Acta Cryst. C40, 507–509.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91–o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds