organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­benzo­yl)-N′-(3-fluoro­phen­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 1 July 2010; accepted 3 August 2010; online 11 August 2010)

In the title compound, C14H10ClFN2OS, the mol­ecule adopts a transcis geometry of the thio­urea unit. The dihedral angles between the benzene rings is 34.47 (7)°. The crystal packing features inter­molecular N—H⋯S and C—H⋯O hydrogen bonds, forming a chain along the b axis. A short C—H⋯S intramolecular contact is also observed.

Related literature

For the biological and anti corrosion properties of thio­urea derivatives, see: Shen et al. (2006[Shen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655-1665.]); Sun et al.(2006[Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.]). For the structures of related 4-chloro­benzoyl thio­urea derivatives, see: Khawar Rauf et al. (2009[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o143.]); Yusof et al. (2009[Yusof, M. S. M., Aishah, Z. S., Khairul, W. M. & Yamin, B. M. (2009). Acta Cryst. E65, o2519.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClFN2OS

  • Mr = 308.75

  • Monoclinic, P 21 /c

  • a = 8.5778 (1) Å

  • b = 11.7584 (2) Å

  • c = 13.4069 (2) Å

  • β = 92.448 (2)°

  • V = 1351.00 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.03 mm−1

  • T = 293 K

  • 0.50 × 0.29 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.238, Tmax = 0.432

  • 33403 measured reflections

  • 2685 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.06

  • 2685 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯S1 0.93 2.57 3.1865 (15) 124
N2—H2A⋯O1 0.86 1.91 2.6402 (16) 141
N1—H1A⋯S1i 0.86 2.68 3.4134 (13) 145
C2—H2B⋯O1ii 0.93 2.48 3.3717 (18) 160
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The rapid progress in the synthesis of thiourea derivative is driven by their potential as biological active compounds (Sun et al., 2006) and in the material applications such as anti corrosion(Shen et al., 2006). The molecular structural study of the compound is important for structure-activity relationship which is useful for rasional design strategy. The tittle compound (I) is analogus to 1-(4-chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea hemihydrate (II)(Khawar Rauf et al., 2009) and 1-(1,3-benzothiazol-2-yl)-3- (4-chlorobenzoyl)thiourea (III) (Yusof et al. 2009) except the substituent attached to the terminal nitrogen atom is 3-fluorophenyl instead of 2,4,6-trichlorohenyl or benzothiazole. There are two molecules in the asymmetric unit of (II). The dihedral angle between the two benzene rings in each molecule is 66.93 (8)° and 60.44 (9)°. On the other hand, the dihedral angles between the benzene ring and the benzothiaozole in (III) of 28.42 (8)° indicating the role of chlorine atom on the stablity of the compound.

The molecule (I) is discrete (Figure 1) and adopts a typical trans-cis configuration with respect to the position of 4-chlorobenzoyl and 3-fluorophenyl fragments respectively against the thiono group across their C—N bonds. The benzene rings and thiourea moiety are each planar with maximum deviation of 0.025 (1)Å for N2 atom from least square plane. The dihedral angles between the two benzene rings of 34.47 (7)° is smaller than that in (II) but close to (III). The central thiourea moiety (N1/C8/N2/S1) makes dihedral angles with the benzene (C1—C6) and (C9—C14)rings of 15.44 (6)° and 21.68 (6)° respectively. The bond lengths and angles are in normal ranges (Allen et al., 1987). There are two intramolecular hydrogen bonds, N2—H2A..O1 and C14—H14A..S1, forming two pseudo-six member rings [O1..H2A/N2/C8/N1/C7] and [S1..H14A/C14/C9/N2/C8]. In the crystal structure, molecules are linked by intermolecular hydrogen bonds, N1—H1A..S1 and C2—H2B..O1 (symmetry code as in table 2) forming one dimensional chain along b axis (Figure 2).

Related literature top

For the biological and anti corrosion properties of thiourea derivatives, see: Shen et al. (2006); Sun et al.(2006). For the structures of related 4-chlorobenzoyl thiourea derivatives, see: Khawar Rauf et al. (2009); Yusof et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

4-chlorobenzoyl chloride (1.74 g, 0.01 mol) was mixed with an equimolar amount of ammonium thiocyanate (0.76 g,0.01 mol) and 3-fluoroaniline (1.11 g, 0.01 mol) in 50 ml dried acetone. The mixture was refluxed for 2 h. The light yellow solution was filtered and left to evaporate at room temperature. Colourless crystals were obtained after a few days (Yield 89.2%; m.p 458.2–459.7 K).

Refinement top

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.93 Å and N—H = 0.86Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Structure description top

The rapid progress in the synthesis of thiourea derivative is driven by their potential as biological active compounds (Sun et al., 2006) and in the material applications such as anti corrosion(Shen et al., 2006). The molecular structural study of the compound is important for structure-activity relationship which is useful for rasional design strategy. The tittle compound (I) is analogus to 1-(4-chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea hemihydrate (II)(Khawar Rauf et al., 2009) and 1-(1,3-benzothiazol-2-yl)-3- (4-chlorobenzoyl)thiourea (III) (Yusof et al. 2009) except the substituent attached to the terminal nitrogen atom is 3-fluorophenyl instead of 2,4,6-trichlorohenyl or benzothiazole. There are two molecules in the asymmetric unit of (II). The dihedral angle between the two benzene rings in each molecule is 66.93 (8)° and 60.44 (9)°. On the other hand, the dihedral angles between the benzene ring and the benzothiaozole in (III) of 28.42 (8)° indicating the role of chlorine atom on the stablity of the compound.

The molecule (I) is discrete (Figure 1) and adopts a typical trans-cis configuration with respect to the position of 4-chlorobenzoyl and 3-fluorophenyl fragments respectively against the thiono group across their C—N bonds. The benzene rings and thiourea moiety are each planar with maximum deviation of 0.025 (1)Å for N2 atom from least square plane. The dihedral angles between the two benzene rings of 34.47 (7)° is smaller than that in (II) but close to (III). The central thiourea moiety (N1/C8/N2/S1) makes dihedral angles with the benzene (C1—C6) and (C9—C14)rings of 15.44 (6)° and 21.68 (6)° respectively. The bond lengths and angles are in normal ranges (Allen et al., 1987). There are two intramolecular hydrogen bonds, N2—H2A..O1 and C14—H14A..S1, forming two pseudo-six member rings [O1..H2A/N2/C8/N1/C7] and [S1..H14A/C14/C9/N2/C8]. In the crystal structure, molecules are linked by intermolecular hydrogen bonds, N1—H1A..S1 and C2—H2B..O1 (symmetry code as in table 2) forming one dimensional chain along b axis (Figure 2).

For the biological and anti corrosion properties of thiourea derivatives, see: Shen et al. (2006); Sun et al.(2006). For the structures of related 4-chlorobenzoyl thiourea derivatives, see: Khawar Rauf et al. (2009); Yusof et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The nolecular structure of (I), with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the a axis. Hydrogen bonds are shown by dashed lines.
N-(4-Chlorobenzoyl)-N'-(3-fluorophenyl)thiourea top
Crystal data top
C14H10ClFN2OSF(000) = 632
Mr = 308.75Dx = 1.518 Mg m3
Monoclinic, P21/cMelting point: 459 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 8.5778 (1) ÅCell parameters from 24507 reflections
b = 11.7584 (2) Åθ = 5.0–72.7°
c = 13.4069 (2) ŵ = 4.03 mm1
β = 92.448 (2)°T = 293 K
V = 1351.00 (3) Å3Block, colourless
Z = 40.50 × 0.29 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2685 independent reflections
Radiation source: Enhance (Cu) X-ray Source2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1952 pixels mm-1θmax = 72.7°, θmin = 5.0°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.238, Tmax = 0.432l = 1616
33403 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.5662P]
where P = (Fo2 + 2Fc2)/3
2685 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H10ClFN2OSV = 1351.00 (3) Å3
Mr = 308.75Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.5778 (1) ŵ = 4.03 mm1
b = 11.7584 (2) ÅT = 293 K
c = 13.4069 (2) Å0.50 × 0.29 × 0.25 mm
β = 92.448 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2685 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2628 reflections with I > 2σ(I)
Tmin = 0.238, Tmax = 0.432Rint = 0.027
33403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2685 reflectionsΔρmin = 0.27 e Å3
181 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlisPro (Oxford Diffraction, 2010)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68504 (4)0.20726 (4)0.98436 (3)0.03536 (13)
S11.21472 (5)0.03202 (3)0.43885 (3)0.03022 (13)
F11.42690 (13)0.17249 (11)0.12225 (8)0.0484 (3)
O11.06117 (13)0.36258 (8)0.58155 (8)0.0294 (2)
N11.06930 (14)0.17096 (10)0.55597 (9)0.0236 (3)
H1A1.03130.10780.57640.028*
N21.20911 (14)0.26185 (10)0.43716 (9)0.0244 (3)
H2A1.17730.32060.46860.029*
C10.94098 (17)0.14201 (12)0.75021 (11)0.0247 (3)
H1B0.99500.08070.72470.030*
C20.86286 (18)0.12932 (13)0.83788 (11)0.0278 (3)
H2B0.86340.06000.87120.033*
C30.78396 (17)0.22191 (13)0.87489 (10)0.0255 (3)
C40.78102 (18)0.32590 (13)0.82683 (11)0.0284 (3)
H4A0.72760.38710.85300.034*
C50.85897 (18)0.33731 (12)0.73923 (11)0.0265 (3)
H5A0.85780.40690.70620.032*
C60.93944 (16)0.24564 (11)0.69979 (10)0.0216 (3)
C71.02701 (16)0.26641 (12)0.60795 (10)0.0226 (3)
C81.16519 (16)0.16253 (12)0.47485 (10)0.0220 (3)
C91.29923 (16)0.28669 (12)0.35414 (11)0.0245 (3)
C101.35933 (19)0.39669 (14)0.34964 (13)0.0330 (3)
H10A1.34390.44790.40120.040*
C111.4424 (2)0.42933 (16)0.26764 (15)0.0414 (4)
H11A1.48250.50270.26510.050*
C121.46672 (19)0.35550 (16)0.19007 (14)0.0398 (4)
H12A1.52210.37760.13520.048*
C131.40591 (18)0.24824 (16)0.19719 (12)0.0333 (4)
C141.32205 (17)0.21067 (13)0.27676 (11)0.0274 (3)
H14A1.28240.13710.27840.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0334 (2)0.0521 (3)0.02125 (19)0.00362 (16)0.00978 (15)0.00270 (15)
S10.0401 (2)0.01980 (19)0.0323 (2)0.00030 (13)0.01862 (16)0.00299 (13)
F10.0517 (6)0.0658 (7)0.0294 (5)0.0014 (5)0.0214 (4)0.0013 (5)
O10.0390 (6)0.0187 (5)0.0315 (6)0.0022 (4)0.0119 (5)0.0016 (4)
N10.0312 (6)0.0176 (5)0.0228 (6)0.0027 (5)0.0098 (5)0.0013 (4)
N20.0294 (6)0.0201 (6)0.0243 (6)0.0004 (5)0.0085 (5)0.0008 (4)
C10.0313 (7)0.0213 (6)0.0219 (7)0.0031 (5)0.0034 (5)0.0026 (5)
C20.0347 (8)0.0268 (7)0.0220 (7)0.0002 (6)0.0024 (6)0.0018 (5)
C30.0235 (7)0.0366 (8)0.0165 (6)0.0032 (6)0.0030 (5)0.0035 (5)
C40.0304 (7)0.0287 (7)0.0263 (7)0.0042 (6)0.0051 (6)0.0075 (6)
C50.0328 (8)0.0213 (7)0.0256 (7)0.0015 (6)0.0039 (6)0.0029 (5)
C60.0237 (6)0.0216 (6)0.0194 (6)0.0008 (5)0.0024 (5)0.0028 (5)
C70.0250 (7)0.0205 (7)0.0223 (7)0.0001 (5)0.0028 (5)0.0025 (5)
C80.0242 (6)0.0217 (6)0.0202 (6)0.0013 (5)0.0037 (5)0.0009 (5)
C90.0206 (6)0.0269 (7)0.0262 (7)0.0007 (5)0.0031 (5)0.0077 (5)
C100.0328 (8)0.0265 (7)0.0400 (9)0.0007 (6)0.0041 (6)0.0072 (6)
C110.0337 (8)0.0351 (9)0.0558 (11)0.0053 (7)0.0077 (8)0.0205 (8)
C120.0295 (8)0.0516 (10)0.0393 (9)0.0025 (7)0.0121 (7)0.0224 (8)
C130.0264 (7)0.0474 (9)0.0267 (8)0.0051 (7)0.0072 (6)0.0090 (7)
C140.0243 (7)0.0327 (8)0.0258 (7)0.0003 (6)0.0062 (6)0.0048 (6)
Geometric parameters (Å, º) top
Cl1—C31.7350 (14)C4—C51.383 (2)
S1—C81.6691 (14)C4—H4A0.9300
F1—C131.360 (2)C5—C61.396 (2)
O1—C71.2243 (18)C5—H5A0.9300
N1—C71.3778 (18)C6—C71.4896 (19)
N1—C81.3949 (17)C9—C141.390 (2)
N1—H1A0.8600C9—C101.395 (2)
N2—C81.3332 (18)C10—C111.390 (2)
N2—C91.4125 (18)C10—H10A0.9300
N2—H2A0.8600C11—C121.377 (3)
C1—C21.386 (2)C11—H11A0.9300
C1—C61.393 (2)C12—C131.370 (3)
C1—H1B0.9300C12—H12A0.9300
C2—C31.385 (2)C13—C141.384 (2)
C2—H2B0.9300C14—H14A0.9300
C3—C41.382 (2)
C7—N1—C8128.98 (12)O1—C7—N1122.32 (13)
C7—N1—H1A115.5O1—C7—C6121.72 (12)
C8—N1—H1A115.5N1—C7—C6115.94 (12)
C8—N2—C9130.76 (13)N2—C8—N1114.77 (12)
C8—N2—H2A114.6N2—C8—S1128.04 (11)
C9—N2—H2A114.6N1—C8—S1117.17 (10)
C2—C1—C6120.71 (13)C14—C9—C10120.01 (14)
C2—C1—H1B119.6C14—C9—N2123.68 (13)
C6—C1—H1B119.6C10—C9—N2116.20 (14)
C3—C2—C1118.74 (14)C11—C10—C9119.56 (16)
C3—C2—H2B120.6C11—C10—H10A120.2
C1—C2—H2B120.6C9—C10—H10A120.2
C2—C3—C4121.87 (13)C12—C11—C10121.50 (16)
C2—C3—Cl1119.29 (12)C12—C11—H11A119.2
C4—C3—Cl1118.84 (11)C10—C11—H11A119.2
C5—C4—C3118.83 (14)C13—C12—C11117.22 (15)
C5—C4—H4A120.6C13—C12—H12A121.4
C3—C4—H4A120.6C11—C12—H12A121.4
C4—C5—C6120.77 (14)F1—C13—C12119.25 (15)
C4—C5—H5A119.6F1—C13—C14116.73 (16)
C6—C5—H5A119.6C12—C13—C14124.02 (17)
C1—C6—C5119.09 (13)C13—C14—C9117.68 (15)
C1—C6—C7123.35 (12)C13—C14—H14A121.2
C5—C6—C7117.48 (13)C9—C14—H14A121.2
C6—C1—C2—C30.4 (2)C9—N2—C8—N1177.20 (13)
C1—C2—C3—C40.1 (2)C9—N2—C8—S14.6 (2)
C1—C2—C3—Cl1179.79 (11)C7—N1—C8—N27.1 (2)
C2—C3—C4—C50.1 (2)C7—N1—C8—S1171.32 (12)
Cl1—C3—C4—C5179.56 (11)C8—N2—C9—C1420.2 (2)
C3—C4—C5—C60.0 (2)C8—N2—C9—C10163.45 (15)
C2—C1—C6—C50.5 (2)C14—C9—C10—C110.3 (2)
C2—C1—C6—C7177.04 (13)N2—C9—C10—C11176.72 (14)
C4—C5—C6—C10.3 (2)C9—C10—C11—C120.2 (3)
C4—C5—C6—C7177.01 (13)C10—C11—C12—C130.2 (3)
C8—N1—C7—O16.6 (2)C11—C12—C13—F1179.93 (15)
C8—N1—C7—C6172.23 (13)C11—C12—C13—C140.3 (3)
C1—C6—C7—O1158.63 (14)F1—C13—C14—C9180.00 (13)
C5—C6—C7—O117.9 (2)C12—C13—C14—C90.3 (2)
C1—C6—C7—N120.2 (2)C10—C9—C14—C130.3 (2)
C5—C6—C7—N1163.19 (13)N2—C9—C14—C13176.49 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···S10.932.573.1865 (15)124
N2—H2A···O10.861.912.6402 (16)141
N1—H1A···S1i0.862.683.4134 (13)145
C2—H2B···O1ii0.932.483.3717 (18)160
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10ClFN2OS
Mr308.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5778 (1), 11.7584 (2), 13.4069 (2)
β (°) 92.448 (2)
V3)1351.00 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.03
Crystal size (mm)0.50 × 0.29 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.238, 0.432
No. of measured, independent and
observed [I > 2σ(I)] reflections
33403, 2685, 2628
Rint0.027
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.06
No. of reflections2685
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···S10.932.573.1865 (15)124
N2—H2A···O10.861.912.6402 (16)141
N1—H1A···S1i0.862.683.4134 (13)145
C2—H2B···O1ii0.932.483.3717 (18)160
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysia for research facilities and grants UKM-GUP-NBT-08–27–110 and UKM-OUP-NBT-27–144. An NSF scholarship from The Ministry of Science, Technology and Innovation to NEAO is very much appreciated.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655–1665.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYusof, M. S. M., Aishah, Z. S., Khairul, W. M. & Yamin, B. M. (2009). Acta Cryst. E65, o2519.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds