organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,3-Di­methyl­phen­yl)-1H-iso­indole-1,3(2H)-dione

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 10 August 2010; accepted 18 August 2010; online 28 August 2010)

In the title compound, C16H13NO2, the 2,3-dimethyl­phenyl group and the 1H-isoindole-1,3(2H)-dione group are essentially planar, with r.m.s. deviations of 0.006 and 0.013 Å, respectively, and are oriented at an angle of 78.19 (3)° with respect to each other. In the crystal, weak C—H⋯O inter­actions link the mol­ecules, forming a zigzag chain parallel to the b axis. Futhermore, C—H⋯π inter­actions are present between the C—H group of isoindole and the 2,3-dimethyl­phenyl benzene ring. The H atoms of the ortho-methyl group are statistically disordered over two positions. Such disorder might be related to the antagonism between intra­molecular steric repulsions and inter­molecular C—H⋯O inter­actions.

Related literature

For background to Schiff bases containing 2,3-dimethyl­aniline and for related structures, see: Bocelli & Cantoni (1989[Bocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1658-1660.]); Chandrashekar et al. (1983[Chandrashekar, K., Pattabhi, V. & Swaminathan, S. (1983). Pramana, 20, 19-22.]); Izotova et al. (2009[Izotova, L. Y., Ashurov, J. M., Ibragimov, B. T. & Weber, E. (2009). Acta Cryst. E65, o658.]); Sarfraz et al. (2010[Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.]); Tahir et al. (2010[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Tariq, R. H. (2010). Acta Cryst. E66, o2295.]); Tariq et al. (2010[Tariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Monoclinic, P 21 /c

  • a = 7.8222 (3) Å

  • b = 8.4576 (3) Å

  • c = 19.4863 (6) Å

  • β = 91.441 (2)°

  • V = 1288.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.993

  • 9849 measured reflections

  • 2320 independent reflections

  • 1819 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.04

  • 2320 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1—C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7F⋯O1i 0.96 2.52 3.3486 (19) 145
C8—H8CCg2ii 0.96 2.89 3.5644 (18) 128
C11—H11⋯Cg2iii 0.93 2.77 3.6798 (15) 166
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containing 2,3-dimethylaniline (Sarfraz et al., 2010), (Tahir et al., 2010) and (Tariq et al., 2010). As part of our continuing interest in Schiff bases containing 2,3-dimethylaniline, we report here the structure of the title compound (I).

The crystal structure of related compounds (II), N-phenylphthalimide (Izotova et al., 2009), (III) N-m-tolylphthalimide (Chandrashekar et al., 1983) and (IV) N-(o-tolyl)phthalimide (Bocelli & Cantoni, 1989) have been already published.

In (I), the 2,3-dimethylanilinic moiety A (C1—C8) and the 1H-isoindole-1,3(2H)-dione group B (C9—C15/N1/O1/O2) are planar with r. m. s. deviations of 0.0056 and 0.0131 Å, respectively. The dihedral angle between A/B is 78.19 (3)° (Fig. 1).

The H-atoms of the ortho-methyl group are statistically disordered over two positions. Such disorder might be related to the antagonism between intramolecular C-H···N and intermolecular C-H···O interactions (Table 1). The weak C—H···O interactions links the molecule forming a non continuous zig-zag chain parallel to the b axis owing to the statistical distribution of the H atoms. Weak C-H···π interactions are also present (Table 1, where Cg2 is the centroid of the phenyl ring C1—C6).

Related literature top

For background to Schiff bases containing 2,3-dimethylaniline and for related structures, see: Bocelli & Cantoni (1989); Chandrashekar et al. (1983); Izotova et al. (2009); Sarfraz et al. (2010); Tahir et al. (2010); Tariq et al. (2010).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and phthalic anhydride were refluxed in methanol for 48 h. The solution was kept at room temperature which affoarded white prism after 48 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

The difference Fourier map showed that H-atoms of ortho-methyl are disordered. They were then geometrically located and treated as riding using the tools (AFIX 123) available in SHELXL97 (Sheldrick, 2008)

Structure description top

We have reported crystal structures of Schiff bases containing 2,3-dimethylaniline (Sarfraz et al., 2010), (Tahir et al., 2010) and (Tariq et al., 2010). As part of our continuing interest in Schiff bases containing 2,3-dimethylaniline, we report here the structure of the title compound (I).

The crystal structure of related compounds (II), N-phenylphthalimide (Izotova et al., 2009), (III) N-m-tolylphthalimide (Chandrashekar et al., 1983) and (IV) N-(o-tolyl)phthalimide (Bocelli & Cantoni, 1989) have been already published.

In (I), the 2,3-dimethylanilinic moiety A (C1—C8) and the 1H-isoindole-1,3(2H)-dione group B (C9—C15/N1/O1/O2) are planar with r. m. s. deviations of 0.0056 and 0.0131 Å, respectively. The dihedral angle between A/B is 78.19 (3)° (Fig. 1).

The H-atoms of the ortho-methyl group are statistically disordered over two positions. Such disorder might be related to the antagonism between intramolecular C-H···N and intermolecular C-H···O interactions (Table 1). The weak C—H···O interactions links the molecule forming a non continuous zig-zag chain parallel to the b axis owing to the statistical distribution of the H atoms. Weak C-H···π interactions are also present (Table 1, where Cg2 is the centroid of the phenyl ring C1—C6).

For background to Schiff bases containing 2,3-dimethylaniline and for related structures, see: Bocelli & Cantoni (1989); Chandrashekar et al. (1983); Izotova et al. (2009); Sarfraz et al. (2010); Tahir et al. (2010); Tariq et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are represented by small circles of arbitrary radii.
2-(2,3-Dimethylphenyl)-1H-isoindole-1,3(2H)-dione top
Crystal data top
C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1819 reflections
a = 7.8222 (3) Åθ = 2.6–25.2°
b = 8.4576 (3) ŵ = 0.09 mm1
c = 19.4863 (6) ÅT = 296 K
β = 91.441 (2)°Prism, white
V = 1288.75 (8) Å30.30 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2320 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.6°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.980, Tmax = 0.993l = 2323
9849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2276P]
where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H13NO2V = 1288.75 (8) Å3
Mr = 251.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8222 (3) ŵ = 0.09 mm1
b = 8.4576 (3) ÅT = 296 K
c = 19.4863 (6) Å0.30 × 0.12 × 0.10 mm
β = 91.441 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2320 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1819 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.993Rint = 0.029
9849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
2320 reflectionsΔρmin = 0.13 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.49485 (18)0.42949 (17)0.22907 (6)0.0925 (5)
O20.79930 (14)0.38827 (14)0.03357 (5)0.0628 (3)
N10.61379 (16)0.38436 (14)0.12397 (6)0.0490 (3)
C10.49387 (19)0.26593 (18)0.10015 (7)0.0467 (4)
C20.53838 (18)0.10792 (18)0.10503 (6)0.0450 (4)
C30.41581 (19)0.00524 (18)0.08357 (7)0.0489 (4)
C40.2583 (2)0.0467 (2)0.05916 (7)0.0598 (4)
H40.17750.02780.04490.072*
C50.2167 (2)0.2044 (2)0.05521 (8)0.0671 (5)
H50.10920.23540.03880.080*
C60.3357 (2)0.3165 (2)0.07580 (8)0.0579 (4)
H60.30990.42370.07330.069*
C70.7094 (2)0.0574 (2)0.13251 (8)0.0591 (4)
H7A0.71650.05590.13180.089*0.50
H7B0.72470.09450.17880.089*0.50
H7C0.79700.10100.10460.089*0.50
H7D0.77560.14900.14500.089*0.50
H7E0.76750.00150.09800.089*0.50
H7F0.69510.00790.17230.089*0.50
C80.4548 (2)0.1781 (2)0.08813 (9)0.0665 (5)
H8A0.36200.23720.06770.100*
H8B0.46970.20790.13540.100*
H8C0.55790.20010.06420.100*
C90.6040 (2)0.45618 (19)0.18862 (7)0.0555 (4)
C100.75207 (18)0.56363 (17)0.19457 (7)0.0457 (4)
C110.8017 (2)0.66315 (19)0.24722 (7)0.0562 (4)
H110.73930.67070.28710.067*
C120.9479 (2)0.7513 (2)0.23830 (8)0.0622 (4)
H120.98480.81990.27290.075*
C131.0403 (2)0.7399 (2)0.17923 (9)0.0652 (5)
H131.13870.80050.17490.078*
C140.9898 (2)0.6399 (2)0.12609 (8)0.0565 (4)
H141.05200.63260.08620.068*
C150.84406 (18)0.55212 (16)0.13486 (7)0.0432 (3)
C160.75805 (19)0.43515 (17)0.08932 (7)0.0463 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0969 (10)0.1151 (11)0.0678 (8)0.0452 (9)0.0465 (8)0.0311 (7)
O20.0700 (8)0.0772 (8)0.0420 (6)0.0077 (6)0.0174 (5)0.0097 (5)
N10.0550 (8)0.0515 (7)0.0412 (6)0.0075 (6)0.0130 (5)0.0041 (5)
C10.0521 (9)0.0521 (9)0.0363 (7)0.0015 (7)0.0086 (6)0.0002 (6)
C20.0462 (8)0.0558 (9)0.0332 (7)0.0017 (7)0.0064 (6)0.0019 (6)
C30.0528 (9)0.0580 (9)0.0364 (7)0.0068 (7)0.0081 (6)0.0004 (6)
C40.0569 (10)0.0754 (12)0.0469 (9)0.0121 (9)0.0012 (7)0.0016 (8)
C50.0491 (10)0.0938 (14)0.0580 (10)0.0064 (10)0.0028 (8)0.0117 (9)
C60.0560 (10)0.0646 (10)0.0532 (9)0.0073 (8)0.0041 (7)0.0079 (8)
C70.0575 (10)0.0606 (10)0.0591 (9)0.0025 (8)0.0014 (8)0.0047 (8)
C80.0784 (13)0.0584 (10)0.0630 (10)0.0083 (9)0.0117 (9)0.0041 (8)
C90.0642 (10)0.0581 (10)0.0450 (8)0.0058 (8)0.0175 (7)0.0056 (7)
C100.0514 (9)0.0451 (8)0.0410 (7)0.0039 (7)0.0063 (6)0.0009 (6)
C110.0627 (11)0.0614 (10)0.0450 (8)0.0008 (8)0.0077 (7)0.0068 (7)
C120.0637 (11)0.0645 (11)0.0581 (10)0.0053 (9)0.0037 (8)0.0118 (8)
C130.0554 (10)0.0726 (12)0.0677 (11)0.0122 (9)0.0030 (8)0.0031 (9)
C140.0520 (10)0.0662 (10)0.0516 (9)0.0021 (8)0.0103 (7)0.0020 (8)
C150.0460 (8)0.0444 (8)0.0394 (7)0.0049 (7)0.0045 (6)0.0039 (6)
C160.0507 (9)0.0494 (9)0.0392 (7)0.0038 (7)0.0090 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—C91.1982 (17)C7—H7D0.9600
O2—C161.2079 (16)C7—H7E0.9600
N1—C161.3972 (17)C7—H7F0.9600
N1—C91.4025 (18)C8—H8A0.9600
N1—C11.4411 (19)C8—H8B0.9600
C1—C61.382 (2)C8—H8C0.9600
C1—C21.384 (2)C9—C101.474 (2)
C2—C31.411 (2)C10—C111.375 (2)
C2—C71.491 (2)C10—C151.3867 (18)
C3—C41.381 (2)C11—C121.380 (2)
C3—C81.496 (2)C11—H110.9300
C4—C51.375 (3)C12—C131.378 (2)
C4—H40.9300C12—H120.9300
C5—C61.381 (2)C13—C141.386 (2)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—C151.375 (2)
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600C15—C161.479 (2)
C7—H7C0.9600
C16—N1—C9111.33 (12)C2—C7—H7F109.5
C16—N1—C1125.81 (11)H7A—C7—H7F56.3
C9—N1—C1122.73 (11)H7B—C7—H7F56.3
C6—C1—C2122.96 (14)H7C—C7—H7F141.1
C6—C1—N1117.74 (14)H7D—C7—H7F109.5
C2—C1—N1119.25 (13)H7E—C7—H7F109.5
C1—C2—C3117.84 (14)C3—C8—H8A109.5
C1—C2—C7121.57 (14)C3—C8—H8B109.5
C3—C2—C7120.59 (14)H8A—C8—H8B109.5
C4—C3—C2118.69 (15)C3—C8—H8C109.5
C4—C3—C8120.68 (15)H8A—C8—H8C109.5
C2—C3—C8120.62 (15)H8B—C8—H8C109.5
C5—C4—C3122.39 (16)O1—C9—N1124.41 (15)
C5—C4—H4118.8O1—C9—C10129.49 (14)
C3—C4—H4118.8N1—C9—C10106.09 (11)
C4—C5—C6119.53 (16)C11—C10—C15121.76 (14)
C4—C5—H5120.2C11—C10—C9129.95 (13)
C6—C5—H5120.2C15—C10—C9108.29 (12)
C5—C6—C1118.59 (16)C10—C11—C12117.11 (14)
C5—C6—H6120.7C10—C11—H11121.4
C1—C6—H6120.7C12—C11—H11121.4
C2—C7—H7A109.5C13—C12—C11121.42 (15)
C2—C7—H7B109.5C13—C12—H12119.3
H7A—C7—H7B109.5C11—C12—H12119.3
C2—C7—H7C109.5C12—C13—C14121.41 (16)
H7A—C7—H7C109.5C12—C13—H13119.3
H7B—C7—H7C109.5C14—C13—H13119.3
C2—C7—H7D109.5C15—C14—C13117.26 (14)
H7A—C7—H7D141.1C15—C14—H14121.4
H7B—C7—H7D56.3C13—C14—H14121.4
H7C—C7—H7D56.3C14—C15—C10121.05 (13)
C2—C7—H7E109.5C14—C15—C16130.74 (12)
H7A—C7—H7E56.3C10—C15—C16108.21 (12)
H7B—C7—H7E141.1O2—C16—N1124.82 (14)
H7C—C7—H7E56.3O2—C16—C15129.14 (13)
H7D—C7—H7E109.5N1—C16—C15106.04 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1—C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7D···N10.962.392.868 (2)110
C7—H7F···O1i0.962.523.3486 (19)145
C8—H8C···Cg2ii0.962.893.5644 (18)128
C11—H11···Cg2iii0.932.773.6798 (15)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.8222 (3), 8.4576 (3), 19.4863 (6)
β (°) 91.441 (2)
V3)1288.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9849, 2320, 1819
Rint0.029
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.04
No. of reflections2320
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1—C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7D···N10.962.392.868 (2)110.4
C7—H7F···O1i0.962.523.3486 (19)145.1
C8—H8C···Cg2ii0.962.893.5644 (18)128
C11—H11···Cg2iii0.932.773.6798 (15)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1658–1660.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrashekar, K., Pattabhi, V. & Swaminathan, S. (1983). Pramana, 20, 19–22.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIzotova, L. Y., Ashurov, J. M., Ibragimov, B. T. & Weber, E. (2009). Acta Cryst. E65, o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Tariq, R. H. (2010). Acta Cryst. E66, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds