organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-{(E)-[4-(di­ethyl­amino)­phen­yl]imino­meth­yl}phenol

aDepartment of Chemistry, Anand Institute of Higher Technology, Kazhipattur, Chennai 603 103, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, cDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and dDepartment of Chemistry, Government Arts College, Melur 625 106, India
*Correspondence e-mail: as_pandian59@yahoo.com

(Received 11 June 2010; accepted 20 August 2010; online 28 August 2010)

In the title compound, C17H18BrClN2O, the dihedral angle between the aromatic rings is 3.0 (1)°. The methyl­ethanamine group assumes an extended conformation. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H⋯π and ππ [centroid–centroid distances = 3.691 (1) and 3.632 (1) Å] inter­actions.

Related literature

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]) and for their role in biological processes, see: May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Raja et al. (2008[Raja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, o2265.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18BrClN2O

  • Mr = 381.69

  • Monoclinic, P 21 /c

  • a = 11.3427 (3) Å

  • b = 10.9204 (3) Å

  • c = 14.3869 (4) Å

  • β = 111.418 (2)°

  • V = 1658.99 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.977

  • 19985 measured reflections

  • 4383 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.00

  • 4383 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.86 2.588 (2) 147
C16—H16ACg2i 0.96 2.90 3.814 (2) 157
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for a similar structure (Raja et al., 2008). The methylethanamine moiety assumes an extended conformation as can be seen from torsion angles C15–C14–N2–C11 of 76.5 (2)° and C17–C16–N2–C11 of -74.1 (2)°. The atoms Cl1, Br1 and O1 are deviated by -0.039 (1), 0.009 (1) and -0.040 (2)Å from the least square plane of the ring C1–C6 and also atoms N1 and N2 are deviated by 0.016 (2) and -0.029 (2)Å from the least square plane of the ring C8–C13. The dihedral angle between the aromatic rings is 3.0 (1)°, shows that both the rings(C1–C6 and C8–C13) are almost coplanar.

In addition to the van der Waals interactions, the crystal packing is stabilized by O–H···N and C–H···π hydrogen bonds (Table. 1) as well as by ππ electron interaction. The intramolecular O–H···N hydrogen bond which generates an S(6) ring motif (Fig.1) (Bernstein et al., 1995). The ππ electron interactions between the rings Cg1···Cg1 and Cg1···Cg2 at -x, 1 - y, 1 - z and -x, -y, 1 - z with the centroid–centroid distance equal to 3.691 (1) and 3.632 (1) Å, respectively are observed in the crystal structure [Cg1 and Cg2 are the centroids of the rings C1–C6 and C8–C13].

Related literature top

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007); Chen et al. (2008)and for their role in biological processes, see: May et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Raja et al. (2008).

Experimental top

An ethanoic solution (20 ml) N,N-Diethyl aniline (10 mmol) was magnetically stirred in a round bottom flask followed by dropwise addition of Bromo- Chloro Salicylaldehyde (10 mmol). The reaction mixture was then refluxed for three hours and upon cooling to 0°C an red crystalline solid precipitates from the mixture. The solid which is separated out was filtered washed with ice cold ethanol and dried in vaccuo over anhydrous CaCl2. Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All the H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with UisoH=1.2Ueq(C).

Structure description top

The Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for a similar structure (Raja et al., 2008). The methylethanamine moiety assumes an extended conformation as can be seen from torsion angles C15–C14–N2–C11 of 76.5 (2)° and C17–C16–N2–C11 of -74.1 (2)°. The atoms Cl1, Br1 and O1 are deviated by -0.039 (1), 0.009 (1) and -0.040 (2)Å from the least square plane of the ring C1–C6 and also atoms N1 and N2 are deviated by 0.016 (2) and -0.029 (2)Å from the least square plane of the ring C8–C13. The dihedral angle between the aromatic rings is 3.0 (1)°, shows that both the rings(C1–C6 and C8–C13) are almost coplanar.

In addition to the van der Waals interactions, the crystal packing is stabilized by O–H···N and C–H···π hydrogen bonds (Table. 1) as well as by ππ electron interaction. The intramolecular O–H···N hydrogen bond which generates an S(6) ring motif (Fig.1) (Bernstein et al., 1995). The ππ electron interactions between the rings Cg1···Cg1 and Cg1···Cg2 at -x, 1 - y, 1 - z and -x, -y, 1 - z with the centroid–centroid distance equal to 3.691 (1) and 3.632 (1) Å, respectively are observed in the crystal structure [Cg1 and Cg2 are the centroids of the rings C1–C6 and C8–C13].

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007); Chen et al. (2008)and for their role in biological processes, see: May et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Raja et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. The intramolecular O–H···N interaction is shown as dashed lines
[Figure 2] Fig. 2. The packing diagram of the title compound, view along the a axis.
2-Bromo-4-chloro-6-{(E)-[4-(diethylamino)phenyl]iminomethyl}phenol top
Crystal data top
C17H18BrClN2OF(000) = 776
Mr = 381.69Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4383 reflections
a = 11.3427 (3) Åθ = 1.9–28.9°
b = 10.9204 (3) ŵ = 2.64 mm1
c = 14.3869 (4) ÅT = 293 K
β = 111.418 (2)°Block, colourless
V = 1658.99 (8) Å30.21 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4383 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.972, Tmax = 0.977k = 1414
19985 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3262P]
where P = (Fo2 + 2Fc2)/3
4383 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H18BrClN2OV = 1658.99 (8) Å3
Mr = 381.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3427 (3) ŵ = 2.64 mm1
b = 10.9204 (3) ÅT = 293 K
c = 14.3869 (4) Å0.21 × 0.19 × 0.17 mm
β = 111.418 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4383 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2797 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.034
19985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
4383 reflectionsΔρmin = 0.28 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10155 (19)0.32018 (18)0.54970 (15)0.0458 (5)
H10.10230.29230.61060.055*
C20.17812 (19)0.41572 (19)0.50175 (15)0.0443 (5)
C30.17718 (19)0.45989 (18)0.41258 (15)0.0456 (5)
H30.22850.52560.38120.055*
C40.09947 (18)0.40567 (19)0.37050 (14)0.0434 (5)
C50.02201 (17)0.30769 (18)0.41549 (14)0.0412 (4)
C60.02323 (17)0.26536 (17)0.50738 (14)0.0398 (4)
C70.05636 (18)0.16390 (18)0.55862 (15)0.0450 (5)
H70.05440.13820.61970.054*
C80.20773 (17)0.01035 (17)0.57157 (15)0.0393 (4)
C90.28861 (19)0.03587 (18)0.52790 (14)0.0443 (5)
H90.28750.00190.46830.053*
C100.37053 (19)0.13055 (19)0.56995 (14)0.0457 (5)
H100.42380.15890.53850.055*
C110.37521 (17)0.18518 (17)0.65933 (14)0.0393 (4)
C120.29288 (18)0.13766 (18)0.70294 (15)0.0446 (5)
H120.29330.17120.76250.054*
C130.21127 (18)0.04266 (18)0.66006 (16)0.0441 (5)
H130.15770.01360.69100.053*
C140.5476 (2)0.3221 (2)0.66057 (16)0.0530 (5)
H14A0.50740.32630.58850.064*
H14B0.57450.40420.68460.064*
C150.6624 (2)0.2420 (3)0.6864 (2)0.0701 (7)
H15A0.63670.15910.66720.105*
H15B0.71500.27010.65150.105*
H15C0.70910.24540.75700.105*
C160.4686 (2)0.3271 (2)0.79959 (16)0.0576 (6)
H16A0.50810.40720.80840.069*
H16B0.38510.33730.80260.069*
C170.5454 (2)0.2467 (3)0.88435 (17)0.0756 (8)
H17A0.62950.23860.88400.113*
H17B0.54940.28260.94630.113*
H17C0.50660.16740.87710.113*
N10.12906 (14)0.10877 (15)0.52225 (12)0.0432 (4)
N20.45430 (15)0.28149 (15)0.70127 (12)0.0462 (4)
Cl10.27823 (7)0.48188 (6)0.55421 (5)0.07030 (19)
Br10.09834 (3)0.46511 (3)0.248320 (18)0.07298 (12)
O10.04963 (14)0.25578 (15)0.37088 (11)0.0584 (4)
H1A0.09420.20280.40740.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (12)0.0407 (11)0.0471 (11)0.0004 (9)0.0205 (9)0.0027 (9)
C20.0473 (11)0.0392 (11)0.0513 (12)0.0029 (9)0.0238 (9)0.0033 (9)
C30.0467 (11)0.0368 (11)0.0504 (12)0.0064 (9)0.0144 (9)0.0023 (9)
C40.0454 (11)0.0435 (12)0.0404 (10)0.0014 (9)0.0146 (9)0.0028 (9)
C50.0361 (10)0.0411 (11)0.0455 (11)0.0008 (8)0.0137 (8)0.0042 (9)
C60.0382 (10)0.0325 (10)0.0465 (11)0.0027 (8)0.0127 (8)0.0002 (9)
C70.0430 (11)0.0403 (11)0.0498 (11)0.0003 (9)0.0146 (9)0.0063 (9)
C80.0317 (9)0.0362 (10)0.0446 (10)0.0018 (8)0.0073 (8)0.0015 (8)
C90.0468 (11)0.0466 (12)0.0365 (9)0.0018 (9)0.0118 (8)0.0019 (9)
C100.0487 (11)0.0493 (13)0.0397 (10)0.0092 (9)0.0166 (9)0.0005 (9)
C110.0366 (10)0.0368 (10)0.0398 (10)0.0008 (8)0.0082 (8)0.0027 (8)
C120.0438 (11)0.0461 (12)0.0444 (10)0.0017 (9)0.0167 (9)0.0060 (9)
C130.0384 (10)0.0451 (12)0.0515 (11)0.0040 (9)0.0195 (9)0.0028 (10)
C140.0579 (13)0.0475 (13)0.0525 (12)0.0171 (10)0.0189 (10)0.0001 (10)
C150.0561 (14)0.0846 (19)0.0759 (16)0.0073 (13)0.0316 (13)0.0034 (15)
C160.0572 (14)0.0560 (14)0.0612 (14)0.0143 (11)0.0236 (11)0.0179 (12)
C170.0747 (17)0.103 (2)0.0468 (13)0.0149 (16)0.0191 (12)0.0031 (14)
N10.0349 (8)0.0399 (9)0.0490 (9)0.0008 (7)0.0085 (7)0.0018 (8)
N20.0459 (9)0.0451 (10)0.0462 (9)0.0102 (8)0.0152 (8)0.0054 (8)
Cl10.0855 (4)0.0679 (4)0.0736 (4)0.0250 (3)0.0482 (4)0.0040 (3)
Br10.0821 (2)0.0911 (2)0.05317 (15)0.02883 (15)0.03355 (13)0.02548 (13)
O10.0581 (9)0.0646 (11)0.0610 (9)0.0203 (8)0.0318 (8)0.0094 (8)
Geometric parameters (Å, º) top
C1—C21.372 (3)C11—N21.371 (2)
C1—C61.383 (3)C11—C121.401 (3)
C1—H10.9300C12—C131.377 (3)
C2—C31.374 (3)C12—H120.9300
C2—Cl11.734 (2)C13—H130.9300
C3—C41.373 (3)C14—N21.453 (3)
C3—H30.9300C14—C151.499 (3)
C4—C51.386 (3)C14—H14A0.9700
C4—Br11.878 (2)C14—H14B0.9700
C5—O11.332 (2)C15—H15A0.9600
C5—C61.405 (3)C15—H15B0.9600
C6—C71.449 (3)C15—H15C0.9600
C7—N11.277 (3)C16—N21.452 (3)
C7—H70.9300C16—C171.497 (3)
C8—C91.383 (3)C16—H16A0.9700
C8—C131.386 (3)C16—H16B0.9700
C8—N11.412 (2)C17—H17A0.9600
C9—C101.374 (3)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C10—C111.401 (3)O1—H1A0.8200
C10—H100.9300
C2—C1—C6119.89 (19)C13—C12—H12119.1
C2—C1—H1120.1C11—C12—H12119.1
C6—C1—H1120.1C12—C13—C8121.03 (19)
C1—C2—C3121.14 (19)C12—C13—H13119.5
C1—C2—Cl1119.54 (16)C8—C13—H13119.5
C3—C2—Cl1119.32 (16)N2—C14—C15114.65 (19)
C4—C3—C2119.05 (18)N2—C14—H14A108.6
C4—C3—H3120.5C15—C14—H14A108.6
C2—C3—H3120.5N2—C14—H14B108.6
C3—C4—C5121.78 (19)C15—C14—H14B108.6
C3—C4—Br1119.25 (15)H14A—C14—H14B107.6
C5—C4—Br1118.96 (15)C14—C15—H15A109.5
O1—C5—C4119.85 (18)C14—C15—H15B109.5
O1—C5—C6122.04 (17)H15A—C15—H15B109.5
C4—C5—C6118.11 (18)C14—C15—H15C109.5
C1—C6—C5120.02 (18)H15A—C15—H15C109.5
C1—C6—C7119.20 (18)H15B—C15—H15C109.5
C5—C6—C7120.78 (18)N2—C16—C17114.7 (2)
N1—C7—C6121.83 (19)N2—C16—H16A108.6
N1—C7—H7119.1C17—C16—H16A108.6
C6—C7—H7119.1N2—C16—H16B108.6
C9—C8—C13117.61 (18)C17—C16—H16B108.6
C9—C8—N1116.88 (18)H16A—C16—H16B107.6
C13—C8—N1125.51 (19)C16—C17—H17A109.5
C10—C9—C8121.93 (19)C16—C17—H17B109.5
C10—C9—H9119.0H17A—C17—H17B109.5
C8—C9—H9119.0C16—C17—H17C109.5
C9—C10—C11121.17 (19)H17A—C17—H17C109.5
C9—C10—H10119.4H17B—C17—H17C109.5
C11—C10—H10119.4C7—N1—C8122.49 (18)
N2—C11—C12121.54 (18)C11—N2—C16120.96 (17)
N2—C11—C10122.01 (18)C11—N2—C14120.81 (17)
C12—C11—C10116.44 (17)C16—N2—C14116.70 (16)
C13—C12—C11121.82 (19)C5—O1—H1A109.5
C6—C1—C2—C31.1 (3)C8—C9—C10—C110.3 (3)
C6—C1—C2—Cl1178.74 (15)C9—C10—C11—N2178.53 (18)
C1—C2—C3—C41.0 (3)C9—C10—C11—C120.3 (3)
Cl1—C2—C3—C4178.80 (15)N2—C11—C12—C13178.59 (18)
C2—C3—C4—C50.0 (3)C10—C11—C12—C130.3 (3)
C2—C3—C4—Br1179.70 (15)C11—C12—C13—C80.2 (3)
C3—C4—C5—O1178.33 (19)C9—C8—C13—C120.2 (3)
Br1—C4—C5—O11.4 (3)N1—C8—C13—C12179.17 (18)
C3—C4—C5—C60.9 (3)C6—C7—N1—C8179.57 (17)
Br1—C4—C5—C6179.36 (14)C9—C8—N1—C7175.52 (18)
C2—C1—C6—C50.1 (3)C13—C8—N1—C73.9 (3)
C2—C1—C6—C7179.53 (18)C12—C11—N2—C168.6 (3)
O1—C5—C6—C1178.37 (18)C10—C11—N2—C16172.58 (19)
C4—C5—C6—C10.9 (3)C12—C11—N2—C14174.04 (18)
O1—C5—C6—C71.3 (3)C10—C11—N2—C147.2 (3)
C4—C5—C6—C7179.49 (18)C17—C16—N2—C1174.1 (2)
C1—C6—C7—N1178.95 (18)C17—C16—N2—C1491.9 (2)
C5—C6—C7—N10.7 (3)C15—C14—N2—C1176.5 (2)
C13—C8—C9—C100.3 (3)C15—C14—N2—C1689.5 (2)
N1—C8—C9—C10179.17 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.588 (2)147
C16—H16A···Cg2i0.962.903.814 (2)157
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H18BrClN2O
Mr381.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.3427 (3), 10.9204 (3), 14.3869 (4)
β (°) 111.418 (2)
V3)1658.99 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
19985, 4383, 2797
Rint0.034
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.00
No. of reflections4383
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.588 (2)147
C16—H16A···Cg2i0.962.903.814 (2)157
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

KM and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, o2265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds