organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,10-C-meso-3,5,7,7,10,12,14,14-Octa­methyl-4,11-di­aza-1,8-diazo­nia­cyclo­tetra­decane bis­­(perchlorate)

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 29 July 2010; accepted 29 July 2010; online 4 August 2010)

The structure determination of the title salt, C18H42N42+·2ClO4, reveals that protonation has occurred at diagonally opposite amine N atoms. Intra­molecular N—H⋯N hydrogen bonds stabilize the conformation of the dication. In the crystal, the dications are bridged by perchlorate ions via N—H⋯O hydrogen bonds into supra­molecular chains propagating along the c axis and weak C—H⋯O inter­actions cross-link the chains.

Related literature

For background to macrocycles and for related structures, see: Benson et al. (2006[Benson, R. E., Roy, T. G., Hazari, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o1968-o1970.]); Roy et al. (2006[Roy, T. G., Hazari, S. K. S., Dey, B. K., Sutradhar, R., Dey, L., Anowar, N. & Tiekink, E. R. T. (2006). J. Coord. Chem. 59, 351-362.], 2008[Roy, T. G., Hazari, S. K. S., Barua, K. K., Kim, D. I., Park, Y. C. & Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 637-646.]); Hazari et al. (2008[Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]). For the synthesis, see: Curtis et al. (1969[Curtis, N. F., Swann, D. A., Waters, T. N. & Maxwell, I. E. (1969). J. Am. Chem. Soc. 91, 4588-4589.]); Bembi et al. (1989[Bembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701-3705.]).

[Scheme 1]

Experimental

Crystal data
  • C18H42N42+·2ClO4

  • Mr = 513.46

  • Monoclinic, P 21 /c

  • a = 8.868 (2) Å

  • b = 16.297 (3) Å

  • c = 17.754 (5) Å

  • β = 102.088 (5)°

  • V = 2508.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 98 K

  • 0.35 × 0.10 × 0.03 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.695, Tmax = 1

  • 54635 measured reflections

  • 4387 independent reflections

  • 4279 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.240

  • S = 1.19

  • 4387 reflections

  • 295 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2n⋯N11 0.92 2.07 2.841 (4) 140
N8—H9n⋯N4 0.92 1.95 2.763 (5) 146
N1—H1n⋯O2 0.92 2.37 2.963 (4) 122
N1—H1n⋯O7i 0.92 2.41 3.169 (4) 140
N1—H2n⋯N4 0.92 2.56 2.929 (4) 105
N4—H4n⋯O6 0.88 2.38 3.212 (4) 158
N8—H8n⋯O1 0.92 2.02 2.937 (5) 177
N11—H11n⋯O6 0.88 2.24 3.087 (5) 162
C2—H2a⋯O1ii 0.99 2.57 3.109 (5) 114
C9—H9a⋯O5iii 0.99 2.57 3.498 (6) 155
C12a—H12b⋯O8 0.98 2.56 3.487 (5) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title salt (I) was characterized during studies of macrocyclic ligands of this type as well as their transition metal complexes (Benson et al., 2006; Roy et al., 2006; Hazari et al., 2008; Roy et al., 2008). The asymmetric unit of (I) comprises one di-protonated macrocyclic ligand and two perchlorate anions, Fig. 1. The observed conformation and pattern of protonation (i.e. at the diagonally opposite N1 and N8 atoms) in the di-cation conforms to expectation (Hazari et al., 2008). The presence of N–H···N hydrogen bonds within the cavity is noted, Table 1. The remaining N–H groups form N–H···O hydrogen bonds to perchlorate-O atoms, Table 1. The perchlorate ions serve to bridge the cations to form a supramolecular chain along the c axis and connections between these, i.e. via C–H···O contacts, lead to the formation of a supramolecular layer in the ac plane. Layers stack along the b axis, Fig. 3.

Related literature top

For background to macrocycles and for related structures, see: Benson et al. (2006); Roy et al. (2006, 2008); Hazari et al. (2008). For the synthesis, see: Curtis et al. (1969); Bembi et al. (1989).

Experimental top

The compound 3,10-C-meso-3,5,7,7,10,12,14,14—octamethyl-4,11-diaza-1,8-diazoniacyclotetradecadiene (Curtis et al., 1969), on reduction with NaBH4, yields an isomeric mixture of saturated macrocycles, the Me8[14] anes, which have been resolved into three distinct isomers (Bembi et al., 1989). During synthesis of Fe(III) complex of one of the isomers, LC (Bembi et al., 1989), this isomeric ligand on heating with slightly acidic methanolic solution of Fe2(ClO4)3.6H2O in the ratio of 1:2, followed by cooling and slow evaporation at room temperature for a few days produced yellow-orange prisms of (I).

Refinement top

All N– and C-bound H atoms were allowed to ride on their parent atoms at N–H and C–H distances of 0.88–0.92 Å and 0.92–1.00 Å, respectively, and with Uiso(H) values of 1.2–1.5Ueq(parent atom).

Structure description top

The title salt (I) was characterized during studies of macrocyclic ligands of this type as well as their transition metal complexes (Benson et al., 2006; Roy et al., 2006; Hazari et al., 2008; Roy et al., 2008). The asymmetric unit of (I) comprises one di-protonated macrocyclic ligand and two perchlorate anions, Fig. 1. The observed conformation and pattern of protonation (i.e. at the diagonally opposite N1 and N8 atoms) in the di-cation conforms to expectation (Hazari et al., 2008). The presence of N–H···N hydrogen bonds within the cavity is noted, Table 1. The remaining N–H groups form N–H···O hydrogen bonds to perchlorate-O atoms, Table 1. The perchlorate ions serve to bridge the cations to form a supramolecular chain along the c axis and connections between these, i.e. via C–H···O contacts, lead to the formation of a supramolecular layer in the ac plane. Layers stack along the b axis, Fig. 3.

For background to macrocycles and for related structures, see: Benson et al. (2006); Roy et al. (2006, 2008); Hazari et al. (2008). For the synthesis, see: Curtis et al. (1969); Bembi et al. (1989).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular array in (I) showing N–H···O hydrogen bonds and C–H···O contacts as orange and blue dashed lines, respectively. Colour code: Cl (cyan), O (red), N (blue), C (grey) & H (green).
[Figure 3] Fig. 3. Stacking of layers along the b axis in (I). The C–H···O contacts are shown as blue dashed lines. Colour code: Cl (cyan), O (red), N (blue), C (grey) & H (green).
3,10-C-meso-3,5,7,7,10,12,14,14-Octamethyl-4,11-diaza-1,8- diazoniacyclotetradecane bis(perchlorate) top
Crystal data top
C18H42N42+·2ClO4F(000) = 1104
Mr = 513.46Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7813 reflections
a = 8.868 (2) Åθ = 2.4–30.4°
b = 16.297 (3) ŵ = 0.31 mm1
c = 17.754 (5) ÅT = 98 K
β = 102.088 (5)°Prism, yellow-orange
V = 2508.9 (10) Å30.35 × 0.10 × 0.03 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4387 independent reflections
Radiation source: fine-focus sealed tube4279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.695, Tmax = 1k = 1919
54635 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.128P)2 + 4.0207P]
where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.85 e Å3
2 restraintsΔρmin = 0.73 e Å3
Crystal data top
C18H42N42+·2ClO4V = 2508.9 (10) Å3
Mr = 513.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.868 (2) ŵ = 0.31 mm1
b = 16.297 (3) ÅT = 98 K
c = 17.754 (5) Å0.35 × 0.10 × 0.03 mm
β = 102.088 (5)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4387 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4279 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 1Rint = 0.055
54635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0782 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.19Δρmax = 0.85 e Å3
4387 reflectionsΔρmin = 0.73 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11642 (10)0.18918 (6)0.58280 (6)0.0337 (3)
Cl20.40297 (12)0.32683 (6)0.27709 (6)0.0372 (3)
O10.2173 (4)0.1783 (4)0.5090 (2)0.0900 (17)
O20.0398 (3)0.18064 (16)0.57180 (16)0.0351 (6)
O30.1414 (4)0.2682 (2)0.6113 (2)0.0641 (11)
O40.1502 (6)0.1294 (3)0.6341 (3)0.0955 (17)
O50.5140 (4)0.2692 (2)0.3177 (2)0.0593 (9)
O60.2511 (4)0.2976 (2)0.28141 (18)0.0506 (8)
O70.4141 (4)0.3316 (2)0.19821 (18)0.0551 (9)
O80.4289 (4)0.4058 (2)0.3127 (2)0.0608 (10)
N10.3158 (3)0.26608 (17)0.54123 (17)0.0251 (6)
H1N0.29390.22960.57700.030*
H2N0.23060.26830.50150.030*
N40.2753 (3)0.15534 (18)0.40857 (16)0.0253 (6)
H4N0.29730.19510.37910.030*
N80.0379 (4)0.18381 (18)0.38755 (18)0.0280 (7)
H8N0.09260.18010.42610.034*
H9N0.06460.18830.41100.034*
N110.1144 (4)0.35008 (19)0.42023 (18)0.0292 (7)
H11N0.15600.34700.37950.035*
C20.4467 (4)0.2319 (2)0.5101 (2)0.0287 (8)
H2A0.53920.22810.55230.034*
H2B0.47080.26980.47070.034*
C30.4093 (4)0.1473 (2)0.4745 (2)0.0276 (8)
H30.50000.12840.45390.033*
C3A0.3788 (5)0.0843 (2)0.5324 (2)0.0347 (9)
H3A10.35460.03130.50660.052*
H3A20.29150.10220.55420.052*
H3A30.47060.07860.57380.052*
C50.2380 (4)0.0798 (2)0.3613 (2)0.0284 (8)
H50.22720.03340.39660.034*
C5A0.3644 (4)0.0571 (3)0.3177 (2)0.0352 (9)
H5A10.46210.04870.35470.053*
H5A20.37630.10160.28230.053*
H5A30.33560.00640.28850.053*
C60.0830 (4)0.0920 (2)0.3062 (2)0.0298 (8)
H6A0.06400.04410.27130.036*
H6B0.09100.14090.27420.036*
C70.0589 (4)0.1032 (2)0.3428 (2)0.0277 (8)
C7A0.0691 (5)0.0366 (2)0.4014 (2)0.0371 (9)
H7A10.15930.04650.42390.056*
H7A20.02440.03740.44210.056*
H7A30.07900.01700.37590.056*
C7B0.2054 (4)0.1054 (3)0.2809 (2)0.0359 (9)
H7B10.19740.14870.24360.054*
H7B20.29370.11650.30460.054*
H7B30.21990.05230.25440.054*
C90.0841 (5)0.2612 (2)0.3447 (2)0.0359 (9)
H9A0.19520.25850.32050.043*
H9B0.02590.26670.30310.043*
C100.0545 (5)0.3363 (2)0.3968 (3)0.0388 (10)
H100.09390.32400.44440.047*
C10A0.1490 (5)0.4068 (3)0.3556 (4)0.0603 (15)
H10A0.13330.45570.38840.091*
H10B0.25850.39190.34440.091*
H10C0.11630.41840.30720.091*
C120.1636 (4)0.4273 (2)0.4622 (2)0.0303 (8)
H120.08780.44060.49500.036*
C12A0.1744 (5)0.5016 (2)0.4101 (2)0.0382 (9)
H12A0.07390.51110.37590.057*
H12B0.25160.49070.37920.057*
H12C0.20450.55030.44210.057*
C130.3223 (4)0.4157 (2)0.5151 (2)0.0307 (8)
H13A0.35470.46910.53980.037*
H13B0.39640.40170.48240.037*
C140.3374 (4)0.3508 (2)0.5788 (2)0.0283 (8)
C14A0.2108 (4)0.3575 (2)0.6251 (2)0.0303 (8)
H14A0.10960.35390.59020.045*
H14B0.21980.41030.65220.045*
H14C0.22170.31270.66270.045*
C14B0.4963 (4)0.3570 (2)0.6320 (2)0.0324 (8)
H14D0.50520.31570.67280.049*
H14E0.50950.41190.65500.049*
H14F0.57610.34740.60230.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0281 (5)0.0333 (5)0.0438 (6)0.0019 (3)0.0170 (4)0.0056 (4)
Cl20.0403 (6)0.0380 (6)0.0367 (6)0.0025 (4)0.0157 (4)0.0013 (4)
O10.0288 (18)0.183 (5)0.060 (2)0.005 (2)0.0121 (16)0.045 (3)
O20.0232 (13)0.0397 (15)0.0448 (16)0.0018 (11)0.0129 (12)0.0050 (12)
O30.050 (2)0.0422 (19)0.108 (3)0.0004 (15)0.033 (2)0.0312 (19)
O40.105 (4)0.058 (2)0.156 (4)0.017 (2)0.099 (3)0.041 (3)
O50.054 (2)0.059 (2)0.064 (2)0.0037 (16)0.0102 (17)0.0140 (17)
O60.0411 (18)0.065 (2)0.0484 (18)0.0130 (15)0.0167 (14)0.0025 (15)
O70.066 (2)0.064 (2)0.0416 (18)0.0099 (17)0.0256 (16)0.0037 (15)
O80.059 (2)0.048 (2)0.079 (2)0.0058 (16)0.0246 (19)0.0237 (17)
N10.0215 (14)0.0253 (15)0.0294 (15)0.0008 (11)0.0076 (12)0.0010 (12)
N40.0254 (15)0.0241 (15)0.0266 (15)0.0005 (12)0.0060 (12)0.0015 (11)
N80.0244 (15)0.0257 (16)0.0331 (16)0.0010 (11)0.0038 (12)0.0012 (12)
N110.0270 (16)0.0243 (15)0.0351 (17)0.0005 (12)0.0034 (13)0.0022 (13)
C20.0209 (16)0.0318 (19)0.0351 (19)0.0021 (14)0.0100 (14)0.0056 (15)
C30.0215 (17)0.0288 (19)0.0335 (19)0.0040 (14)0.0077 (14)0.0035 (15)
C3A0.042 (2)0.0269 (19)0.0326 (19)0.0072 (16)0.0011 (16)0.0004 (15)
C50.0285 (18)0.0262 (18)0.0306 (18)0.0004 (14)0.0066 (15)0.0007 (14)
C5A0.033 (2)0.040 (2)0.033 (2)0.0050 (16)0.0093 (16)0.0067 (16)
C60.0291 (19)0.0305 (19)0.0285 (18)0.0015 (15)0.0031 (15)0.0012 (14)
C70.0265 (18)0.0245 (18)0.0322 (18)0.0002 (14)0.0063 (15)0.0017 (14)
C7A0.037 (2)0.029 (2)0.047 (2)0.0034 (16)0.0130 (18)0.0046 (17)
C7B0.030 (2)0.039 (2)0.037 (2)0.0044 (16)0.0045 (16)0.0062 (17)
C90.0295 (19)0.0266 (19)0.046 (2)0.0020 (15)0.0040 (17)0.0040 (16)
C100.029 (2)0.028 (2)0.057 (3)0.0031 (15)0.0028 (18)0.0041 (18)
C10A0.038 (2)0.036 (2)0.098 (4)0.0065 (19)0.009 (3)0.004 (2)
C120.0304 (19)0.0231 (18)0.039 (2)0.0022 (14)0.0106 (16)0.0008 (15)
C12A0.042 (2)0.0270 (19)0.045 (2)0.0008 (16)0.0084 (18)0.0078 (16)
C130.0320 (19)0.0232 (18)0.037 (2)0.0056 (14)0.0078 (16)0.0025 (15)
C140.0271 (18)0.0242 (18)0.0342 (19)0.0027 (14)0.0077 (15)0.0041 (14)
C14A0.0298 (19)0.0287 (18)0.0336 (19)0.0019 (14)0.0095 (15)0.0044 (15)
C14B0.0285 (19)0.032 (2)0.035 (2)0.0031 (15)0.0044 (15)0.0068 (15)
Geometric parameters (Å, º) top
Cl1—O41.408 (4)C6—C71.542 (5)
Cl1—O31.418 (3)C6—H6A0.9900
Cl1—O11.435 (4)C6—H6B0.9900
Cl1—O21.445 (3)C7—C7B1.516 (5)
Cl2—O71.427 (3)C7—C7A1.520 (5)
Cl2—O81.431 (3)C7A—H7A10.9800
Cl2—O51.440 (4)C7A—H7A20.9800
Cl2—O61.446 (3)C7A—H7A30.9800
N1—C21.493 (4)C7B—H7B10.9800
N1—C141.528 (4)C7B—H7B20.9800
N1—H1N0.9200C7B—H7B30.9800
N1—H2N0.9200C9—C101.524 (6)
N4—C51.489 (4)C9—H9A0.9900
N4—C31.489 (4)C9—H9B0.9900
N4—H4N0.8800C10—C10A1.517 (6)
N8—C91.485 (5)C10—H101.0000
N8—C71.526 (4)C10A—H10A0.9800
N8—H8N0.9200C10A—H10B0.9800
N8—H9N0.9200C10A—H10C0.9800
N11—C121.481 (5)C12—C131.531 (5)
N11—C101.485 (5)C12—C12A1.539 (5)
N11—H11N0.8800C12—H121.0000
C2—C31.524 (5)C12A—H12A0.9800
C2—H2A0.9900C12A—H12B0.9800
C2—H2B0.9900C12A—H12C0.9800
C3—C3A1.518 (5)C13—C141.533 (5)
C3—H31.0000C13—H13A0.9900
C3A—H3A10.9800C13—H13B0.9900
C3A—H3A20.9800C14—C14B1.526 (5)
C3A—H3A30.9800C14—C14A1.529 (5)
C5—C61.523 (5)C14A—H14A0.9800
C5—C5A1.534 (5)C14A—H14B0.9800
C5—H51.0000C14A—H14C0.9800
C5A—H5A10.9800C14B—H14D0.9800
C5A—H5A20.9800C14B—H14E0.9800
C5A—H5A30.9800C14B—H14F0.9800
O4—Cl1—O3109.1 (3)C7B—C7—C6110.4 (3)
O4—Cl1—O1109.2 (3)C7A—C7—C6112.0 (3)
O3—Cl1—O1108.9 (3)N8—C7—C6107.4 (3)
O4—Cl1—O2111.1 (2)C7—C7A—H7A1109.5
O3—Cl1—O2111.18 (19)C7—C7A—H7A2109.5
O1—Cl1—O2107.27 (19)H7A1—C7A—H7A2109.5
O7—Cl2—O8110.3 (2)C7—C7A—H7A3109.5
O7—Cl2—O5110.3 (2)H7A1—C7A—H7A3109.5
O8—Cl2—O5109.6 (2)H7A2—C7A—H7A3109.5
O7—Cl2—O6109.1 (2)C7—C7B—H7B1109.5
O8—Cl2—O6109.7 (2)C7—C7B—H7B2109.5
O5—Cl2—O6107.8 (2)H7B1—C7B—H7B2109.5
C2—N1—C14117.5 (3)C7—C7B—H7B3109.5
C2—N1—H1N107.9H7B1—C7B—H7B3109.5
C14—N1—H1N107.9H7B2—C7B—H7B3109.5
C2—N1—H2N107.9N8—C9—C10112.2 (3)
C14—N1—H2N107.9N8—C9—H9A109.2
H1N—N1—H2N107.2C10—C9—H9A109.2
C5—N4—C3114.7 (3)N8—C9—H9B109.2
C5—N4—H4N109.0C10—C9—H9B109.2
C3—N4—H4N107.0H9A—C9—H9B107.9
C9—N8—C7118.3 (3)N11—C10—C10A116.3 (4)
C9—N8—H8N107.7N11—C10—C9109.1 (3)
C7—N8—H8N107.7C10A—C10—C9107.9 (4)
C9—N8—H9N107.7N11—C10—H10107.7
C7—N8—H9N107.7C10A—C10—H10107.7
H8N—N8—H9N107.1C9—C10—H10107.7
C12—N11—C10116.3 (3)C10—C10A—H10A109.5
C12—N11—H11N109.5C10—C10A—H10B109.5
C10—N11—H11N109.5H10A—C10A—H10B109.5
N1—C2—C3111.9 (3)C10—C10A—H10C109.5
N1—C2—H2A109.2H10A—C10A—H10C109.5
C3—C2—H2A109.2H10B—C10A—H10C109.5
N1—C2—H2B109.2N11—C12—C13109.9 (3)
C3—C2—H2B109.2N11—C12—C12A114.5 (3)
H2A—C2—H2B107.9C13—C12—C12A107.5 (3)
N4—C3—C3A111.4 (3)N11—C12—H12108.3
N4—C3—C2108.4 (3)C13—C12—H12108.3
C3A—C3—C2112.7 (3)C12A—C12—H12108.3
N4—C3—H3108.1C12—C12A—H12A109.5
C3A—C3—H3108.1C12—C12A—H12B109.5
C2—C3—H3108.1H12A—C12A—H12B109.5
C3—C3A—H3A1109.5C12—C12A—H12C109.5
C3—C3A—H3A2109.5H12A—C12A—H12C109.5
H3A1—C3A—H3A2109.5H12B—C12A—H12C109.5
C3—C3A—H3A3109.5C12—C13—C14117.7 (3)
H3A1—C3A—H3A3109.5C12—C13—H13A107.9
H3A2—C3A—H3A3109.5C14—C13—H13A107.9
N4—C5—C6108.5 (3)C12—C13—H13B107.9
N4—C5—C5A112.6 (3)C14—C13—H13B107.9
C6—C5—C5A111.4 (3)H13A—C13—H13B107.2
N4—C5—H5108.1C14B—C14—N1110.2 (3)
C6—C5—H5108.1C14B—C14—C14A110.4 (3)
C5A—C5—H5108.1N1—C14—C14A105.1 (3)
C5—C5A—H5A1109.5C14B—C14—C13109.7 (3)
C5—C5A—H5A2109.5N1—C14—C13108.5 (3)
H5A1—C5A—H5A2109.5C14A—C14—C13112.8 (3)
C5—C5A—H5A3109.5C14—C14A—H14A109.5
H5A1—C5A—H5A3109.5C14—C14A—H14B109.5
H5A2—C5A—H5A3109.5H14A—C14A—H14B109.5
C5—C6—C7116.9 (3)C14—C14A—H14C109.5
C5—C6—H6A108.1H14A—C14A—H14C109.5
C7—C6—H6A108.1H14B—C14A—H14C109.5
C5—C6—H6B108.1C14—C14B—H14D109.5
C7—C6—H6B108.1C14—C14B—H14E109.5
H6A—C6—H6B107.3H14D—C14B—H14E109.5
C7B—C7—C7A110.3 (3)C14—C14B—H14F109.5
C7B—C7—N8110.5 (3)H14D—C14B—H14F109.5
C7A—C7—N8106.0 (3)H14E—C14B—H14F109.5
C14—N1—C2—C3180.0 (3)C7—N8—C9—C10179.3 (3)
C5—N4—C3—C3A63.2 (4)C12—N11—C10—C10A49.5 (5)
C5—N4—C3—C2172.2 (3)C12—N11—C10—C9171.8 (3)
N1—C2—C3—N462.0 (4)N8—C9—C10—N1170.5 (4)
N1—C2—C3—C3A61.8 (4)N8—C9—C10—C10A162.3 (4)
C3—N4—C5—C6169.6 (3)C10—N11—C12—C13152.2 (3)
C3—N4—C5—C5A66.6 (4)C10—N11—C12—C12A86.7 (4)
N4—C5—C6—C763.7 (4)N11—C12—C13—C1461.2 (4)
C5A—C5—C6—C7171.8 (3)C12A—C12—C13—C14173.6 (3)
C9—N8—C7—C7B37.0 (4)C2—N1—C14—C14B44.5 (4)
C9—N8—C7—C7A156.5 (3)C2—N1—C14—C14A163.4 (3)
C9—N8—C7—C683.6 (4)C2—N1—C14—C1375.7 (4)
C5—C6—C7—C7B173.8 (3)C12—C13—C14—C14B171.8 (3)
C5—C6—C7—C7A50.5 (4)C12—C13—C14—N167.7 (4)
C5—C6—C7—N865.6 (4)C12—C13—C14—C14A48.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2n···N110.922.072.841 (4)140
N8—H9n···N40.921.952.763 (5)146
N1—H1n···O20.922.372.963 (4)122
N1—H1n···O7i0.922.413.169 (4)140
N1—H2n···N40.922.562.929 (4)105
N4—H4n···O60.882.383.212 (4)158
N8—H8n···O10.922.022.937 (5)177
N11—H11n···O60.882.243.087 (5)162
C2—H2a···O1ii0.992.573.109 (5)114
C9—H9a···O5iii0.992.573.498 (6)155
C12a—H12b···O80.982.563.487 (5)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H42N42+·2ClO4
Mr513.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)8.868 (2), 16.297 (3), 17.754 (5)
β (°) 102.088 (5)
V3)2508.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.10 × 0.03
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.695, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
54635, 4387, 4279
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.240, 1.19
No. of reflections4387
No. of parameters295
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.73

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2n···N110.922.072.841 (4)140
N8—H9n···N40.921.952.763 (5)146
N1—H1n···O20.922.372.963 (4)122
N1—H1n···O7i0.922.413.169 (4)140
N1—H2n···N40.922.562.929 (4)105
N4—H4n···O60.882.383.212 (4)158
N8—H8n···O10.922.022.937 (5)177
N11—H11n···O60.882.243.087 (5)162
C2—H2a···O1ii0.992.573.109 (5)114
C9—H9a···O5iii0.992.573.498 (6)155
C12a—H12b···O80.982.563.487 (5)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the Ministry of National Science, Information & Communication Technology (NSICT), Bangladesh, for the award of a research grant to TGR and a research fellowship to KKB.

References

First citationBembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701–3705.  CrossRef CAS Web of Science Google Scholar
First citationBenson, R. E., Roy, T. G., Hazari, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o1968–o1970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCurtis, N. F., Swann, D. A., Waters, T. N. & Maxwell, I. E. (1969). J. Am. Chem. Soc. 91, 4588–4589.  CSD CrossRef CAS Web of Science Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Barua, K. K., Kim, D. I., Park, Y. C. & Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 637–646.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Sutradhar, R., Dey, L., Anowar, N. & Tiekink, E. R. T. (2006). J. Coord. Chem. 59, 351–362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds