organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 9| September 2010| Pages o2410-o2411

(2E)-N′-[(E)-4-Chloro­benzyl­­idene]-3-phenyl­prop-2-enohydrazide monohydrate

aFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bPrograma de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil, cLaboratório de Avaliação e Síntese de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902 Rio de Janeiro, RJ, Brazil, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, eCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 31 July 2010; accepted 23 August 2010; online 28 August 2010)

The conformation about each of the imine and ethene bonds in the title hydrazide hydrate, C16H13ClN2O·H2O, is E. The hydrazide mol­ecule is approximately planar (r.m.s. deviation of the 20 non-H atoms = 0.172 Å). The most significant twist occurs about the ethene bond [C—C=C—C = 164.1 (5)°] and the dihedral angle formed between the benzene rings is 5.3 (2)°]. In the crystal, the presence of N—H⋯Ow and O—H⋯Oc (× 2; w = water and c = carbon­yl) hydrogen bonds leads to a supra­molecular array in the bc plane.

Related literature

For background to the resurgence of tuberculosis; see Bezerra et al. (2006[Bezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res. 39, 801-807.]); Chung & Shin (2007[Chung, H. S. & Shin, J. C. (2007). Food Chem. 104, 1670-1677.]); Naz et al. (2006[Naz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res. 161, 43-48.]). For background to the biological activity of trans-cinnamic acid derivatives, see: Carvalho et al. (2008[Carvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538-541.]). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008[Carvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538-541.], 2009[Carvalho, S. A., da Silva, E. F., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2O·H2O

  • Mr = 302.75

  • Monoclinic, P 21 /c

  • a = 34.078 (3) Å

  • b = 5.9824 (6) Å

  • c = 7.2912 (6) Å

  • β = 95.674 (3)°

  • V = 1479.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.10 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.492, Tmax = 1.000

  • 8532 measured reflections

  • 2572 independent reflections

  • 2016 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.196

  • S = 1.05

  • 2572 reflections

  • 199 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1w 0.86 (2) 1.97 (3) 2.811 (6) 165 (5)
O1w—H1w⋯O1i 0.84 (5) 2.05 (5) 2.877 (5) 166 (4)
O1w—H2w⋯O1ii 0.85 (4) 2.10 (4) 2.923 (5) 165 (5)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tuberculosis (TB) remains among the world's great public health challenges. Worldwide resurgence of TB is due to two major problems: the AIDS epidemic, which started in the mid-1980's, and the outbreak of multi-drug resistant (MDR) TB (Bezerra et al., 2006; Chung & Shin 2007; Naz et al., 2006). In connection with on-going studies designed to generate novel therapeutic anti-malarial agents, we recently described a new class of isonicotinic and benzoic acid N'-(3-phenyl-acryloyl)hydrazide derivatives as attractive anti-tubercular agents (Carvalho et al., 2008). Allied with these investigations are structural studies: the structure of N'-[(2E)-3-phenylprop-2-enoyl]benzohydrazide was recently reported by us (Carvalho et al., 2009). We have synthesized for biological study a series of PhCHCHCONHNCHC6H4X compounds and now we report the crystal and molecular structure of one of these (1: X = Cl).

The asymmetric unit of (I) comprises the hydrazide molecule and a water molecule of crystallization. Despite there being twists in the molecule of (I), Fig. 1, the r.m.s. deviation of the 20 non-hydrogen atoms is 0.172 Å [max. and min. deviations = 0.284 (4) for atom N2 and -0.362 (1) Å for the Cl atom]. The dihedral angle formed between the peripheral benzene rings is 5.3 (2) °. The major twist in the molecule occurs about the C9C10 bond as seen in the value of the C9–C10–C11–C12 torsion angle of 164.1 (5) °. The conformation about the imine [N1C7 = 1.283 (6) Å] and ethene [C9C10 = 1.328 (7) Å] bonds is E in each case.

The N2–H atom forms a hydrogen bond with the water molecule of crystallization and each O–H forms a hydrogen bond to a symmetry related amide-O, Table 1. The result of the hydrogen bonding is the formation of a supramolecular array in the bc plane, Fig. 2, and these stack along the a axis, Fig. 3.

Related literature top

For background to the resurgence of tuberculosis; see Bezerra et al. (2006); Chung & Shin (2007); Naz et al. (2006). For background to the biological activity of trans-cinnamic acid derivatives, see: Carvalho et al. (2008). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008, 2009).

Experimental top

The title compound was obtained from the reaction between PhCHCHC( O)NHNH2 and 4-chlorobenzaldehyde in ethanol. The mixture was stirred at room temperature for 30 min, when extensive precipitation was observed. The mixture was poured onto cold water and then neutralized with 10% aqueous sodium bicarbonate solution. The sample for X-ray structure determination was grown from its EtOH solution to yield colourless blocks of (I); yield 87%, m.pt. 484.3 K. 1H NMR (500.00 MHz, DMSO-d6) δ: 6.72 (1H, d, J = 16.0 Hz), 7.44 (3H, m), 7.53 (2H, d, J = 8.0 Hz), 7.65 (2H, m), 7.79 (3H, m), 8.06 and 8.25 (1H, s, syn / anti-E isomer), 11.61 and 11.77 (1H, s, syn / anti-E isomer) p.p.m.. 13C NMR (125 MHz, DMSO-d6) δ: 116.91, 120.04, 127.67, 128.16, 128.50, 128.64, 128.79, 128.85, 128.92, 129.82, 129.96, 133.04, 133.17, 134.09, 134.36, 134.52, 134.67, 140.65, 141.82, 142.19, 145.27, 161.38, 165.96 p.p.m.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraint O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the 2-D supramolecular array in the bc plane in (I) with the O–H···O and N–H···O hydrogen bonding shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the crystal packing in (I) highlighting the stacking of layers. The O–H···O and N–H···O hydrogen bonding shown as orange and blue dashed lines, respectively.
(2E)-N'-[(E)-4-Chlorobenzylidene]- 3-phenylprop-2-enohydrazide monohydrate top
Crystal data top
C16H13ClN2O·H2OF(000) = 632
Mr = 302.75Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19841 reflections
a = 34.078 (3) Åθ = 2.9–27.5°
b = 5.9824 (6) ŵ = 0.26 mm1
c = 7.2912 (6) ÅT = 120 K
β = 95.674 (3)°Block, colourless
V = 1479.2 (2) Å30.10 × 0.08 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2572 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2016 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.066
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 4039
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 77
Tmin = 0.492, Tmax = 1.000l = 88
8532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0421P)2 + 8.0472P]
where P = (Fo2 + 2Fc2)/3
2572 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H13ClN2O·H2OV = 1479.2 (2) Å3
Mr = 302.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 34.078 (3) ŵ = 0.26 mm1
b = 5.9824 (6) ÅT = 120 K
c = 7.2912 (6) Å0.10 × 0.08 × 0.03 mm
β = 95.674 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2572 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2016 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 1.000Rint = 0.066
8532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0844 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
2572 reflectionsΔρmin = 0.37 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.02800 (3)0.2977 (2)0.18849 (16)0.0315 (4)
O10.28173 (10)0.0171 (6)0.2229 (5)0.0330 (9)
N10.20834 (11)0.1523 (7)0.1857 (5)0.0280 (10)
N20.24086 (12)0.2830 (8)0.1657 (6)0.0299 (10)
H2N0.2398 (16)0.420 (3)0.129 (7)0.036*
C10.07011 (13)0.1339 (9)0.1827 (6)0.0240 (11)
C20.10625 (13)0.2220 (9)0.2528 (6)0.0238 (10)
H20.10740.36620.30770.029*
C30.14047 (13)0.1007 (8)0.2430 (6)0.0235 (11)
H30.16520.16150.29060.028*
C40.13869 (13)0.1134 (8)0.1623 (6)0.0221 (10)
C50.10192 (13)0.2008 (9)0.0959 (6)0.0239 (10)
H50.10040.34580.04250.029*
C60.06758 (13)0.0787 (9)0.1071 (6)0.0267 (11)
H60.04270.14010.06350.032*
C70.17447 (14)0.2426 (9)0.1444 (6)0.0260 (11)
H70.17270.39290.10230.031*
C80.27682 (14)0.1859 (9)0.1837 (6)0.0282 (11)
C90.30969 (14)0.3385 (9)0.1550 (6)0.0290 (11)
H90.30460.49280.13290.035*
C100.34638 (14)0.2621 (10)0.1598 (6)0.0296 (12)
H100.35030.10790.18690.036*
C110.38178 (14)0.3936 (9)0.1270 (6)0.0295 (12)
C120.41917 (14)0.3067 (10)0.1809 (7)0.0339 (12)
H120.42150.16320.23670.041*
C130.45299 (15)0.4277 (11)0.1540 (7)0.0388 (14)
H130.47830.36880.19350.047*
C140.44946 (15)0.6344 (11)0.0691 (7)0.0372 (14)
H140.47250.71630.04820.045*
C150.41234 (15)0.7235 (10)0.0140 (7)0.0342 (13)
H150.41020.86620.04330.041*
C160.37871 (14)0.6055 (9)0.0424 (6)0.0305 (12)
H160.35350.66700.00490.037*
O1W0.23087 (11)0.6983 (6)0.0131 (5)0.0349 (9)
H1W0.2424 (14)0.797 (8)0.055 (6)0.052*
H2W0.2444 (13)0.668 (9)0.101 (5)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0216 (6)0.0401 (8)0.0329 (6)0.0052 (6)0.0028 (5)0.0042 (6)
O10.0311 (19)0.031 (2)0.037 (2)0.0030 (17)0.0035 (15)0.0053 (17)
N10.025 (2)0.036 (3)0.023 (2)0.0076 (19)0.0022 (16)0.0007 (19)
N20.025 (2)0.033 (3)0.032 (2)0.006 (2)0.0062 (17)0.002 (2)
C10.019 (2)0.033 (3)0.021 (2)0.004 (2)0.0050 (18)0.001 (2)
C20.025 (2)0.030 (3)0.016 (2)0.002 (2)0.0004 (18)0.001 (2)
C30.022 (2)0.024 (3)0.024 (2)0.002 (2)0.0024 (19)0.004 (2)
C40.022 (2)0.026 (3)0.019 (2)0.000 (2)0.0047 (18)0.001 (2)
C50.028 (2)0.024 (3)0.020 (2)0.003 (2)0.0014 (18)0.004 (2)
C60.021 (2)0.032 (3)0.028 (3)0.005 (2)0.0063 (19)0.001 (2)
C70.027 (3)0.025 (3)0.027 (2)0.001 (2)0.006 (2)0.001 (2)
C80.028 (3)0.034 (3)0.022 (2)0.005 (2)0.0005 (19)0.004 (2)
C90.027 (3)0.030 (3)0.029 (2)0.008 (2)0.003 (2)0.002 (2)
C100.029 (3)0.040 (3)0.019 (2)0.000 (2)0.0007 (19)0.001 (2)
C110.022 (2)0.041 (3)0.025 (2)0.001 (2)0.0002 (19)0.001 (2)
C120.030 (3)0.043 (3)0.029 (3)0.004 (3)0.004 (2)0.000 (3)
C130.027 (3)0.062 (4)0.027 (3)0.003 (3)0.001 (2)0.006 (3)
C140.027 (3)0.059 (4)0.027 (3)0.012 (3)0.006 (2)0.002 (3)
C150.038 (3)0.039 (3)0.027 (3)0.008 (3)0.008 (2)0.004 (2)
C160.025 (3)0.043 (3)0.022 (2)0.005 (2)0.0036 (19)0.000 (2)
O1W0.040 (2)0.031 (2)0.034 (2)0.0018 (18)0.0060 (16)0.0059 (17)
Geometric parameters (Å, º) top
Cl—C11.742 (5)C8—C91.476 (7)
O1—C81.256 (6)C9—C101.328 (7)
N1—C71.283 (6)C9—H90.9500
N1—N21.376 (6)C10—C111.479 (7)
N2—C81.351 (6)C10—H100.9500
N2—H2N0.86 (2)C11—C121.396 (7)
C1—C61.385 (7)C11—C161.409 (8)
C1—C21.390 (6)C12—C131.392 (7)
C2—C31.381 (6)C12—H120.9500
C2—H20.9500C13—C141.382 (8)
C3—C41.408 (7)C13—H130.9500
C3—H30.9500C14—C151.395 (7)
C4—C51.399 (6)C14—H140.9500
C4—C71.461 (6)C15—C161.379 (7)
C5—C61.389 (7)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—H60.9500O1W—H1W0.84 (5)
C7—H70.9500O1W—H2W0.85 (4)
C7—N1—N2116.8 (4)N2—C8—C9114.5 (5)
C8—N2—N1118.5 (4)C10—C9—C8120.6 (5)
C8—N2—H2N117 (4)C10—C9—H9119.7
N1—N2—H2N124 (4)C8—C9—H9119.7
C6—C1—C2120.8 (4)C9—C10—C11126.4 (5)
C6—C1—Cl120.5 (4)C9—C10—H10116.8
C2—C1—Cl118.7 (4)C11—C10—H10116.8
C3—C2—C1120.2 (5)C12—C11—C16119.0 (5)
C3—C2—H2119.9C12—C11—C10119.5 (5)
C1—C2—H2119.9C16—C11—C10121.5 (4)
C2—C3—C4119.8 (4)C13—C12—C11120.8 (6)
C2—C3—H3120.1C13—C12—H12119.6
C4—C3—H3120.1C11—C12—H12119.6
C5—C4—C3119.0 (4)C14—C13—C12119.5 (5)
C5—C4—C7119.9 (4)C14—C13—H13120.3
C3—C4—C7121.1 (4)C12—C13—H13120.3
C6—C5—C4120.9 (5)C13—C14—C15120.5 (5)
C6—C5—H5119.5C13—C14—H14119.8
C4—C5—H5119.5C15—C14—H14119.8
C1—C6—C5119.1 (4)C16—C15—C14120.3 (5)
C1—C6—H6120.4C16—C15—H15119.9
C5—C6—H6120.4C14—C15—H15119.9
N1—C7—C4119.7 (5)C15—C16—C11120.0 (5)
N1—C7—H7120.1C15—C16—H16120.0
C4—C7—H7120.1C11—C16—H16120.0
O1—C8—N2122.5 (5)H1W—O1W—H2W110 (3)
O1—C8—C9123.0 (5)
C7—N1—N2—C8171.2 (4)N1—N2—C8—C9178.4 (4)
C6—C1—C2—C31.9 (7)O1—C8—C9—C103.8 (7)
Cl—C1—C2—C3177.1 (3)N2—C8—C9—C10176.7 (4)
C1—C2—C3—C40.2 (7)C8—C9—C10—C11177.7 (4)
C2—C3—C4—C51.0 (6)C9—C10—C11—C12164.1 (5)
C2—C3—C4—C7177.9 (4)C9—C10—C11—C1615.9 (8)
C3—C4—C5—C60.7 (6)C16—C11—C12—C130.8 (7)
C7—C4—C5—C6178.3 (4)C10—C11—C12—C13179.2 (4)
C2—C1—C6—C52.3 (7)C11—C12—C13—C141.4 (8)
Cl—C1—C6—C5176.7 (3)C12—C13—C14—C151.3 (8)
C4—C5—C6—C11.0 (7)C13—C14—C15—C160.5 (8)
N2—N1—C7—C4180.0 (4)C14—C15—C16—C110.1 (7)
C5—C4—C7—N1172.0 (4)C12—C11—C16—C150.0 (7)
C3—C4—C7—N17.0 (7)C10—C11—C16—C15180.0 (4)
N1—N2—C8—O12.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O1w0.86 (2)1.97 (3)2.811 (6)165 (5)
O1w—H1w···O1i0.84 (5)2.05 (5)2.877 (5)166 (4)
O1w—H2w···O1ii0.85 (4)2.10 (4)2.923 (5)165 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClN2O·H2O
Mr302.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)34.078 (3), 5.9824 (6), 7.2912 (6)
β (°) 95.674 (3)
V3)1479.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.10 × 0.08 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.492, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8532, 2572, 2016
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.196, 1.05
No. of reflections2572
No. of parameters199
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O1w0.86 (2)1.97 (3)2.811 (6)165 (5)
O1w—H1w···O1i0.84 (5)2.05 (5)2.877 (5)166 (4)
O1w—H2w···O1ii0.85 (4)2.10 (4)2.923 (5)165 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res. 39, 801–807.  Web of Science CrossRef PubMed CAS
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationCarvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538–541.  Web of Science CrossRef PubMed CAS
First citationCarvalho, S. A., da Silva, E. F., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118.  Web of Science CSD CrossRef IUCr Journals
First citationChung, H. S. & Shin, J. C. (2007). Food Chem. 104, 1670–1677.  Web of Science CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationNaz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res. 161, 43–48.  Web of Science CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 9| September 2010| Pages o2410-o2411
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds