metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dioxidobis{2-[(E)-p-tolyl­imino­meth­yl]phenolato}molybdenum(VI)

aChemistry Department, Shahid Bahonar University, Kerman, Iran, bDepartment of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: i_shoaie@yahoo.com

(Received 28 July 2010; accepted 16 August 2010; online 21 August 2010)

The asymmetric unit of the title compound, [Mo(C14H12NO)2O2], comprises half of the complex with the full mol­ecule generated by the application of twofold symmetry. The MoVI atom is surrounded by two oxide O atoms and the two sets of N,O-donor atoms of the bidentate Schiff base ligands. The resulting N2O4 donor set defines a distorted octa­hedral coordination geometry. Inter­molecular C—H⋯O contacts link mol­ecules into chains along the b axis. The crystal structure is further stabilized by inter­molecular ππ inter­actions [ring centroid–centroid distance = 3.724 (6) Å].

Related literature

For related structures with MoO2 units and for the synthesis, see: Arnaiz et al. (2000[Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141-2147.]); Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Syamal & Maurya (1989[Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C14H12NO)2O2]

  • Mr = 548.43

  • Monoclinic, C 2/c

  • a = 26.375 (8) Å

  • b = 6.8095 (8) Å

  • c = 15.648 (10) Å

  • β = 116.94 (2)°

  • V = 2505.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 296 K

  • 0.21 × 0.11 × 0.08 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan [MULABS in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.892, Tmax = 0.957

  • 4305 measured reflections

  • 2006 independent reflections

  • 761 reflections with I > 2σ(I)

  • Rint = 0.144

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.168

  • S = 0.83

  • 2006 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.93 2.34 3.237 (18) 163
C13—H13A⋯O2ii 0.93 2.42 3.164 (17) 136
Symmetry codes: (i) [-x, y+1, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Numerous chemical reactions are catalyzed by complexes containing the dioxomolybdenum(VI) unit, MoO2 (Arnaiz et al. 2000). Moreover, Schiff base compounds containing molybdenum play a significant role in the chemistry of molybdoenzymes (Holm et al. 1996; Syamal & Maurya, 1989).

The asymmetric unit of the title compound, Fig. 1, comprises half of the complex. The Mo atom is located on a crystallographic 2-fold axis. The MoVI atom is surrounded by two oxo-O atoms and the N2O2 donor atoms of two bidentate Schiff base ligands to define a distorted octahedral coordination geometry. Intermolecular C—H···O contacts link molecules into chains along the b axis, Table 1 and Fig. 2. The crystal structure is further stabilized by intermolecular ππ interactions with the ring centroid(C1– C6) to centroid(C8–C13)i distance being 3.724 (6) Å for i: -x, y, 1/2-z.

Related literature top

For related structures with MoO2 units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal & Maurya (1989).

Experimental top

The title complex was prepared by adding MoO2(acac)2 and the ligand (molar ratio 1:1) to dry methanol (30 ml), followed by refluxing for 1 h. Small, light-yellow crystals were filtered off and recrystallized from acetonitrile. The quality of the crystal was not optimal and it was weakly diffracting. Although recrystallization was attempted repeatedly, better crystals were not obtained.

Refinement top

All H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and constrained to refine with the parent atoms with Uiso (H) = 1.2–1.5 Ueq (C).

Structure description top

Numerous chemical reactions are catalyzed by complexes containing the dioxomolybdenum(VI) unit, MoO2 (Arnaiz et al. 2000). Moreover, Schiff base compounds containing molybdenum play a significant role in the chemistry of molybdoenzymes (Holm et al. 1996; Syamal & Maurya, 1989).

The asymmetric unit of the title compound, Fig. 1, comprises half of the complex. The Mo atom is located on a crystallographic 2-fold axis. The MoVI atom is surrounded by two oxo-O atoms and the N2O2 donor atoms of two bidentate Schiff base ligands to define a distorted octahedral coordination geometry. Intermolecular C—H···O contacts link molecules into chains along the b axis, Table 1 and Fig. 2. The crystal structure is further stabilized by intermolecular ππ interactions with the ring centroid(C1– C6) to centroid(C8–C13)i distance being 3.724 (6) Å for i: -x, y, 1/2-z.

For related structures with MoO2 units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal & Maurya (1989).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Symmetry code for the unlabeled atoms: -x, y, 1/2 - z.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound down the a axis showing connections of molecules through C—H···O interactions (shown as dashed lines) along the b axis.
Dioxidobis{2-[(E)-p-tolyliminomethyl]phenolato}molybdenum(VI) top
Crystal data top
[Mo(C14H12NO)2O2]F(000) = 1120
Mr = 548.43Dx = 1.454 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2560 reflections
a = 26.375 (8) Åθ = 1.7–29.6°
b = 6.8095 (8) ŵ = 0.56 mm1
c = 15.648 (10) ÅT = 296 K
β = 116.94 (2)°Block, colourless
V = 2505.4 (18) Å30.21 × 0.11 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2006 independent reflections
Radiation source: fine-focus sealed tube761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.144
Detector resolution: 0.15 mm pixels mm-1θmax = 25.5°, θmin = 2.6°
φ and ω scansh = 3122
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995)
k = 78
Tmin = 0.892, Tmax = 0.957l = 1818
4305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
2006 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Mo(C14H12NO)2O2]V = 2505.4 (18) Å3
Mr = 548.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.375 (8) ŵ = 0.56 mm1
b = 6.8095 (8) ÅT = 296 K
c = 15.648 (10) Å0.21 × 0.11 × 0.08 mm
β = 116.94 (2)°
Data collection top
Stoe IPDS II
diffractometer
2006 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995)
761 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.957Rint = 0.144
4305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 0.83Δρmax = 0.55 e Å3
2006 reflectionsΔρmin = 0.81 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.00000.2892 (2)0.25000.0502 (7)
O10.0423 (3)0.2223 (11)0.3209 (4)0.053 (2)
O20.0486 (4)0.4409 (11)0.1680 (6)0.079 (3)
N10.0559 (5)0.0212 (13)0.3428 (5)0.037 (3)
C10.0533 (6)0.061 (2)0.3573 (8)0.0479 (18)
C20.1029 (5)0.0625 (17)0.3693 (7)0.0479 (18)
H2A0.12600.17330.35410.057*
C30.1165 (5)0.1058 (16)0.4047 (7)0.0479 (18)
H3A0.14930.10520.41270.057*
C40.0846 (5)0.2697 (19)0.4278 (6)0.0479 (18)
H4A0.09570.37980.45030.057*
C50.0345 (5)0.2726 (19)0.4176 (6)0.054 (4)
H5A0.01180.38450.43330.065*
C60.0187 (5)0.1007 (18)0.3827 (6)0.037 (3)
C70.0360 (5)0.1081 (16)0.3804 (6)0.041 (3)
H7A0.05890.21670.40870.049*
C80.1129 (6)0.013 (2)0.3551 (7)0.044 (3)
C90.1308 (6)0.198 (2)0.3415 (7)0.063 (2)
H9A0.10630.30490.32530.075*
C100.1856 (6)0.219 (2)0.3524 (7)0.067 (4)
H10A0.19720.34290.34290.081*
C110.2243 (6)0.063 (2)0.3771 (8)0.063 (2)
C120.2048 (6)0.115 (2)0.3891 (7)0.063 (2)
H12A0.22940.22170.40540.075*
C130.1500 (5)0.144 (2)0.3781 (7)0.063 (2)
H13A0.13840.26900.38610.075*
C140.2838 (6)0.095 (3)0.3862 (11)0.120 (6)
H14A0.30850.00830.42390.181*
H14B0.29840.21930.41690.181*
H14C0.28210.09550.32360.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0830 (15)0.0203 (8)0.0809 (12)0.0000.0666 (11)0.000
O10.056 (6)0.046 (5)0.080 (5)0.015 (5)0.050 (5)0.018 (5)
O20.110 (10)0.039 (5)0.138 (8)0.036 (6)0.099 (7)0.043 (5)
N10.045 (9)0.033 (6)0.037 (6)0.027 (6)0.022 (6)0.014 (4)
C10.043 (5)0.055 (4)0.049 (4)0.005 (4)0.024 (4)0.007 (3)
C20.043 (5)0.055 (4)0.049 (4)0.005 (4)0.024 (4)0.007 (3)
C30.043 (5)0.055 (4)0.049 (4)0.005 (4)0.024 (4)0.007 (3)
C40.043 (5)0.055 (4)0.049 (4)0.005 (4)0.024 (4)0.007 (3)
C50.064 (10)0.060 (9)0.034 (6)0.006 (9)0.018 (6)0.006 (6)
C60.031 (9)0.064 (9)0.017 (6)0.010 (7)0.012 (6)0.002 (6)
C70.053 (11)0.037 (7)0.029 (6)0.010 (7)0.015 (7)0.018 (5)
C80.029 (9)0.075 (10)0.034 (7)0.010 (8)0.020 (6)0.004 (6)
C90.053 (6)0.079 (5)0.062 (4)0.031 (6)0.031 (4)0.015 (4)
C100.072 (11)0.063 (9)0.073 (8)0.010 (10)0.038 (8)0.020 (8)
C110.053 (6)0.079 (5)0.062 (4)0.031 (6)0.031 (4)0.015 (4)
C120.053 (6)0.079 (5)0.062 (4)0.031 (6)0.031 (4)0.015 (4)
C130.053 (6)0.079 (5)0.062 (4)0.031 (6)0.031 (4)0.015 (4)
C140.070 (14)0.165 (18)0.150 (14)0.014 (12)0.071 (11)0.031 (12)
Geometric parameters (Å, º) top
Mo1—O21.694 (9)C5—H5A0.9300
Mo1—O2i1.694 (9)C6—C71.459 (14)
Mo1—O1i1.950 (6)C7—H7A0.9300
Mo1—O11.950 (6)C8—C131.385 (15)
Mo1—N12.382 (9)C8—C91.394 (17)
Mo1—N1i2.382 (9)C9—C101.384 (15)
O1—C11.330 (12)C9—H9A0.9300
N1—C71.293 (12)C10—C111.400 (16)
N1—C81.446 (14)C10—H10A0.9300
C1—C61.367 (15)C11—C121.363 (17)
C1—C21.405 (16)C11—C141.528 (18)
C2—C31.388 (14)C12—C131.391 (16)
C2—H2A0.9300C12—H12A0.9300
C3—C41.344 (14)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9600
C4—C51.402 (14)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C5—C61.432 (14)
O2—Mo1—O2i104.8 (6)C4—C5—H5A120.5
O2—Mo1—O1i98.2 (3)C6—C5—H5A120.5
O2i—Mo1—O1i98.2 (4)C1—C6—C5119.7 (12)
O2—Mo1—O198.2 (4)C1—C6—C7123.9 (11)
O2i—Mo1—O198.2 (3)C5—C6—C7116.3 (12)
O1i—Mo1—O1153.0 (4)N1—C7—C6126.5 (11)
O2—Mo1—N1167.6 (4)N1—C7—H7A116.7
O2i—Mo1—N187.6 (3)C6—C7—H7A116.7
O1i—Mo1—N179.2 (3)C13—C8—C9119.4 (13)
O1—Mo1—N180.2 (3)C13—C8—N1118.7 (12)
O2—Mo1—N1i87.6 (3)C9—C8—N1121.9 (12)
O2i—Mo1—N1i167.6 (4)C10—C9—C8118.9 (14)
O1i—Mo1—N1i80.2 (3)C10—C9—H9A120.5
O1—Mo1—N1i79.2 (3)C8—C9—H9A120.5
N1—Mo1—N1i80.0 (4)C9—C10—C11122.9 (14)
C1—O1—Mo1136.7 (7)C9—C10—H10A118.6
C7—N1—C8116.2 (10)C11—C10—H10A118.6
C7—N1—Mo1122.2 (9)C12—C11—C10116.2 (14)
C8—N1—Mo1121.5 (7)C12—C11—C14123.3 (15)
O1—C1—C6122.9 (12)C10—C11—C14120.5 (14)
O1—C1—C2116.5 (12)C11—C12—C13123.1 (14)
C6—C1—C2120.6 (12)C11—C12—H12A118.4
C3—C2—C1118.0 (12)C13—C12—H12A118.4
C3—C2—H2A121.0C8—C13—C12119.5 (13)
C1—C2—H2A121.0C8—C13—H13A120.2
C4—C3—C2123.4 (12)C12—C13—H13A120.2
C4—C3—H3A118.3C11—C14—H14A109.5
C2—C3—H3A118.3C11—C14—H14B109.5
C3—C4—C5119.2 (12)H14A—C14—H14B109.5
C3—C4—H4A120.4C11—C14—H14C109.5
C5—C4—H4A120.4H14A—C14—H14C109.5
C4—C5—C6119.0 (12)H14B—C14—H14C109.5
O2—Mo1—O1—C1136.1 (11)C2—C1—C6—C53.0 (15)
O2i—Mo1—O1—C1117.6 (11)O1—C1—C6—C75.2 (16)
O1i—Mo1—O1—C19.2 (10)C2—C1—C6—C7174.4 (9)
N1—Mo1—O1—C131.5 (11)C4—C5—C6—C11.9 (14)
N1i—Mo1—O1—C150.1 (11)C4—C5—C6—C7175.7 (8)
O2—Mo1—N1—C762 (2)C8—N1—C7—C6176.2 (9)
O2i—Mo1—N1—C7119.5 (8)Mo1—N1—C7—C67.8 (13)
O1i—Mo1—N1—C7141.7 (8)C1—C6—C7—N110.1 (16)
O1—Mo1—N1—C720.8 (7)C5—C6—C7—N1172.5 (9)
N1i—Mo1—N1—C759.9 (7)C7—N1—C8—C13137.6 (10)
O2—Mo1—N1—C8113.4 (19)Mo1—N1—C8—C1346.3 (11)
O2i—Mo1—N1—C864.6 (8)C7—N1—C8—C944.5 (13)
O1i—Mo1—N1—C834.2 (7)Mo1—N1—C8—C9131.6 (9)
O1—Mo1—N1—C8163.4 (8)C13—C8—C9—C100.7 (15)
N1i—Mo1—N1—C8116.0 (8)N1—C8—C9—C10178.7 (8)
Mo1—O1—C1—C625.2 (17)C8—C9—C10—C110.3 (16)
Mo1—O1—C1—C2155.2 (7)C9—C10—C11—C120.8 (16)
O1—C1—C2—C3178.3 (9)C9—C10—C11—C14178.8 (10)
C6—C1—C2—C32.1 (16)C10—C11—C12—C130.2 (17)
C1—C2—C3—C40.0 (16)C14—C11—C12—C13178.1 (11)
C2—C3—C4—C51.0 (15)C9—C8—C13—C121.3 (15)
C3—C4—C5—C60.1 (14)N1—C8—C13—C12179.3 (9)
O1—C1—C6—C5177.4 (9)C11—C12—C13—C80.9 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2ii0.932.343.237 (18)163
C13—H13A···O2i0.932.423.164 (17)136
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo(C14H12NO)2O2]
Mr548.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)26.375 (8), 6.8095 (8), 15.648 (10)
β (°) 116.94 (2)
V3)2505.4 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.21 × 0.11 × 0.08
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(MULABS in PLATON; Blessing, 1995)
Tmin, Tmax0.892, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
4305, 2006, 761
Rint0.144
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.168, 0.83
No. of reflections2006
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.81

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.932.343.237 (18)163
C13—H13A···O2ii0.932.423.164 (17)136
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: zsrkk@yahoo.com, rkia@srbiau.ac.ir.

Acknowledgements

This work was supported by grants from the University of Kerman and the University of Tehran. RK thanks the Islamic Azad University for the X-ray diffractometer facility.

References

First citationArnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSyamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183–238.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds