supplementary materials


lh5172 scheme

Acta Cryst. (2011). E67, m38    [ doi:10.1107/S1600536810050026 ]

(2-{[2-(2-Aminoethylamino)ethyl]iminomethyl}phenolato)nickel(II) chloride dihydrate

D. Wang

Abstract top

In the title complex, [Ni(C11H16N3O)]Cl·2H2O, the NiII ion is coordinated within a distorted square-planar environment. In the crystal, intermolecular N-H...Cl, N-H...O, O-H...O, O-H...Cl and weak C-H...O hydrogen bonds link the components into a two-dimensional network parallel to (001).

Comment top

The Schiff base ligand 2-((2-(2-aminoethylamino)ethylimino)methyl)phenol has often been used in the synthesis of metal-organic complexes (Chen & Wang, 2006, Cusmano Priolo et al., 1983, Kratochvíl et al., 1989, Kratochvíl et al.,1991, Loub et al., 1990, Loub et al., 1989, Podlahová et al., 1988, Rotondo et al., 1983, Zhang et al., 2006, Zhu et al.,2004, Liu et al., 2004). In this paper, we report the title mononuclear metal complex (I).

In (I), the asymmetric unit consists of a coordination cation, one uncoordinated Cl- anion and two solvent water molecules (Fig.1). The NiII ion is in a distorted square-planar coordination environmemt with atom Ni1 atom 0.058Å from the plane formed by N1/N2/N3/O1. The Ni—N/O bond lengths are comparable to previously published analogs (Loub et al., 1989, Podlahová et al., 1988).

The crystal structure is stabilized by intermolecular hydrogen bonds (Table 1), forming a two-dimensional network parallel to the (001) plane (Fig.2).

Related literature top

For related structures, see: Chen & Wang (2006); Cusmano Priolo et al. (1983); Kratochvíl et al. (1989, 1991); Liu et al. (2004); Loub et al. (1989, 1990); Podlahová et al. (1988); Rotondo et al. (1983); Zhang et al. (2006); Zhu et al. (2004).

Experimental top

NiCl2.6(H2O) (1 mmol, 238 mg), salicylaldehyde (1 mmol, 122 mg) and diethylenetriamine (1 mmol, 103 mg) were dissolved in a mixture of ethanol and acetonitrile (50 ml, 1:1 v/v), resulting in a light-green solution. When diethyl ether was slowly diffused into this solution for one week, pale-yellow blocks suitable for X-ray diffraction were formed at the bottom of the vessel.

Refinement top

All the H atoms bonded to carbon atoms were located at their geometrical positions with C–H = 0.97 Å(methylene) and 0.93 Å(aromatic), Uiso(H) = 1.2Ueq(C). H atoms bonded to imine N and water O atoms were located on the difference Fourier maps and then refined with the constraints of N—H = 0.86 (2) Å, O—H = 0.82 (2) Å, H—H = 1.35 (2)Å and the Uiso(H) values were set 1.2 times of Ueq(N) or 1.5 times of Ueq(O) of their carrier atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network parallel to the (001) plane. Hydrogen bonds are shown as dashed lines.
(2-{[2-(2-Aminoethylamino)ethyl]iminomethyl}phenolato)nickel(II) chloride dihydrate top
Crystal data top
[Ni(C11H16N3O)]Cl·2H2OF(000) = 704
Mr = 336.46Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1489 reflections
a = 7.1062 (16) Åθ = 1.7–19.5°
b = 11.6685 (19) ŵ = 1.52 mm1
c = 17.677 (2) ÅT = 298 K
β = 96.699 (3)°Needle, yellow
V = 1455.8 (4) Å30.20 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX I CCD area-detector
diffractometer
2565 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1860 reflections with I > 2σ(I)
graphiteRint = 0.099
0.3° wide ω exposures scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.783, Tmax = 0.863k = 1313
13581 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
2565 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.41 e Å3
10 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ni(C11H16N3O)]Cl·2H2OV = 1455.8 (4) Å3
Mr = 336.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1062 (16) ŵ = 1.52 mm1
b = 11.6685 (19) ÅT = 298 K
c = 17.677 (2) Å0.20 × 0.06 × 0.04 mm
β = 96.699 (3)°
Data collection top
Bruker SMART APEX I CCD area-detector
diffractometer
2565 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1860 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.863Rint = 0.099
13581 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152Δρmax = 0.41 e Å3
S = 1.16Δρmin = 0.67 e Å3
2565 reflectionsAbsolute structure: ?
193 parametersFlack parameter: ?
10 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.63623 (11)0.34513 (7)0.37464 (5)0.0333 (3)
C10.7236 (9)0.5502 (6)0.4572 (4)0.0358 (17)
C20.7687 (9)0.4916 (6)0.5255 (4)0.0385 (17)
C30.8289 (10)0.5530 (7)0.5919 (4)0.051 (2)
H30.85720.51390.63760.061*
C40.8469 (10)0.6701 (8)0.5906 (5)0.056 (2)
H40.88960.71000.63480.067*
C50.8020 (10)0.7266 (7)0.5245 (4)0.051 (2)
H50.81100.80610.52420.061*
C60.7432 (9)0.6705 (6)0.4571 (4)0.0454 (19)
H60.71660.71170.41210.055*
C210.7525 (9)0.3699 (6)0.5302 (4)0.0416 (18)
H210.78200.33640.57780.050*
C220.6905 (10)0.1786 (6)0.4877 (5)0.053 (2)
H22A0.56920.15850.50410.064*
H22B0.79030.15560.52680.064*
C230.7149 (10)0.1201 (6)0.4129 (4)0.048 (2)
H23A0.84720.12010.40420.058*
H23B0.67080.04150.41330.058*
C240.6345 (10)0.1642 (6)0.2747 (4)0.0479 (19)
H24A0.58310.09020.25800.058*
H24B0.76930.16470.27040.058*
C250.5361 (10)0.2590 (5)0.2279 (4)0.0427 (19)
H25A0.56940.25690.17630.051*
H25B0.39970.25150.22610.051*
Cl10.2875 (3)0.52634 (16)0.14998 (11)0.0494 (5)
N10.7000 (7)0.3025 (5)0.4737 (3)0.0395 (14)
N20.5992 (8)0.1873 (5)0.3525 (3)0.0426 (15)
H2A0.488 (5)0.167 (6)0.364 (4)0.051*
N30.6022 (8)0.3689 (4)0.2664 (3)0.0357 (14)
H3A0.507 (4)0.405 (5)0.247 (3)0.043*
H3B0.711 (4)0.384 (5)0.253 (3)0.043*
O10.6663 (6)0.5003 (4)0.3910 (2)0.0374 (11)
O20.4176 (8)0.6467 (4)0.3029 (3)0.0581 (14)
H2B0.386 (12)0.617 (6)0.261 (2)0.087*
H2C0.484 (11)0.599 (5)0.327 (3)0.087*
O30.5374 (8)0.8703 (5)0.2971 (4)0.0741 (18)
H3C0.508 (12)0.803 (2)0.300 (6)0.111*
H3D0.446 (8)0.906 (6)0.308 (6)0.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0315 (5)0.0318 (5)0.0368 (5)0.0024 (4)0.0045 (4)0.0000 (4)
C10.028 (4)0.046 (5)0.033 (4)0.002 (3)0.003 (3)0.005 (4)
C20.029 (4)0.053 (5)0.034 (4)0.005 (3)0.004 (3)0.002 (4)
C30.036 (4)0.076 (6)0.038 (5)0.010 (4)0.002 (4)0.002 (4)
C40.048 (5)0.071 (7)0.047 (5)0.008 (4)0.002 (4)0.014 (5)
C50.046 (5)0.055 (5)0.051 (6)0.001 (4)0.010 (4)0.020 (4)
C60.036 (4)0.049 (5)0.051 (5)0.004 (4)0.004 (3)0.013 (4)
C210.037 (4)0.054 (5)0.034 (4)0.015 (4)0.005 (3)0.014 (4)
C220.037 (4)0.045 (5)0.076 (6)0.005 (4)0.003 (4)0.007 (4)
C230.040 (4)0.027 (4)0.078 (6)0.009 (3)0.006 (4)0.004 (4)
C240.045 (4)0.043 (4)0.057 (5)0.005 (4)0.012 (4)0.015 (4)
C250.047 (5)0.043 (5)0.038 (4)0.009 (4)0.003 (4)0.011 (3)
Cl10.0508 (12)0.0435 (11)0.0529 (12)0.0020 (9)0.0017 (10)0.0043 (9)
N10.032 (3)0.038 (3)0.049 (4)0.008 (3)0.005 (3)0.004 (3)
N20.041 (4)0.042 (4)0.045 (4)0.010 (3)0.007 (3)0.012 (3)
N30.030 (3)0.032 (4)0.044 (4)0.001 (3)0.003 (3)0.007 (3)
O10.042 (3)0.035 (3)0.033 (3)0.003 (2)0.003 (2)0.000 (2)
O20.071 (4)0.046 (3)0.056 (3)0.009 (3)0.001 (3)0.002 (3)
O30.066 (4)0.042 (3)0.118 (5)0.003 (3)0.027 (4)0.004 (4)
Geometric parameters (Å, °) top
Ni1—N11.825 (6)C22—H22A0.9700
Ni1—O11.842 (4)C22—H22B0.9700
Ni1—N21.894 (6)C23—N21.492 (9)
Ni1—N31.920 (6)C23—H23A0.9700
C1—O11.329 (7)C23—H23B0.9700
C1—C21.392 (9)C24—N21.452 (9)
C1—C61.410 (9)C24—C251.504 (9)
C2—C31.398 (10)C24—H24A0.9700
C2—C211.429 (9)C24—H24B0.9700
C3—C41.373 (10)C25—N31.501 (8)
C3—H30.9300C25—H25A0.9700
C4—C51.346 (10)C25—H25B0.9700
C4—H40.9300N2—H2A0.87 (2)
C5—C61.381 (9)N3—H3A0.84 (4)
C5—H50.9300N3—H3B0.854 (19)
C6—H60.9300O2—H2B0.83 (2)
C21—N11.292 (8)O2—H2C0.82 (6)
C21—H210.9300O3—H3C0.82 (2)
C22—N11.469 (8)O3—H3D0.81 (7)
C22—C231.515 (10)
N1—Ni1—O196.1 (2)C22—C23—H23A110.5
N1—Ni1—N286.9 (3)N2—C23—H23B110.5
O1—Ni1—N2176.9 (2)C22—C23—H23B110.5
N1—Ni1—N3169.4 (2)H23A—C23—H23B108.7
O1—Ni1—N390.7 (2)N2—C24—C25105.3 (6)
N2—Ni1—N386.4 (2)N2—C24—H24A110.7
O1—C1—C2124.4 (6)C25—C24—H24A110.7
O1—C1—C6117.1 (6)N2—C24—H24B110.7
C2—C1—C6118.5 (6)C25—C24—H24B110.7
C1—C2—C3119.5 (7)H24A—C24—H24B108.8
C1—C2—C21121.8 (6)N3—C25—C24106.1 (5)
C3—C2—C21118.6 (7)N3—C25—H25A110.5
C4—C3—C2121.0 (7)C24—C25—H25A110.5
C4—C3—H3119.5N3—C25—H25B110.5
C2—C3—H3119.5C24—C25—H25B110.5
C5—C4—C3119.2 (7)H25A—C25—H25B108.7
C5—C4—H4120.4C21—N1—C22118.9 (6)
C3—C4—H4120.4C21—N1—Ni1126.3 (5)
C4—C5—C6122.3 (8)C22—N1—Ni1114.7 (5)
C4—C5—H5118.9C24—N2—C23116.0 (6)
C6—C5—H5118.9C24—N2—Ni1109.9 (4)
C5—C6—C1119.3 (7)C23—N2—Ni1108.2 (4)
C5—C6—H6120.3C24—N2—H2A116 (5)
C1—C6—H6120.3C23—N2—H2A97 (5)
N1—C21—C2125.4 (6)Ni1—N2—H2A109 (5)
N1—C21—H21117.3C25—N3—Ni1109.0 (4)
C2—C21—H21117.3C25—N3—H3A93 (4)
N1—C22—C23106.5 (6)Ni1—N3—H3A119 (4)
N1—C22—H22A110.4C25—N3—H3B107 (4)
C23—C22—H22A110.4Ni1—N3—H3B107 (4)
N1—C22—H22B110.4H3A—N3—H3B120 (4)
C23—C22—H22B110.4C1—O1—Ni1126.0 (4)
H22A—C22—H22B108.6H2B—O2—H2C104 (3)
N2—C23—C22106.1 (5)H3C—O3—H3D105 (8)
N2—C23—H23A110.5
O1—C1—C2—C3179.6 (6)N3—Ni1—N1—C21128.3 (13)
C6—C1—C2—C31.0 (9)O1—Ni1—N1—C22178.7 (4)
O1—C1—C2—C211.4 (10)N2—Ni1—N1—C220.8 (5)
C6—C1—C2—C21179.9 (6)N3—Ni1—N1—C2251.1 (15)
C1—C2—C3—C41.0 (10)C25—C24—N2—C23167.6 (5)
C21—C2—C3—C4180.0 (6)C25—C24—N2—Ni144.5 (6)
C2—C3—C4—C51.4 (11)C22—C23—N2—C24166.1 (6)
C3—C4—C5—C61.8 (11)C22—C23—N2—Ni142.1 (6)
C4—C5—C6—C11.9 (11)N1—Ni1—N2—C24151.6 (5)
O1—C1—C6—C5179.9 (6)N3—Ni1—N2—C2420.3 (5)
C2—C1—C6—C51.4 (10)N1—Ni1—N2—C2324.0 (4)
C1—C2—C21—N11.5 (11)N3—Ni1—N2—C23147.9 (5)
C3—C2—C21—N1179.5 (6)C24—C25—N3—Ni135.4 (6)
N1—C22—C23—N242.0 (7)N1—Ni1—N3—C2559.6 (15)
N2—C24—C25—N351.1 (7)O1—Ni1—N3—C25169.8 (4)
C2—C21—N1—C22179.9 (6)N2—Ni1—N3—C259.2 (4)
C2—C21—N1—Ni10.6 (10)C2—C1—O1—Ni10.6 (9)
C23—C22—N1—C21154.8 (6)C6—C1—O1—Ni1178.0 (4)
C23—C22—N1—Ni124.7 (7)N1—Ni1—O1—C12.0 (5)
O1—Ni1—N1—C211.9 (6)N3—Ni1—O1—C1170.0 (5)
N2—Ni1—N1—C21178.6 (6)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.87 (2)2.55 (4)3.325 (6)149 (6)
N3—H3A···Cl10.84 (4)2.60 (3)3.397 (6)160 (5)
N3—H3B···O3ii0.85 (2)2.09 (3)2.914 (8)162 (6)
O2—H2B···Cl10.83 (2)2.27 (5)3.091 (5)176 (9)
O2—H2C···O10.82 (6)1.99 (6)2.797 (6)172 (8)
O3—H3C···O20.82 (2)1.93 (2)2.750 (8)175 (9)
O3—H3D···Cl1iii0.81 (7)2.36 (7)3.166 (6)172 (9)
C25—H25B···O2i0.972.563.464 (9)154
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.87 (2)2.55 (4)3.325 (6)149 (6)
N3—H3A···Cl10.84 (4)2.60 (3)3.397 (6)160 (5)
N3—H3B···O3ii0.85 (2)2.09 (3)2.914 (8)162 (6)
O2—H2B···Cl10.83 (2)2.27 (5)3.091 (5)176 (9)
O2—H2C···O10.82 (6)1.99 (6)2.797 (6)172 (8)
O3—H3C···O20.82 (2)1.93 (2)2.750 (8)175 (9)
O3—H3D···Cl1iii0.81 (7)2.36 (7)3.166 (6)172 (9)
C25—H25B···O2i0.972.563.464 (9)154
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.
Acknowledgements top

The author thanks Kashgar Teachers College for supporting this study.

references
References top

Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, K. & Wang, J.-H. (2006). Acta Cryst. E62, m2305–m2306.

Cusmano Priolo, F., Rotondo, E., Rizzardi, G., Bruno, G. & Bombieri, G. (1983). Acta Cryst. C39, 550–552.

Kratochvíl, B., Nováková, M., Haber, V., Ondráček, J. & Hájek, B. (1989). Acta Cryst. C45, 403–405.

Kratochvíl, B., Ondráček, J., Novotný, J. & Haber, V. (1991). Acta Cryst. C47, 2207–2209.

Liu, G. X., Ren, X. M., Xu, H., Tang, C. Y., Wu, G. H. & Chen, Y. C. (2004). Chin. Chem. Lett. 15, 1105–1108.

Loub, J., Podlahová, J., Haber, V., Kopf, J. & Weiss, E. (1990). Acta Cryst. C46, 596–598.

Loub, J., Podlahová, J., Kopf, J. & Weiss, E. (1989). Acta Cryst. C45, 406–407.

Podlahová, J., Knížek, K., Loub, J. & Hašek, J. (1988). Acta Cryst. C44, 631–633.

Rotondo, E., Cusmano Priolo, F., Romeo, M., Bruno, G. & Bombieri, G. (1983). Acta Cryst. C39, 1525–1527.

Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, H.-W., Hu, S., Zhang, L.-N. & Fang, R.-Q. (2006). Acta Cryst. E62, m1275–m1277.

Zhu, H. L., Li, S. Y., Wang, Z. D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203–206.