supplementary materials


bt5643 scheme

Acta Cryst. (2011). E67, m1396    [ doi:10.1107/S1600536811037160 ]

[1-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol-[kappa]2N7,N8]diiodidomercury(II)

T.-L. Li

Abstract top

In the title compound, [HgI2(C23H14N4O)], the HgII atom is four-coordinated by two N atoms from one 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol ligand and by two I atoms in a distorted tetrahedral environment. An intramolecular O-H...N hydrogen bond stabilizes the molecular conformation and an intermolecular N-H...I interaction stabilizes the crystal packing.

Comment top

The ligand 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol) is a N-donor ligand and has excellent coordinating ability (Wang et al., 2010). In this work, we selected it as an N-donor chelating ligand, generating a new HgII complex.

In the compound, the central HgII atom is four-coordinated by two N atoms from one organic ligand, and two I atoms in a distorted tetrahedral sphere. N-H···I and O-H···N H-bonding interactions stabilize the crystal structure and the molecular conformation.

Related literature top

For information about the organic ligand 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol), see: Wang et al. (2010).

Experimental top

A mixture of HgI2 (0.5 mmol) and 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol) (0.5 mmol) in 8 mL distilled water was heated at 462 K in a Teflon-lined stainless steel autoclave for seven days. The reaction system was then slowly cooled to room temperature. Pale yellow crystals of the title compound suitable for single crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature. Yield: 15% based on Hg(II).

Refinement top

H atoms bonded to N and C were positioned geometrically (C-H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The H atom bonded to O was freely refined.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[1-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol- κ2N7,N8]diiodidomercury(II) top
Crystal data top
[HgI2(C23H14N4O)]F(000) = 1496
Mr = 816.77Dx = 2.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4351 reflections
a = 14.4271 (10) Åθ = 1.9–26.0°
b = 7.3026 (5) ŵ = 9.74 mm1
c = 21.1337 (15) ÅT = 293 K
β = 94.472 (1)°Block, pale yellow
V = 2219.8 (3) Å30.17 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4351 independent reflections
Radiation source: fine-focus sealed tube3217 reflections with I > 2σ(I)
graphiteRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.41, Tmax = 0.64k = 79
11586 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.5359P]
where P = (Fo2 + 2Fc2)/3
4351 reflections(Δ/σ)max = 0.002
284 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[HgI2(C23H14N4O)]V = 2219.8 (3) Å3
Mr = 816.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4271 (10) ŵ = 9.74 mm1
b = 7.3026 (5) ÅT = 293 K
c = 21.1337 (15) Å0.17 × 0.14 × 0.12 mm
β = 94.472 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3217 reflections with I > 2σ(I)
Tmin = 0.41, Tmax = 0.64Rint = 0.031
11586 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.67 e Å3
S = 1.01Δρmin = 0.84 e Å3
4351 reflectionsAbsolute structure: ?
284 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.8132 (4)0.3909 (8)0.2038 (3)0.0445 (14)
H20.85490.35580.23300.053*
C70.6301 (4)0.7203 (7)0.0288 (2)0.0479 (15)
H70.65920.75520.06770.058*
C80.5367 (4)0.7611 (8)0.0162 (2)0.0465 (14)
H80.50470.82450.04590.056*
C90.4920 (4)0.7077 (7)0.0400 (2)0.0387 (13)
H90.42900.73090.04880.046*
C100.5440 (3)0.6156 (6)0.0847 (2)0.0292 (11)
C110.5070 (3)0.5568 (6)0.1458 (2)0.0291 (11)
C130.4226 (3)0.4818 (6)0.2345 (2)0.0308 (11)
C140.3454 (3)0.4641 (7)0.2832 (2)0.0344 (12)
C150.3641 (4)0.5059 (7)0.3451 (2)0.0434 (13)
C160.2540 (4)0.4097 (8)0.2700 (3)0.0424 (14)
C170.2914 (5)0.5155 (8)0.3934 (3)0.0595 (18)
H170.30390.55230.43400.071*
C180.2032 (5)0.4714 (8)0.3811 (3)0.0593 (18)
H180.15570.47870.41330.071*
C190.1830 (4)0.4155 (8)0.3208 (3)0.0546 (17)
C200.0924 (5)0.3593 (10)0.3092 (4)0.083 (2)
H200.04510.36630.34160.099*
C210.0735 (5)0.2951 (11)0.2514 (5)0.090 (3)
H210.01310.25890.24480.108*
C220.1429 (5)0.2820 (10)0.2013 (3)0.075 (2)
H220.12940.23510.16210.091*
C230.2314 (4)0.3399 (8)0.2110 (3)0.0563 (17)
H230.27750.33270.17780.068*
N30.4179 (3)0.5490 (5)0.17388 (18)0.0316 (10)
H3A0.36810.58040.15670.038*
O10.4506 (3)0.5473 (6)0.36141 (19)0.0563 (11)
H1A0.488 (5)0.518 (10)0.326 (4)0.12 (3)*
C10.8439 (4)0.4232 (8)0.1411 (3)0.0466 (14)
H10.90660.40480.12900.056*
C30.7213 (4)0.4112 (7)0.2222 (2)0.0395 (13)
H30.69900.38710.26390.047*
C40.6609 (3)0.4691 (6)0.1774 (2)0.0313 (11)
C50.6970 (3)0.5071 (6)0.1156 (2)0.0323 (11)
C60.6386 (3)0.5855 (6)0.0694 (2)0.0298 (11)
C120.5631 (3)0.4922 (6)0.1909 (2)0.0301 (11)
N10.6800 (3)0.6338 (6)0.01211 (19)0.0390 (11)
N20.7895 (3)0.4787 (5)0.09743 (19)0.0375 (10)
N40.5108 (3)0.4486 (5)0.24611 (18)0.0316 (10)
Hg10.837535 (16)0.50252 (3)0.013119 (11)0.05187 (8)
I10.78377 (3)0.23045 (5)0.087966 (19)0.05635 (12)
I20.96077 (3)0.77042 (5)0.026201 (19)0.05224 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.039 (3)0.053 (4)0.043 (3)0.006 (3)0.014 (3)0.005 (3)
C70.070 (4)0.047 (4)0.026 (3)0.011 (3)0.003 (3)0.006 (3)
C80.064 (4)0.047 (4)0.029 (3)0.001 (3)0.010 (3)0.004 (3)
C90.041 (3)0.041 (3)0.035 (3)0.005 (2)0.013 (2)0.003 (3)
C100.035 (3)0.026 (3)0.027 (3)0.002 (2)0.003 (2)0.004 (2)
C110.029 (3)0.033 (3)0.025 (3)0.000 (2)0.003 (2)0.001 (2)
C130.042 (3)0.026 (3)0.025 (2)0.003 (2)0.005 (2)0.002 (2)
C140.040 (3)0.037 (3)0.026 (3)0.000 (2)0.002 (2)0.003 (2)
C150.060 (4)0.033 (3)0.035 (3)0.006 (3)0.007 (3)0.003 (3)
C160.037 (3)0.044 (3)0.046 (3)0.007 (3)0.000 (3)0.015 (3)
C170.099 (6)0.042 (4)0.034 (3)0.013 (4)0.015 (3)0.005 (3)
C180.073 (5)0.049 (4)0.050 (4)0.018 (3)0.029 (3)0.016 (3)
C190.046 (4)0.044 (4)0.070 (5)0.015 (3)0.020 (3)0.021 (3)
C200.043 (5)0.086 (6)0.115 (7)0.014 (4)0.016 (4)0.039 (5)
C210.037 (4)0.095 (6)0.140 (8)0.002 (4)0.018 (5)0.048 (6)
C220.060 (5)0.094 (6)0.077 (5)0.018 (4)0.033 (4)0.033 (4)
C230.049 (4)0.071 (4)0.051 (4)0.009 (3)0.013 (3)0.024 (3)
N30.035 (2)0.034 (2)0.026 (2)0.0019 (18)0.0057 (18)0.0040 (18)
O10.071 (3)0.066 (3)0.033 (2)0.006 (2)0.012 (2)0.001 (2)
C10.029 (3)0.058 (4)0.052 (4)0.003 (3)0.004 (3)0.007 (3)
C30.042 (3)0.042 (3)0.035 (3)0.004 (2)0.005 (3)0.001 (3)
C40.033 (3)0.030 (3)0.031 (3)0.000 (2)0.006 (2)0.002 (2)
C50.034 (3)0.024 (3)0.038 (3)0.002 (2)0.002 (2)0.003 (2)
C60.039 (3)0.027 (3)0.024 (3)0.006 (2)0.002 (2)0.006 (2)
C120.034 (3)0.028 (3)0.028 (3)0.002 (2)0.002 (2)0.001 (2)
N10.047 (3)0.038 (3)0.031 (2)0.006 (2)0.004 (2)0.003 (2)
N20.032 (2)0.040 (3)0.040 (2)0.000 (2)0.0001 (19)0.004 (2)
N40.033 (2)0.037 (2)0.025 (2)0.0007 (18)0.0039 (18)0.0021 (18)
Hg10.04968 (14)0.05769 (16)0.04649 (14)0.01629 (12)0.00742 (10)0.00740 (13)
I10.0555 (2)0.0551 (3)0.0607 (3)0.00396 (19)0.0187 (2)0.0143 (2)
I20.0464 (2)0.0458 (2)0.0623 (3)0.00957 (18)0.00981 (18)0.0071 (2)
Geometric parameters (Å, °) top
C2—C31.361 (7)C18—H180.9300
C2—C11.385 (7)C19—C201.410 (9)
C2—H20.9300C20—C211.357 (11)
C7—N11.327 (6)C20—H200.9300
C7—C81.385 (8)C21—C221.403 (10)
C7—H70.9300C21—H210.9300
C8—C91.363 (7)C22—C231.375 (8)
C8—H80.9300C22—H220.9300
C9—C101.420 (6)C23—H230.9300
C9—H90.9300N3—H3A0.8600
C10—C61.396 (6)O1—H1A0.91 (8)
C10—C111.425 (6)C1—N21.322 (6)
C11—N31.375 (6)C1—H10.9300
C11—C121.381 (6)C3—C41.402 (6)
C13—N41.337 (6)C3—H30.9300
C13—N31.378 (6)C4—C51.396 (7)
C13—C141.463 (6)C4—C121.427 (6)
C14—C151.391 (7)C5—N21.374 (6)
C14—C161.425 (7)C5—C61.456 (6)
C15—O11.355 (7)C6—N11.354 (6)
C15—C171.407 (8)C12—N41.376 (6)
C16—C231.409 (8)N1—Hg12.486 (4)
C16—C191.425 (7)N2—Hg12.391 (4)
C17—C181.358 (9)Hg1—I22.6435 (4)
C17—H170.9300Hg1—I12.6912 (5)
C18—C191.389 (9)
C3—C2—C1119.2 (5)C20—C21—H21119.3
C3—C2—H2120.4C22—C21—H21119.3
C1—C2—H2120.4C23—C22—C21118.9 (7)
N1—C7—C8123.2 (5)C23—C22—H22120.6
N1—C7—H7118.4C21—C22—H22120.6
C8—C7—H7118.4C22—C23—C16121.7 (6)
C9—C8—C7119.4 (5)C22—C23—H23119.2
C9—C8—H8120.3C16—C23—H23119.2
C7—C8—H8120.3C11—N3—C13107.6 (4)
C8—C9—C10118.5 (5)C11—N3—H3A126.2
C8—C9—H9120.8C13—N3—H3A126.2
C10—C9—H9120.8C15—O1—H1A103 (5)
C6—C10—C9118.6 (5)N2—C1—C2123.9 (5)
C6—C10—C11116.9 (4)N2—C1—H1118.1
C9—C10—C11124.5 (4)C2—C1—H1118.1
N3—C11—C12105.5 (4)C2—C3—C4118.9 (5)
N3—C11—C10132.4 (4)C2—C3—H3120.5
C12—C11—C10122.1 (4)C4—C3—H3120.5
N4—C13—N3110.6 (4)C5—C4—C3119.0 (4)
N4—C13—C14122.6 (4)C5—C4—C12117.1 (4)
N3—C13—C14126.5 (4)C3—C4—C12123.9 (5)
C15—C14—C16119.7 (5)N2—C5—C4121.1 (4)
C15—C14—C13116.7 (4)N2—C5—C6118.1 (4)
C16—C14—C13123.6 (4)C4—C5—C6120.8 (4)
O1—C15—C14122.6 (5)N1—C6—C10121.4 (5)
O1—C15—C17117.0 (5)N1—C6—C5117.7 (4)
C14—C15—C17120.3 (6)C10—C6—C5120.9 (4)
C23—C16—C19118.4 (5)N4—C12—C11110.6 (4)
C23—C16—C14123.7 (5)N4—C12—C4127.6 (4)
C19—C16—C14117.8 (5)C11—C12—C4121.7 (4)
C18—C17—C15120.4 (6)C7—N1—C6118.8 (5)
C18—C17—H17119.8C7—N1—Hg1125.3 (3)
C15—C17—H17119.8C6—N1—Hg1115.0 (3)
C17—C18—C19120.8 (6)C1—N2—C5117.9 (4)
C17—C18—H18119.6C1—N2—Hg1124.2 (3)
C19—C18—H18119.6C5—N2—Hg1117.6 (3)
C18—C19—C20120.6 (6)C13—N4—C12105.6 (4)
C18—C19—C16120.6 (6)N2—Hg1—N168.14 (14)
C20—C19—C16118.8 (7)N2—Hg1—I2107.31 (9)
C21—C20—C19120.8 (7)N1—Hg1—I2109.47 (10)
C21—C20—H20119.6N2—Hg1—I1116.46 (9)
C19—C20—H20119.6N1—Hg1—I196.33 (9)
C20—C21—C22121.4 (7)I2—Hg1—I1135.010 (15)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···I1i0.863.053.896 (4)167.
O1—H1A···N40.91 (8)1.77 (8)2.623 (6)155 (7)
Symmetry codes: (i) −x+1, −y+1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H3A···I1i0.863.053.896 (4)167.
O1—H1A···N40.91 (8)1.77 (8)2.623 (6)155 (7)
Symmetry codes: (i) −x+1, −y+1, −z.
Acknowledgements top

The author thanks Guangdong University of Petrochemical Technology for supporting this work.

references
References top

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X. Y., Ma, X. Y., Liu, Y., Xu, Z. L. & Kong, Z. G. (2010). Chin. J. Inorg. Chem. 26, 1482–1484.