organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro-2-hy­dr­oxy­phen­yl)-1-phenyl-1H-pyrazole-4-carbaldehyde

aDepartment of Chemistry, University of Pune, Pune 411007, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 10 September 2011; accepted 17 September 2011; online 30 September 2011)

In the title compound, C16H11ClN2O2, the pyrazole ring makes dihedral angles of 11.88 (13) and 22.33 (13)° with the 3-chloro-2-hy­droxy­benzene group and phenyl rings, respectively. The phenolic hy­droxy group forms an intra­molecular O—H⋯N hydrogen bond with the imine N atom of the pyrazole unit. The formyl group is virtually coplanar with the pyrazole ring [dihedral angle = 4.5 (19)°] and acts as an acceptor in an intra­molecular C—H⋯O hydrogen bond closing seven-membered ring. In the crystal, adjacent mol­ecules are linked through C—H⋯O hydrogen bonds into infinite chains along the b axis.

Related literature

For structures of similar compounds, see: Jeyakanthan et al. (2001[Jeyakanthan, J., Velmurugan, D., Selvi, S. & Perumal, P. T. (2001). Acta Cryst. E57, o474-o476.]); Shanmuga Sundara Raj et al. (1999[Shanmuga Sundara Raj, S., Jeyakanthan, J., Selvi, S., Velmurugan, D., Fun, H.-K. & Perumal, P. T. (1999). Acta Cryst. C55, 1667-1669.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClN2O2

  • Mr = 298.72

  • Orthorhombic, P 21 21 21

  • a = 3.8142 (1) Å

  • b = 15.9367 (3) Å

  • c = 21.4121 (5) Å

  • V = 1301.55 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.11 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.988

  • 11133 measured reflections

  • 2563 independent reflections

  • 2195 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.075

  • S = 1.04

  • 2563 reflections

  • 223 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1005 Friedel pairs

  • Flack parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.79 (3) 1.89 (3) 2.585 (2) 147 (3)
C5—H5⋯O2 0.95 (2) 2.18 (2) 3.024 (3) 148 (2)
C10—H10⋯O1i 1.00 (3) 2.58 (3) 3.568 (3) 171 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: 'SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])'.

Supporting information


Comment top

The title compound was synthesized through the action of Vilsmeier–Haack reagent (DMF/POCl3) on 3-chloro-2-hydroxyacetophenone phenylhydrazone. The compound contains three aromatic rings, the dihedral angles between them being 11.88 (13)° (pyrazole and phenol), 22.33 (13)° (pyrazole and phenyl) and 31.29 (12)° (phenyl and phenol). The phenol hydroxyl is hydrogen bonded to the pyrazole nitrogen, N2, and the formyl oxygen atom is directed towards the phenol ring to make an intramolecular C—H···O hydrogen bond with C5—H5. In contrary, in the crystal structures of the related compounds (Jeyakanthan et al., 2001; Shanmuga Sundara Raj et al., 1999) the formyl oxygen atoms are directed away from the phenol rings, being involved in intermolecular C—H···O hydrogen bonding. The crystal packing of the present compound exhibits infinite chains along the b axis formed by intermoleculoar C—H···O hydrogen bonds (Table 1).

Related literature top

For structures of similar compounds, see: Jeyakanthan et al. (2001); Shanmuga Sundara Raj et al. (1999).

Experimental top

A mixture of equivalent amounts (24 mmol) of 3-chloro-2-hydroxyacetophenone and phenyl hydrazine in methanol (40 ml) was refluxed for 2 h. The reaction mixture was then cooled to room temperature whereupon the condensation product, 3-chloro-2-hydroxy acetophenone phenylhydrazone, was seperated out with 92% yield. The hydrazone (2.6 g, 0.01 mol) was dissolved in DMF (15 ml) and then POCl3 (0.03 mol) was added dropwise at 0 oC. After the addition was complete, the reaction mixture was warmed to 60–70 oC and stirred for 2.5 h. The mixture was then poured onto crushed ice and neutralized by aqueous NaOH solution (10%). The precipitate was filtered, strongly washed with water and recrystallized from ethanol, yielding 85% of the pyrazole product (m.p. = 422-423 K). The needle shaped crystals of the compound were grown in a DMF solution at room temperature.

Refinement top

Hydrogen atoms were all located in a difference Fourier map and their positions refined with Uiso(H) set to 1.2Ueq(C) or 1.2Ueq(O).

Structure description top

The title compound was synthesized through the action of Vilsmeier–Haack reagent (DMF/POCl3) on 3-chloro-2-hydroxyacetophenone phenylhydrazone. The compound contains three aromatic rings, the dihedral angles between them being 11.88 (13)° (pyrazole and phenol), 22.33 (13)° (pyrazole and phenyl) and 31.29 (12)° (phenyl and phenol). The phenol hydroxyl is hydrogen bonded to the pyrazole nitrogen, N2, and the formyl oxygen atom is directed towards the phenol ring to make an intramolecular C—H···O hydrogen bond with C5—H5. In contrary, in the crystal structures of the related compounds (Jeyakanthan et al., 2001; Shanmuga Sundara Raj et al., 1999) the formyl oxygen atoms are directed away from the phenol rings, being involved in intermolecular C—H···O hydrogen bonding. The crystal packing of the present compound exhibits infinite chains along the b axis formed by intermoleculoar C—H···O hydrogen bonds (Table 1).

For structures of similar compounds, see: Jeyakanthan et al. (2001); Shanmuga Sundara Raj et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010)'.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Intramolecular H-bonds are depicted as red dashed lines.
[Figure 2] Fig. 2. Packing view along the a axis showing hydrogen-bonded chains along the b axis. Hydrogen bonds are depicted as red dashed lines
3-(3-Chloro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C16H11ClN2O2F(000) = 616
Mr = 298.72Dx = 1.524 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1835 reflections
a = 3.8142 (1) Åθ = 2.3–27.7°
b = 15.9367 (3) ŵ = 0.30 mm1
c = 21.4121 (5) ÅT = 100 K
V = 1301.55 (5) Å3Needle, colorless
Z = 40.11 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2563 independent reflections
Radiation source: fine-focus sealed tube2195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.968, Tmax = 0.988k = 1919
11133 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038Only H-atom coordinates refined
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0338P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2563 reflectionsΔρmax = 0.20 e Å3
223 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1005 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C16H11ClN2O2V = 1301.55 (5) Å3
Mr = 298.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8142 (1) ŵ = 0.30 mm1
b = 15.9367 (3) ÅT = 100 K
c = 21.4121 (5) Å0.11 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2563 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2195 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.061
11133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038Only H-atom coordinates refined
wR(F2) = 0.075Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.23 e Å3
2563 reflectionsAbsolute structure: Flack (1983), 1005 Friedel pairs
223 parametersAbsolute structure parameter: 0.03 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15696 (17)0.83249 (4)0.11291 (3)0.02120 (16)
O10.1795 (5)0.74015 (10)0.21221 (7)0.0193 (4)
H10.288 (8)0.7150 (17)0.2372 (12)0.029*
O20.2257 (7)0.38231 (11)0.14904 (10)0.0523 (8)
N10.6317 (6)0.55861 (11)0.30360 (8)0.0146 (4)
N20.4904 (5)0.61122 (12)0.26021 (8)0.0152 (5)
C10.1243 (7)0.69086 (14)0.16139 (10)0.0146 (5)
C20.0338 (6)0.72717 (14)0.10952 (12)0.0166 (5)
C30.0909 (6)0.68296 (14)0.05499 (11)0.0170 (6)
H30.205 (7)0.7091 (14)0.0212 (11)0.020*
C40.0085 (7)0.59966 (16)0.05228 (11)0.0189 (6)
H40.027 (6)0.5695 (15)0.0148 (11)0.023*
C50.1558 (7)0.56110 (14)0.10338 (10)0.0169 (5)
H50.217 (7)0.5034 (14)0.1021 (11)0.020*
C60.2166 (6)0.60481 (14)0.15903 (10)0.0136 (5)
C70.3790 (7)0.56342 (13)0.21291 (11)0.0145 (5)
C80.4516 (7)0.47684 (15)0.22672 (11)0.0193 (6)
C90.6108 (7)0.47880 (15)0.28431 (11)0.0185 (6)
H90.705 (7)0.4337 (15)0.3073 (11)0.022*
C100.3808 (9)0.39580 (16)0.19719 (13)0.0340 (8)
H100.478 (7)0.3494 (17)0.2230 (13)0.041*
C110.7764 (6)0.59165 (14)0.36014 (10)0.0148 (6)
C120.8074 (7)0.54004 (15)0.41212 (11)0.0177 (5)
H120.726 (7)0.4860 (15)0.4085 (10)0.021*
C130.9498 (7)0.57231 (16)0.46616 (12)0.0205 (6)
H130.959 (7)0.5372 (16)0.5017 (11)0.025*
C141.0616 (6)0.65466 (16)0.46938 (12)0.0194 (6)
H141.158 (7)0.6750 (14)0.5087 (11)0.023*
C151.0272 (7)0.70584 (16)0.41707 (11)0.0192 (6)
H151.114 (7)0.7627 (15)0.4189 (10)0.023*
C160.8840 (6)0.67472 (15)0.36244 (11)0.0161 (5)
H160.865 (7)0.7101 (14)0.3265 (11)0.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0235 (3)0.0144 (3)0.0257 (3)0.0028 (3)0.0039 (3)0.0023 (3)
O10.0271 (10)0.0136 (9)0.0173 (9)0.0022 (8)0.0054 (8)0.0012 (7)
O20.090 (2)0.0165 (10)0.0498 (13)0.0030 (11)0.0428 (14)0.0012 (9)
N10.0162 (11)0.0122 (10)0.0155 (10)0.0009 (9)0.0023 (10)0.0013 (8)
N20.0157 (11)0.0160 (11)0.0138 (10)0.0010 (9)0.0018 (9)0.0010 (8)
C10.0146 (13)0.0148 (12)0.0145 (12)0.0027 (10)0.0019 (11)0.0013 (9)
C20.0133 (13)0.0138 (12)0.0226 (12)0.0001 (10)0.0022 (11)0.0026 (12)
C30.0168 (14)0.0189 (14)0.0153 (12)0.0024 (10)0.0030 (10)0.0032 (10)
C40.0205 (15)0.0216 (14)0.0145 (12)0.0030 (11)0.0004 (11)0.0029 (11)
C50.0187 (13)0.0144 (12)0.0177 (13)0.0014 (12)0.0039 (12)0.0032 (10)
C60.0116 (14)0.0132 (12)0.0159 (12)0.0020 (9)0.0043 (10)0.0023 (10)
C70.0122 (13)0.0124 (12)0.0188 (12)0.0005 (11)0.0014 (11)0.0009 (9)
C80.0228 (16)0.0160 (13)0.0192 (13)0.0003 (11)0.0040 (11)0.0013 (10)
C90.0187 (15)0.0130 (12)0.0238 (13)0.0024 (11)0.0002 (12)0.0034 (10)
C100.050 (2)0.0159 (14)0.0359 (17)0.0009 (15)0.0215 (17)0.0009 (12)
C110.0114 (15)0.0172 (13)0.0159 (12)0.0004 (10)0.0021 (10)0.0019 (10)
C120.0168 (14)0.0139 (12)0.0224 (13)0.0001 (11)0.0008 (11)0.0002 (10)
C130.0211 (16)0.0197 (14)0.0208 (13)0.0007 (11)0.0016 (11)0.0046 (11)
C140.0170 (15)0.0238 (15)0.0174 (12)0.0009 (11)0.0026 (11)0.0041 (11)
C150.0158 (14)0.0153 (13)0.0264 (14)0.0006 (10)0.0020 (11)0.0016 (11)
C160.0149 (13)0.0177 (13)0.0158 (11)0.0031 (12)0.0026 (11)0.0011 (10)
Geometric parameters (Å, º) top
Cl1—C21.745 (2)C6—C71.466 (3)
O1—C11.358 (3)C7—C81.438 (3)
O1—H10.79 (3)C8—C91.375 (3)
O2—C101.208 (3)C8—C101.463 (3)
N1—C91.340 (3)C9—H90.94 (2)
N1—N21.363 (3)C10—H101.00 (3)
N1—C111.431 (3)C11—C161.387 (3)
N2—C71.337 (3)C11—C121.389 (3)
C1—C21.390 (3)C12—C131.378 (3)
C1—C61.417 (3)C12—H120.92 (2)
C2—C31.381 (3)C13—C141.382 (3)
C3—C41.382 (3)C13—H130.95 (2)
C3—H30.94 (2)C14—C151.392 (3)
C4—C51.375 (3)C14—H140.98 (2)
C4—H40.94 (2)C15—C161.383 (3)
C5—C61.400 (3)C15—H150.97 (2)
C5—H50.95 (2)C16—H160.96 (2)
C1—O1—H1109 (2)C9—C8—C10119.3 (2)
C9—N1—N2110.51 (19)C7—C8—C10136.3 (2)
C9—N1—C11129.3 (2)N1—C9—C8108.9 (2)
N2—N1—C11120.21 (17)N1—C9—H9122.7 (15)
C7—N2—N1106.97 (18)C8—C9—H9128.2 (15)
O1—C1—C2117.8 (2)O2—C10—C8128.1 (3)
O1—C1—C6123.4 (2)O2—C10—H10121.6 (16)
C2—C1—C6118.8 (2)C8—C10—H10110.3 (16)
C3—C2—C1122.1 (2)C16—C11—C12120.8 (2)
C3—C2—Cl1118.92 (19)C16—C11—N1119.7 (2)
C1—C2—Cl1118.95 (18)C12—C11—N1119.5 (2)
C2—C3—C4118.8 (2)C13—C12—C11119.0 (2)
C2—C3—H3119.8 (14)C13—C12—H12123.6 (15)
C4—C3—H3121.3 (14)C11—C12—H12117.3 (15)
C5—C4—C3120.5 (2)C12—C13—C14121.2 (2)
C5—C4—H4120.4 (15)C12—C13—H13118.1 (15)
C3—C4—H4119.1 (15)C14—C13—H13120.6 (15)
C4—C5—C6121.5 (2)C13—C14—C15119.2 (2)
C4—C5—H5120.7 (14)C13—C14—H14118.4 (14)
C6—C5—H5117.8 (14)C15—C14—H14122.4 (14)
C5—C6—C1118.1 (2)C16—C15—C14120.5 (2)
C5—C6—C7121.1 (2)C16—C15—H15120.4 (14)
C1—C6—C7120.8 (2)C14—C15—H15119.0 (14)
N2—C7—C8109.3 (2)C15—C16—C11119.3 (2)
N2—C7—C6118.3 (2)C15—C16—H16120.0 (14)
C8—C7—C6132.4 (2)C11—C16—H16120.7 (14)
C9—C8—C7104.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.79 (3)1.89 (3)2.585 (2)147 (3)
C5—H5···O20.95 (2)2.18 (2)3.024 (3)148 (2)
C10—H10···O1i1.00 (3)2.58 (3)3.568 (3)171 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H11ClN2O2
Mr298.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)3.8142 (1), 15.9367 (3), 21.4121 (5)
V3)1301.55 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.11 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11133, 2563, 2195
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.075, 1.04
No. of reflections2563
No. of parameters223
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.20, 0.23
Absolute structureFlack (1983), 1005 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), 'SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.79 (3)1.89 (3)2.585 (2)147 (3)
C5—H5···O20.95 (2)2.18 (2)3.024 (3)148 (2)
C10—H10···O1i1.00 (3)2.58 (3)3.568 (3)171 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial support from the University of Malaya is highly appreciated (PPP grant PS359/2009 C).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeyakanthan, J., Velmurugan, D., Selvi, S. & Perumal, P. T. (2001). Acta Cryst. E57, o474–o476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShanmuga Sundara Raj, S., Jeyakanthan, J., Selvi, S., Velmurugan, D., Fun, H.-K. & Perumal, P. T. (1999). Acta Cryst. C55, 1667–1669.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds