metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-phenyl­quinoline-4-carboxyl­ato)bis­­[aqua­(1,10-phenanthroline)(2-phenyl­quinoline-4-carboxyl­ato)manganese(II)] dihydrate

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: lix905@126.com, lixing@nbu.edu.cn

(Received 23 September 2011; accepted 25 September 2011; online 30 September 2011)

In the centrosymmetric dinuclear title complex, [Mn2(C16H10NO2)4(C12H8N2)2(H2O)2]·2H2O, the MnII cation is in a distorted octa­hedral coordination geometry defined by two N atoms from a 1,10-phenanthroline ligand, one water O atom and three O atoms from three 2-phenyl­quinoline-4-carboxyl­ate anions. A pair of 2-phenyl­quinoline-4-carboxyl­ate anions bridge two Mn cations, forming the dinuclear mol­ecule. An intra­moleculr O—H⋯O hydrogen bond occurs. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds are present in the crystal structure.

Related literature

For applications of coordination polymers, see: Wang et al. (2009[Wang, M., Xie, M. H., Wu, C. D. & Wang, Y. G. (2009). Chem. Commun. 17, 2396-2398.]); Xi et al. (2009[Xi, P.-X., Xu, Z.-H., Chen, F.-J., Zeng, Z.-Z. & Zhang, X.-W. (2009). J. Inorg. Biochem. 103, 210-218.]); Xu et al. (2008[Xu, Z.-H., Chen, F.-J., Xi, P.-X., Liu, X.-H. & Zeng, Z.-Z. (2008). J. Photochem. Photobiol. A, 196, 77-83.]); Ferey (2008[Ferey, G. (2008). Chem. Soc. Rev. 37, 191-214.]). For a related structure, see: Shen et al. (2007[Shen, Y.-C., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y. & Yao, Y.-G. (2007). Inorg. Chem. Commun. 10, 888-890.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C16H10NO2)4(C12H8N2)2(H2O)2]·2H2O

  • Mr = 1535.35

  • Monoclinic, P 21 /c

  • a = 14.926 (4) Å

  • b = 13.847 (4) Å

  • c = 17.717 (5) Å

  • β = 96.919 (4)°

  • V = 3635.1 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.951

  • 31242 measured reflections

  • 8315 independent reflections

  • 5656 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.03

  • 8315 reflections

  • 512 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.1740 (14)
Mn1—O3 2.1557 (15)
Mn1—O4i 2.1148 (14)
Mn1—O5 2.2358 (16)
Mn1—N3 2.2706 (16)
Mn1—N4 2.2914 (15)
Symmetry code: (i) -x, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.85 (2) 1.81 (2) 2.630 (2) 161 (3)
O5—H5B⋯N2ii 0.83 (2) 2.04 (2) 2.868 (2) 176
O6—H6A⋯O1iii 0.89 (5) 2.30 (5) 3.175 (3) 167
O6—H6B⋯N1iv 0.87 (2) 2.23 (2) 3.051 (3) 157
Symmetry codes: (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering of coordination polymers have attracted a considerable ongoing research in the past few decades because of their variety of topological architectures and the diverse fascinating functionalities for potential applications (Ferey, 2008; Wang et al., 2009). 2-phenylquinoline-4-carboxylic acid, aside from the significance in biological systems (Xi et al., 2009; Xu et al., 2008), also possesses fascinating coordination behaviors, such as asymmetric geometry and multiple coordination sites, which has been widely used to design and synthesize metal-organic coordination complexes because of the carboxylate group and/or pyridine nitrogen atom (Shen et al., 2007). Herein we report the preparation and characterization of a new 2-phenylquinoline-4-carboxylate-manganese(II) complex, [Mn2(C16H10NO2)4(Phen)2(H2O)2].2H2O.

Single-crystal X-ray diffraction analysis indicates the title complex possesses a dinuclear structure. The asymmetric unit consists of four ligands, two phen ligands, two manganese ions, two coordinated water molecules and two guest water molecules. A view of the manganese ion coordination is shown in Figure 1, where the metal center is coordinated in an octahedral geometry by two N atoms from one phen with Mn—N distances ranging 2.2706 (16) and 2.2914 (15) Å and four O atoms from three ligands and one coordinated water molecule with Mn—O distances ranging from 2.1148 (14) to 2.2358 (16) Å. The intermolecular O—H···O and O—H···N hydrogen bondings is helpful to the stabilization of the crystal structure (Figure 2).

Related literature top

For applications of coordination polymers, see: Wang et al. (2009); Xi et al. (2009); Xu et al. (2008); Ferey (2008). For a related structure, see: Shen et al. (2007).

Experimental top

2-Phenylquinoline-4-carboxylic acid (0.0123 g, 0.05 mmol), Mn(OAc)2.2H2O (0.0250 g, 0.10 mmol), phen (0.0198 g, 0.10 mmol) and KOH (0.0028 g, 0.05 mmol) in H2O solution (10 ml) were placed in a 25 ml stainless reactor fitted with a Teflon liner and heated to 373 K for two days, then cooled to room temperature, yellow block like crystals were obtained (yield, 50%).

Refinement top

H atoms attached to C atoms were placed in calculated positions and treated using a riding-model approximation [C–H = 0.95–0.98 with Uiso(H) = 1.2Ueq(C)/1.5Ueq(C)]. H atoms bonded to O atoms were visible in the difference Fourier map and refined freely.

Structure description top

Crystal engineering of coordination polymers have attracted a considerable ongoing research in the past few decades because of their variety of topological architectures and the diverse fascinating functionalities for potential applications (Ferey, 2008; Wang et al., 2009). 2-phenylquinoline-4-carboxylic acid, aside from the significance in biological systems (Xi et al., 2009; Xu et al., 2008), also possesses fascinating coordination behaviors, such as asymmetric geometry and multiple coordination sites, which has been widely used to design and synthesize metal-organic coordination complexes because of the carboxylate group and/or pyridine nitrogen atom (Shen et al., 2007). Herein we report the preparation and characterization of a new 2-phenylquinoline-4-carboxylate-manganese(II) complex, [Mn2(C16H10NO2)4(Phen)2(H2O)2].2H2O.

Single-crystal X-ray diffraction analysis indicates the title complex possesses a dinuclear structure. The asymmetric unit consists of four ligands, two phen ligands, two manganese ions, two coordinated water molecules and two guest water molecules. A view of the manganese ion coordination is shown in Figure 1, where the metal center is coordinated in an octahedral geometry by two N atoms from one phen with Mn—N distances ranging 2.2706 (16) and 2.2914 (15) Å and four O atoms from three ligands and one coordinated water molecule with Mn—O distances ranging from 2.1148 (14) to 2.2358 (16) Å. The intermolecular O—H···O and O—H···N hydrogen bondings is helpful to the stabilization of the crystal structure (Figure 2).

For applications of coordination polymers, see: Wang et al. (2009); Xi et al. (2009); Xu et al. (2008); Ferey (2008). For a related structure, see: Shen et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the manganese ion coordination, showing the atoms 30% probability ellipsoids. Guest water molecules and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing of title complex showing the three dimensional hydrogen bonding network.
Bis(µ-2-phenylquinoline-4-carboxylato)bis[aqua(1,10-phenanthroline)(2- phenylquinoline-4-carboxylato)manganese(II)] dihydrate top
Crystal data top
[Mn2(C16H10NO2)4(C12H8N2)2(H2O)2]·2H2OF(000) = 1588
Mr = 1535.35Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6315 reflections
a = 14.926 (4) Åθ = 2.2–25.3°
b = 13.847 (4) ŵ = 0.42 mm1
c = 17.717 (5) ÅT = 296 K
β = 96.919 (4)°Block, light-yellow
V = 3635.1 (18) Å30.35 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
8315 independent reflections
Radiation source: fine-focus sealed tube5656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1719
Tmin = 0.927, Tmax = 0.951k = 1717
31242 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.2051P]
where P = (Fo2 + 2Fc2)/3
8315 reflections(Δ/σ)max = 0.001
512 parametersΔρmax = 0.41 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mn2(C16H10NO2)4(C12H8N2)2(H2O)2]·2H2OV = 3635.1 (18) Å3
Mr = 1535.35Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.926 (4) ŵ = 0.42 mm1
b = 13.847 (4) ÅT = 296 K
c = 17.717 (5) Å0.35 × 0.15 × 0.12 mm
β = 96.919 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5656 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.951Rint = 0.044
31242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
8315 reflectionsΔρmin = 0.28 e Å3
512 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.077680 (18)0.13501 (2)0.951424 (14)0.03543 (10)
O10.22272 (9)0.12800 (10)0.98381 (8)0.0504 (4)
O20.24413 (10)0.27644 (12)1.03173 (10)0.0738 (5)
O30.06564 (9)0.01826 (10)0.93138 (7)0.0443 (3)
O40.04776 (10)0.12260 (10)0.93530 (7)0.0529 (4)
O50.07358 (10)0.29333 (10)0.97558 (8)0.0445 (3)
O60.26767 (16)0.5645 (2)0.39858 (18)0.1290 (10)
N10.53501 (11)0.09953 (14)1.12225 (10)0.0557 (5)
N20.03456 (11)0.08570 (11)0.65569 (8)0.0402 (4)
N30.06204 (10)0.15689 (12)0.88748 (9)0.0425 (4)
N40.09674 (10)0.16239 (11)0.82681 (8)0.0373 (4)
C10.27011 (13)0.19290 (16)1.01920 (11)0.0463 (5)
C20.36515 (12)0.16419 (15)1.05267 (10)0.0428 (5)
C30.38370 (13)0.06909 (15)1.06611 (10)0.0447 (5)
H30.33950.02341.05110.054*
C40.43546 (13)0.23362 (16)1.07405 (11)0.0488 (5)
C50.42841 (15)0.33411 (18)1.06345 (15)0.0666 (7)
H50.37380.36051.04230.080*
C60.50050 (18)0.3939 (2)1.08366 (18)0.0839 (9)
H60.49430.46021.07660.101*
C70.58388 (18)0.3551 (2)1.11501 (19)0.0895 (10)
H70.63290.39581.12770.107*
C80.59324 (16)0.2594 (2)1.12680 (16)0.0788 (8)
H80.64870.23491.14780.095*
C90.51972 (13)0.19506 (17)1.10771 (12)0.0555 (6)
C100.46890 (13)0.03769 (16)1.10258 (11)0.0479 (5)
C110.48590 (14)0.06496 (17)1.12264 (13)0.0535 (5)
C120.53980 (19)0.0895 (2)1.18959 (17)0.0868 (9)
H120.56770.04131.22060.104*
C130.5518 (2)0.1856 (3)1.2101 (2)0.1048 (11)
H130.58680.20121.25540.126*
C140.44751 (15)0.13894 (17)1.07692 (15)0.0610 (6)
H140.41170.12421.03180.073*
C150.46197 (18)0.2346 (2)1.09785 (18)0.0808 (8)
H150.43670.28351.06620.097*
C160.5133 (2)0.2577 (2)1.1650 (2)0.1006 (11)
H160.52170.32191.17950.121*
C170.00152 (13)0.06932 (13)0.90100 (10)0.0393 (4)
C180.01582 (13)0.07117 (12)0.81476 (9)0.0361 (4)
C190.05738 (13)0.06910 (12)0.77495 (10)0.0369 (4)
H190.11500.06270.80100.044*
C200.10419 (13)0.07755 (13)0.77399 (10)0.0378 (4)
C210.18619 (14)0.07534 (15)0.80722 (12)0.0502 (5)
H210.18460.07070.85970.060*
C220.26733 (15)0.07998 (17)0.76262 (13)0.0592 (6)
H220.32040.07780.78510.071*
C230.27174 (15)0.08801 (17)0.68346 (13)0.0588 (6)
H230.32750.09220.65400.071*
C240.19513 (14)0.08966 (15)0.64978 (12)0.0511 (5)
H240.19890.09450.59710.061*
C250.10912 (13)0.08409 (13)0.69350 (10)0.0388 (4)
C260.04644 (13)0.07653 (12)0.69469 (10)0.0364 (4)
C270.12600 (14)0.07413 (13)0.65102 (11)0.0427 (5)
C280.11378 (16)0.06426 (16)0.57216 (12)0.0607 (6)
H280.05570.06020.54660.073*
C290.1872 (2)0.0604 (2)0.53144 (15)0.0793 (8)
H290.17780.05480.47880.095*
C300.21377 (15)0.07807 (16)0.68732 (13)0.0579 (6)
H300.22360.08440.73990.069*
C310.28697 (18)0.0727 (2)0.64598 (16)0.0776 (8)
H310.34540.07460.67110.093*
C320.2735 (2)0.0646 (2)0.56783 (17)0.0811 (8)
H320.32250.06200.54010.097*
C330.13864 (14)0.15679 (16)0.91749 (14)0.0568 (6)
H330.13660.14910.96980.068*
C340.22241 (15)0.16763 (18)0.87456 (17)0.0708 (7)
H340.27500.16820.89790.085*
C350.22613 (15)0.17737 (18)0.79814 (17)0.0706 (7)
H350.28180.18370.76880.085*
C360.14736 (14)0.17799 (15)0.76307 (13)0.0533 (6)
C370.06530 (12)0.16867 (13)0.81122 (11)0.0394 (4)
C380.14444 (18)0.18754 (17)0.68263 (14)0.0675 (7)
H380.19830.19330.65050.081*
C390.0665 (2)0.18842 (16)0.65274 (12)0.0643 (7)
H390.06720.19530.60040.077*
C400.01816 (15)0.17908 (14)0.69947 (10)0.0460 (5)
C410.01878 (13)0.17047 (12)0.77883 (10)0.0364 (4)
C420.10130 (18)0.18032 (16)0.67071 (12)0.0590 (6)
H420.10360.18700.61870.071*
C430.17865 (17)0.17165 (16)0.71898 (12)0.0579 (6)
H430.23430.17130.70040.070*
C440.17374 (14)0.16325 (15)0.79703 (11)0.0462 (5)
H440.22730.15800.82960.055*
H5A0.1296 (12)0.3012 (19)0.9910 (15)0.092 (10)*
H6A0.246 (4)0.511 (3)0.418 (3)0.27 (3)*
H5B0.0596 (16)0.3279 (16)0.9376 (11)0.074 (8)*
H6B0.3245 (14)0.556 (3)0.393 (2)0.147 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03206 (16)0.04590 (18)0.02736 (14)0.00132 (13)0.00034 (10)0.00228 (12)
O10.0319 (7)0.0636 (10)0.0529 (8)0.0000 (7)0.0070 (6)0.0057 (7)
O20.0458 (9)0.0658 (11)0.1038 (13)0.0064 (8)0.0157 (9)0.0141 (10)
O30.0499 (8)0.0459 (8)0.0357 (7)0.0008 (6)0.0006 (6)0.0022 (6)
O40.0740 (10)0.0543 (9)0.0314 (7)0.0159 (7)0.0106 (7)0.0016 (6)
O50.0489 (9)0.0483 (9)0.0351 (7)0.0036 (7)0.0004 (6)0.0055 (6)
O60.0584 (15)0.160 (3)0.165 (3)0.0228 (16)0.0017 (15)0.058 (2)
N10.0352 (10)0.0640 (12)0.0643 (11)0.0023 (9)0.0086 (8)0.0085 (10)
N20.0482 (10)0.0409 (9)0.0310 (8)0.0013 (7)0.0028 (7)0.0004 (7)
N30.0327 (9)0.0501 (10)0.0436 (9)0.0020 (7)0.0003 (7)0.0045 (7)
N40.0392 (9)0.0388 (9)0.0333 (8)0.0007 (7)0.0021 (7)0.0023 (6)
C10.0342 (11)0.0598 (14)0.0438 (11)0.0004 (10)0.0007 (9)0.0015 (10)
C20.0312 (10)0.0594 (13)0.0370 (10)0.0011 (9)0.0013 (8)0.0040 (9)
C30.0324 (10)0.0601 (14)0.0411 (10)0.0051 (9)0.0020 (8)0.0039 (9)
C40.0360 (11)0.0587 (14)0.0507 (11)0.0005 (10)0.0005 (9)0.0075 (10)
C50.0440 (13)0.0629 (16)0.0895 (18)0.0001 (11)0.0059 (12)0.0023 (13)
C60.0644 (18)0.0606 (16)0.123 (2)0.0089 (14)0.0045 (16)0.0095 (16)
C70.0492 (16)0.076 (2)0.136 (3)0.0146 (14)0.0169 (16)0.0197 (18)
C80.0416 (13)0.0723 (18)0.115 (2)0.0048 (12)0.0214 (13)0.0172 (16)
C90.0342 (11)0.0675 (16)0.0622 (13)0.0025 (10)0.0045 (10)0.0117 (11)
C100.0325 (11)0.0664 (15)0.0438 (11)0.0006 (10)0.0002 (8)0.0043 (10)
C110.0356 (11)0.0649 (15)0.0607 (13)0.0041 (10)0.0086 (10)0.0064 (11)
C120.0719 (19)0.091 (2)0.089 (2)0.0023 (16)0.0221 (15)0.0191 (17)
C130.081 (2)0.107 (3)0.120 (3)0.008 (2)0.0144 (19)0.048 (2)
C140.0473 (13)0.0657 (16)0.0718 (15)0.0024 (11)0.0153 (11)0.0016 (13)
C150.0659 (17)0.0637 (18)0.115 (2)0.0006 (14)0.0207 (16)0.0011 (16)
C160.070 (2)0.074 (2)0.158 (3)0.0129 (17)0.017 (2)0.034 (2)
C170.0510 (12)0.0358 (10)0.0318 (9)0.0030 (9)0.0074 (8)0.0016 (8)
C180.0508 (12)0.0271 (9)0.0304 (9)0.0017 (8)0.0050 (8)0.0009 (7)
C190.0452 (11)0.0322 (10)0.0329 (9)0.0028 (8)0.0027 (8)0.0007 (7)
C200.0457 (11)0.0300 (10)0.0383 (10)0.0012 (8)0.0079 (8)0.0007 (8)
C210.0544 (13)0.0543 (13)0.0432 (11)0.0020 (10)0.0108 (10)0.0009 (9)
C220.0465 (13)0.0728 (16)0.0600 (14)0.0053 (11)0.0131 (11)0.0003 (12)
C230.0471 (13)0.0681 (15)0.0593 (14)0.0024 (11)0.0012 (11)0.0014 (12)
C240.0522 (13)0.0577 (13)0.0416 (11)0.0026 (11)0.0016 (9)0.0006 (10)
C250.0476 (11)0.0320 (10)0.0362 (9)0.0016 (8)0.0030 (8)0.0008 (8)
C260.0477 (11)0.0290 (10)0.0330 (9)0.0036 (8)0.0065 (8)0.0011 (7)
C270.0530 (12)0.0370 (11)0.0397 (10)0.0076 (9)0.0126 (9)0.0050 (8)
C280.0676 (16)0.0712 (16)0.0458 (12)0.0172 (12)0.0170 (11)0.0027 (11)
C290.096 (2)0.093 (2)0.0540 (14)0.0284 (17)0.0323 (15)0.0033 (13)
C300.0540 (14)0.0623 (15)0.0593 (14)0.0010 (11)0.0145 (11)0.0077 (11)
C310.0559 (16)0.094 (2)0.085 (2)0.0095 (14)0.0192 (14)0.0171 (16)
C320.077 (2)0.088 (2)0.087 (2)0.0254 (16)0.0448 (16)0.0155 (16)
C330.0403 (12)0.0635 (15)0.0676 (14)0.0058 (10)0.0102 (11)0.0108 (11)
C340.0357 (13)0.0710 (17)0.105 (2)0.0055 (11)0.0063 (13)0.0196 (15)
C350.0376 (13)0.0639 (16)0.103 (2)0.0013 (11)0.0219 (13)0.0163 (15)
C360.0480 (13)0.0389 (11)0.0662 (14)0.0002 (10)0.0210 (11)0.0051 (10)
C370.0385 (11)0.0320 (10)0.0442 (10)0.0014 (8)0.0092 (8)0.0026 (8)
C380.0729 (18)0.0573 (15)0.0612 (15)0.0026 (13)0.0377 (13)0.0075 (12)
C390.097 (2)0.0507 (14)0.0376 (11)0.0020 (14)0.0225 (12)0.0039 (10)
C400.0725 (15)0.0303 (10)0.0329 (10)0.0008 (10)0.0026 (10)0.0021 (8)
C410.0479 (11)0.0273 (9)0.0314 (9)0.0001 (8)0.0054 (8)0.0011 (7)
C420.098 (2)0.0468 (13)0.0333 (11)0.0043 (13)0.0142 (12)0.0040 (9)
C430.0742 (17)0.0529 (13)0.0527 (13)0.0043 (12)0.0322 (12)0.0046 (10)
C440.0454 (12)0.0493 (12)0.0451 (11)0.0018 (9)0.0100 (9)0.0049 (9)
Geometric parameters (Å, º) top
Mn1—O12.1740 (14)C16—H160.9300
Mn1—O32.1557 (15)C17—C181.519 (2)
Mn1—O4i2.1148 (14)C18—C191.370 (3)
Mn1—O52.2358 (16)C18—C201.428 (3)
Mn1—N32.2706 (16)C19—C261.415 (2)
Mn1—N42.2914 (15)C19—H190.9300
O1—C11.263 (2)C20—C211.421 (3)
O2—C11.248 (2)C20—C251.422 (3)
O3—C171.258 (2)C21—C221.366 (3)
O4—C171.250 (2)C21—H210.9300
O4—Mn1i2.1148 (14)C22—C231.400 (3)
O5—H5A0.854 (17)C22—H220.9300
O5—H5B0.832 (16)C23—C241.352 (3)
O6—H6A0.89 (5)C23—H230.9300
O6—H6B0.874 (18)C24—C251.419 (3)
N1—C101.321 (3)C24—H240.9300
N1—C91.362 (3)C26—C271.494 (3)
N2—C261.324 (2)C27—C301.389 (3)
N2—C251.367 (2)C27—C281.394 (3)
N3—C331.318 (3)C28—C291.383 (3)
N3—C371.356 (2)C28—H280.9300
N4—C441.321 (2)C29—C321.371 (4)
N4—C411.360 (2)C29—H290.9300
C1—C21.523 (3)C30—C311.389 (3)
C2—C31.361 (3)C30—H300.9300
C2—C41.440 (3)C31—C321.379 (4)
C3—C101.423 (3)C31—H310.9300
C3—H30.9300C32—H320.9300
C4—C51.406 (3)C33—C341.391 (3)
C4—C91.429 (3)C33—H330.9300
C5—C61.370 (3)C34—C351.355 (4)
C5—H50.9300C34—H340.9300
C6—C71.407 (4)C35—C361.394 (3)
C6—H60.9300C35—H350.9300
C7—C81.346 (4)C36—C371.412 (2)
C7—H70.9300C36—C381.437 (3)
C8—C91.422 (3)C37—C411.442 (3)
C8—H80.9300C38—C391.336 (3)
C10—C111.479 (3)C38—H380.9300
C11—C141.386 (3)C39—C401.430 (3)
C11—C121.393 (3)C39—H390.9300
C12—C131.385 (4)C40—C421.397 (3)
C12—H120.9300C40—C411.410 (2)
C13—C161.362 (4)C42—C431.357 (3)
C13—H130.9300C42—H420.9300
C14—C151.385 (3)C43—C441.398 (3)
C14—H140.9300C43—H430.9300
C15—C161.372 (4)C44—H440.9300
C15—H150.9300
O4i—Mn1—O393.06 (5)C19—C18—C20119.09 (16)
O4i—Mn1—O193.63 (6)C19—C18—C17117.88 (16)
O3—Mn1—O193.45 (5)C20—C18—C17123.01 (16)
O4i—Mn1—O583.35 (5)C18—C19—C26120.86 (17)
O3—Mn1—O5173.29 (5)C18—C19—H19119.6
O1—Mn1—O592.44 (5)C26—C19—H19119.6
O4i—Mn1—N3101.43 (6)C21—C20—C25118.27 (17)
O3—Mn1—N389.76 (5)C21—C20—C18125.33 (17)
O1—Mn1—N3164.42 (6)C25—C20—C18116.37 (16)
O5—Mn1—N385.41 (6)C22—C21—C20120.49 (19)
O4i—Mn1—N4173.08 (6)C22—C21—H21119.8
O3—Mn1—N491.24 (5)C20—C21—H21119.8
O1—Mn1—N491.51 (6)C21—C22—C23121.0 (2)
O5—Mn1—N491.81 (5)C21—C22—H22119.5
N3—Mn1—N473.16 (6)C23—C22—H22119.5
C1—O1—Mn1125.43 (13)C24—C23—C22120.2 (2)
C17—O3—Mn1131.91 (12)C24—C23—H23119.9
C17—O4—Mn1i135.50 (12)C22—C23—H23119.9
Mn1—O5—H5A97.9 (18)C23—C24—C25121.04 (19)
Mn1—O5—H5B114.8 (18)C23—C24—H24119.5
H5A—O5—H5B109 (2)C25—C24—H24119.5
H6A—O6—H6B109 (4)N2—C25—C24117.91 (16)
C10—N1—C9118.48 (18)N2—C25—C20123.08 (17)
C26—N2—C25119.27 (15)C24—C25—C20119.01 (18)
C33—N3—C37118.26 (17)N2—C26—C19121.24 (17)
C33—N3—Mn1126.01 (14)N2—C26—C27117.69 (16)
C37—N3—Mn1115.71 (12)C19—C26—C27121.07 (17)
C44—N4—C41118.01 (16)C30—C27—C28118.04 (19)
C44—N4—Mn1126.95 (13)C30—C27—C26121.57 (17)
C41—N4—Mn1114.80 (12)C28—C27—C26120.35 (19)
O2—C1—O1125.48 (19)C29—C28—C27120.7 (2)
O2—C1—C2117.87 (18)C29—C28—H28119.7
O1—C1—C2116.57 (19)C27—C28—H28119.7
C3—C2—C4118.27 (18)C32—C29—C28120.8 (2)
C3—C2—C1118.76 (18)C32—C29—H29119.6
C4—C2—C1122.91 (19)C28—C29—H29119.6
C2—C3—C10121.80 (19)C27—C30—C31120.8 (2)
C2—C3—H3119.1C27—C30—H30119.6
C10—C3—H3119.1C31—C30—H30119.6
C5—C4—C9118.26 (19)C32—C31—C30120.3 (3)
C5—C4—C2125.80 (19)C32—C31—H31119.8
C9—C4—C2115.9 (2)C30—C31—H31119.8
C6—C5—C4121.2 (2)C29—C32—C31119.4 (2)
C6—C5—H5119.4C29—C32—H32120.3
C4—C5—H5119.4C31—C32—H32120.3
C5—C6—C7120.1 (3)N3—C33—C34123.1 (2)
C5—C6—H6119.9N3—C33—H33118.5
C7—C6—H6119.9C34—C33—H33118.5
C8—C7—C6120.5 (2)C35—C34—C33118.9 (2)
C8—C7—H7119.8C35—C34—H34120.6
C6—C7—H7119.8C33—C34—H34120.6
C7—C8—C9121.1 (2)C34—C35—C36120.7 (2)
C7—C8—H8119.4C34—C35—H35119.7
C9—C8—H8119.4C36—C35—H35119.7
N1—C9—C8117.1 (2)C35—C36—C37116.6 (2)
N1—C9—C4124.13 (19)C35—C36—C38124.8 (2)
C8—C9—C4118.7 (2)C37—C36—C38118.7 (2)
N1—C10—C3121.3 (2)N3—C37—C36122.51 (19)
N1—C10—C11117.27 (18)N3—C37—C41118.05 (15)
C3—C10—C11121.37 (19)C36—C37—C41119.44 (18)
C14—C11—C12118.2 (2)C39—C38—C36121.7 (2)
C14—C11—C10121.5 (2)C39—C38—H38119.1
C12—C11—C10120.3 (2)C36—C38—H38119.1
C13—C12—C11120.1 (3)C38—C39—C40121.4 (2)
C13—C12—H12120.0C38—C39—H39119.3
C11—C12—H12120.0C40—C39—H39119.3
C16—C13—C12121.2 (3)C42—C40—C41117.73 (18)
C16—C13—H13119.4C42—C40—C39123.3 (2)
C12—C13—H13119.4C41—C40—C39119.0 (2)
C15—C14—C11120.7 (3)N4—C41—C40122.17 (18)
C15—C14—H14119.7N4—C41—C37118.04 (15)
C11—C14—H14119.7C40—C41—C37119.79 (17)
C16—C15—C14120.5 (3)C43—C42—C40119.65 (19)
C16—C15—H15119.8C43—C42—H42120.2
C14—C15—H15119.8C40—C42—H42120.2
C13—C16—C15119.3 (3)C42—C43—C44119.3 (2)
C13—C16—H16120.3C42—C43—H43120.4
C15—C16—H16120.3C44—C43—H43120.4
O4—C17—O3125.87 (17)N4—C44—C43123.18 (19)
O4—C17—C18116.12 (17)N4—C44—H44118.4
O3—C17—C18117.94 (17)C43—C44—H44118.4
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.85 (2)1.81 (2)2.630 (2)161 (3)
O5—H5B···N2ii0.83 (2)2.04 (2)2.868 (2)176
O6—H6A···O1iii0.89 (5)2.30 (5)3.175 (3)167
O6—H6B···N1iv0.87 (2)2.23 (2)3.051 (3)157
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn2(C16H10NO2)4(C12H8N2)2(H2O)2]·2H2O
Mr1535.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.926 (4), 13.847 (4), 17.717 (5)
β (°) 96.919 (4)
V3)3635.1 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.35 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.927, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
31242, 8315, 5656
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.03
No. of reflections8315
No. of parameters512
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O12.1740 (14)Mn1—O52.2358 (16)
Mn1—O32.1557 (15)Mn1—N32.2706 (16)
Mn1—O4i2.1148 (14)Mn1—N42.2914 (15)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.85 (2)1.81 (2)2.630 (2)161 (3)
O5—H5B···N2ii0.83 (2)2.04 (2)2.868 (2)176.03
O6—H6A···O1iii0.89 (5)2.30 (5)3.175 (3)166.62
O6—H6B···N1iv0.87 (2)2.23 (2)3.051 (3)156.67
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

The work was supported by the Ningbo University Foundation (XK1066, XYL08004), the training funds of excellent theses for Masters in Ningbo University (PY20090012, PY20100007), the Youth Talent programs of Zhejiang Province (2010R405017) and the K. C. Wong Magna Fund in Ningbo University, China.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-C., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y. & Yao, Y.-G. (2007). Inorg. Chem. Commun. 10, 888–890.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, M., Xie, M. H., Wu, C. D. & Wang, Y. G. (2009). Chem. Commun. 17, 2396–2398.  Web of Science CSD CrossRef Google Scholar
First citationXi, P.-X., Xu, Z.-H., Chen, F.-J., Zeng, Z.-Z. & Zhang, X.-W. (2009). J. Inorg. Biochem. 103, 210–218.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Z.-H., Chen, F.-J., Xi, P.-X., Liu, X.-H. & Zeng, Z.-Z. (2008). J. Photochem. Photobiol. A, 196, 77–83.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds