metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-4-chloro-N′-[(E)-1-(5-chloro-2-oxidophen­yl)ethyl­­idene]benzohydrazidato}bis­­[pyridine­copper(II)]

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: tsucjg@163.com

(Received 20 November 2011; accepted 25 November 2011; online 30 November 2011)

The crystal structure of the title complex, [Cu2(C15H10Cl2N2O2)2(C5H5N)2], features centrosymmetric dimers. The CuII ion is penta­coordinated in a quadratic pyramidal mode. The quadratic plane is formed by the O,O′,N-tridentate ligand and a pyridine mol­ecule. The fifth coordination site is occupied by the O atom of another ligand showing a significantly longer Cu—O bond.

Related literature

For further details of the chemistry of the title compound, see: Salem (1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]). For a related structure, see: Chang (2008[Chang, J.-G. (2008). Acta Cryst. E64, o198.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H10Cl2N2O2)2(C5H5N)2]

  • Mr = 927.58

  • Monoclinic, P 21 /c

  • a = 11.913 (2) Å

  • b = 8.0783 (16) Å

  • c = 19.997 (4) Å

  • β = 95.66 (3)°

  • V = 1915.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 K

  • 0.28 × 0.25 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 0.782

  • 9685 measured reflections

  • 3411 independent reflections

  • 2976 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.02

  • 3411 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.8824 (14)
Cu1—O1 1.9209 (15)
Cu1—N2 1.9475 (17)
Cu1—N3 2.0275 (17)
Cu1—O2i 2.6055 (16)
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones has gained a special attraction due to their coordination abilities to metal ions (Salem, 1998). As an extension of work on the structural characterization of aroylhydrazone derivatives (Chang, 2008), the title compound, (I), was synthesized and its crystal structure is reported here.

The new complex, (I), the Cu II ion exhibits a distorted trans-Cu2O2 square-planar geometry arising from the O, O, N-tridentate ligand and a pyridine molecule. (see Fig. 1).Two molecules form a weak-bridged dimer with weak Cu—O interactions. (see Fig. 2).

Related literature top

For further details of the chemistry of the title compound, see: Salem (1998). For a related structure, see: Chang (2008).

Experimental top

The ligand 4-chloro-N'-[(1E)-1-(5-chloro-2-hydroxyphenyl)ethylidene]benzohydrazide was prepared by the reaction of 1-(5-chloro-2-hydroxyphenyl)ethanone and 4-chlorobenzohydrazide in a molar ratio of 1:1 under reflux in ethanol for 4 h. The white precipitate was collected, washed several times with ethanol and dried in vacuo (yield 83%).A DMF solution (5 ml) of the ligand (0.25 mmol, 0.081 g) was mixed with a methanol solution(5 ml) of Cu(OAc)2 (0.25 mmol, 0.05 g). The mixture was stirred at 298 K for 4 h and then filtered. A blue precipitate was produced after about 10 d. A pyridine mixture (5 ml) was used to dissolve the precipitate at 330 K. Blue block-shaped crystals were obtained after one month (yield 25%).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å and with Uiso(H) =1.5Ueq(Cmethyl) and 1.2Ueq(Caromatic).

Structure description top

The chemistry of aroylhydrazones has gained a special attraction due to their coordination abilities to metal ions (Salem, 1998). As an extension of work on the structural characterization of aroylhydrazone derivatives (Chang, 2008), the title compound, (I), was synthesized and its crystal structure is reported here.

The new complex, (I), the Cu II ion exhibits a distorted trans-Cu2O2 square-planar geometry arising from the O, O, N-tridentate ligand and a pyridine molecule. (see Fig. 1).Two molecules form a weak-bridged dimer with weak Cu—O interactions. (see Fig. 2).

For further details of the chemistry of the title compound, see: Salem (1998). For a related structure, see: Chang (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The dimeric structure of the title compound . H atoms have been omitted for clarity. [Dashed lines show Cu—O weak interactions].
Bis{µ-4-chloro-N'-[(E)-1-(5-chloro-2- oxidophenyl)ethylidene]benzohydrazidato}bis[pyridinecopper(II)] top
Crystal data top
[Cu2(C15H10Cl2N2O2)2(C5H5N)2]F(000) = 940
Mr = 927.58Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4831 reflections
a = 11.913 (2) Åθ = 2.5–27.9°
b = 8.0783 (16) ŵ = 1.44 mm1
c = 19.997 (4) ÅT = 298 K
β = 95.66 (3)°Block, blue
V = 1915.1 (7) Å30.28 × 0.25 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3411 independent reflections
Radiation source: fine-focus sealed tube2976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1314
Tmin = 0.688, Tmax = 0.782k = 99
9685 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0242P)2 + 1.1862P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3411 reflectionsΔρmax = 0.22 e Å3
255 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Crystal data top
[Cu2(C15H10Cl2N2O2)2(C5H5N)2]V = 1915.1 (7) Å3
Mr = 927.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.913 (2) ŵ = 1.44 mm1
b = 8.0783 (16) ÅT = 298 K
c = 19.997 (4) Å0.28 × 0.25 × 0.18 mm
β = 95.66 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3411 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2976 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.782Rint = 0.023
9685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3411 reflectionsΔρmin = 0.23 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09353 (2)0.14880 (3)0.017875 (12)0.03476 (10)
Cl10.49728 (6)0.08946 (11)0.39268 (3)0.0677 (2)
Cl20.23787 (6)0.18478 (10)0.29800 (3)0.0638 (2)
C10.19626 (16)0.0360 (3)0.10969 (10)0.0334 (4)
C20.24154 (18)0.0995 (3)0.16734 (10)0.0389 (5)
H20.31580.13680.16380.047*
C130.43005 (18)0.0975 (3)0.31108 (10)0.0425 (5)
C60.08344 (17)0.0220 (3)0.11671 (10)0.0349 (5)
C90.26194 (17)0.1119 (3)0.11379 (10)0.0355 (5)
C100.32367 (17)0.1101 (3)0.18203 (10)0.0350 (5)
C70.26861 (16)0.0379 (3)0.04553 (10)0.0340 (4)
C30.17827 (19)0.1071 (3)0.22803 (10)0.0425 (5)
C140.47580 (18)0.0123 (3)0.26053 (11)0.0496 (6)
H140.54160.04890.26960.060*
C120.33351 (19)0.1898 (3)0.29860 (11)0.0439 (5)
H120.30450.24800.33310.053*
C160.04746 (19)0.3803 (3)0.08770 (11)0.0442 (5)
H160.00540.35800.12390.053*
C110.27997 (18)0.1952 (3)0.23412 (11)0.0410 (5)
H110.21400.25640.22540.049*
C150.42230 (18)0.0195 (3)0.19631 (11)0.0457 (6)
H150.45270.03730.16190.055*
C50.02189 (19)0.0115 (3)0.18052 (11)0.0447 (5)
H50.05230.04910.18570.054*
C170.1338 (2)0.4880 (3)0.09677 (13)0.0531 (6)
H170.13940.53650.13850.064*
C40.0679 (2)0.0524 (3)0.23534 (11)0.0472 (6)
H40.02540.05870.27680.057*
C80.38055 (18)0.1255 (3)0.04096 (11)0.0470 (6)
H8A0.40690.14340.00540.071*
H8B0.43410.05890.06170.071*
H8C0.37200.23010.06370.071*
C190.20175 (18)0.4478 (3)0.01709 (12)0.0477 (6)
H190.25360.46920.05400.057*
C180.21219 (19)0.5235 (3)0.04330 (13)0.0515 (6)
H180.27090.59710.04810.062*
C200.11366 (17)0.3397 (3)0.02264 (11)0.0401 (5)
H200.10770.28820.06370.048*
O20.02859 (12)0.07997 (19)0.06722 (7)0.0410 (4)
O10.16834 (12)0.19404 (19)0.10550 (7)0.0408 (4)
N20.23464 (13)0.0347 (2)0.00719 (8)0.0347 (4)
N10.30604 (14)0.0264 (2)0.06694 (8)0.0389 (4)
N30.03615 (14)0.3059 (2)0.02877 (8)0.0346 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03293 (15)0.03761 (16)0.03257 (15)0.00326 (11)0.00261 (10)0.00316 (11)
Cl10.0542 (4)0.1114 (6)0.0349 (3)0.0007 (4)0.0088 (3)0.0007 (3)
Cl20.0581 (4)0.0963 (5)0.0374 (3)0.0031 (4)0.0078 (3)0.0195 (3)
C10.0347 (11)0.0345 (11)0.0307 (10)0.0046 (9)0.0023 (8)0.0004 (9)
C20.0362 (11)0.0438 (13)0.0367 (11)0.0040 (9)0.0041 (9)0.0007 (10)
C130.0376 (12)0.0582 (14)0.0304 (11)0.0076 (10)0.0039 (9)0.0000 (10)
C60.0381 (11)0.0345 (11)0.0316 (11)0.0027 (9)0.0009 (9)0.0012 (9)
C90.0335 (11)0.0367 (12)0.0353 (11)0.0029 (9)0.0015 (9)0.0004 (9)
C100.0330 (10)0.0374 (12)0.0341 (11)0.0039 (9)0.0007 (9)0.0034 (9)
C70.0329 (10)0.0356 (11)0.0336 (11)0.0051 (9)0.0030 (8)0.0001 (9)
C30.0475 (13)0.0507 (14)0.0298 (11)0.0068 (10)0.0068 (9)0.0030 (10)
C140.0348 (12)0.0676 (17)0.0445 (13)0.0090 (11)0.0053 (10)0.0052 (12)
C120.0475 (13)0.0497 (14)0.0349 (12)0.0007 (11)0.0062 (10)0.0066 (10)
C160.0432 (12)0.0481 (14)0.0404 (13)0.0050 (10)0.0004 (10)0.0030 (10)
C110.0378 (12)0.0446 (13)0.0400 (12)0.0041 (10)0.0008 (9)0.0037 (10)
C150.0376 (12)0.0615 (15)0.0372 (12)0.0080 (11)0.0004 (9)0.0107 (11)
C50.0394 (12)0.0570 (15)0.0360 (12)0.0051 (11)0.0046 (9)0.0027 (11)
C170.0502 (14)0.0567 (16)0.0528 (14)0.0076 (12)0.0071 (11)0.0121 (12)
C40.0502 (14)0.0619 (16)0.0281 (11)0.0018 (11)0.0039 (10)0.0026 (11)
C80.0367 (12)0.0669 (16)0.0366 (12)0.0067 (11)0.0011 (9)0.0077 (11)
C190.0350 (12)0.0509 (14)0.0557 (15)0.0033 (10)0.0034 (10)0.0052 (12)
C180.0365 (12)0.0491 (14)0.0697 (17)0.0082 (11)0.0092 (11)0.0007 (13)
C200.0369 (11)0.0402 (12)0.0424 (12)0.0003 (9)0.0003 (9)0.0013 (10)
O20.0348 (8)0.0523 (9)0.0348 (8)0.0070 (7)0.0024 (6)0.0080 (7)
O10.0370 (8)0.0468 (9)0.0370 (8)0.0084 (7)0.0043 (6)0.0071 (7)
N20.0331 (9)0.0400 (10)0.0298 (9)0.0012 (7)0.0028 (7)0.0018 (8)
N10.0337 (9)0.0506 (11)0.0309 (9)0.0029 (8)0.0041 (7)0.0044 (8)
N30.0324 (9)0.0340 (9)0.0370 (10)0.0005 (7)0.0005 (7)0.0014 (8)
Geometric parameters (Å, º) top
Cu1—O21.8824 (14)C14—C151.377 (3)
Cu1—O11.9209 (15)C14—H140.9300
Cu1—N21.9475 (17)C12—C111.382 (3)
Cu1—N32.0275 (17)C12—H120.9300
Cu1—O2i2.6055 (16)C16—N31.342 (3)
Cl1—C131.747 (2)C16—C171.373 (3)
Cl2—C31.747 (2)C16—H160.9300
C1—C21.417 (3)C11—H110.9300
C1—C61.417 (3)C15—H150.9300
C1—C71.473 (3)C5—C41.374 (3)
C2—C31.365 (3)C5—H50.9300
C2—H20.9300C17—C181.379 (3)
C13—C121.373 (3)C17—H170.9300
C13—C141.379 (3)C4—H40.9300
C6—O21.324 (2)C8—H8A0.9600
C6—C51.410 (3)C8—H8B0.9600
C9—O11.294 (2)C8—H8C0.9600
C9—N11.315 (3)C19—C181.370 (3)
C9—C101.485 (3)C19—C201.378 (3)
C10—C151.390 (3)C19—H190.9300
C10—C111.391 (3)C18—H180.9300
C7—N21.305 (3)C20—N31.341 (3)
C7—C81.504 (3)C20—H200.9300
C3—C41.381 (3)N2—N11.398 (2)
O2—Cu1—O1173.26 (6)C12—C11—C10120.7 (2)
O2—Cu1—N292.48 (7)C12—C11—H11119.7
O1—Cu1—N282.09 (7)C10—C11—H11119.7
O2—Cu1—N391.86 (7)C14—C15—C10121.2 (2)
O1—Cu1—N394.17 (7)C14—C15—H15119.4
N2—Cu1—N3169.49 (7)C10—C15—H15119.4
C2—C1—C6118.22 (18)C4—C5—C6122.1 (2)
C2—C1—C7117.89 (18)C4—C5—H5118.9
C6—C1—C7123.88 (18)C6—C5—H5118.9
C3—C2—C1121.2 (2)C16—C17—C18119.2 (2)
C3—C2—H2119.4C16—C17—H17120.4
C1—C2—H2119.4C18—C17—H17120.4
C12—C13—C14121.5 (2)C5—C4—C3119.1 (2)
C12—C13—Cl1119.26 (17)C5—C4—H4120.4
C14—C13—Cl1119.23 (18)C3—C4—H4120.4
O2—C6—C5116.53 (18)C7—C8—H8A109.5
O2—C6—C1125.16 (18)C7—C8—H8B109.5
C5—C6—C1118.24 (19)H8A—C8—H8B109.5
O1—C9—N1125.31 (18)C7—C8—H8C109.5
O1—C9—C10117.72 (18)H8A—C8—H8C109.5
N1—C9—C10116.95 (18)H8B—C8—H8C109.5
C15—C10—C11118.53 (19)C18—C19—C20119.3 (2)
C15—C10—C9121.73 (19)C18—C19—H19120.3
C11—C10—C9119.68 (19)C20—C19—H19120.3
N2—C7—C1119.81 (18)C19—C18—C17118.5 (2)
N2—C7—C8120.39 (18)C19—C18—H18120.7
C1—C7—C8119.80 (18)C17—C18—H18120.7
C2—C3—C4121.1 (2)N3—C20—C19122.7 (2)
C2—C3—Cl2119.72 (18)N3—C20—H20118.7
C4—C3—Cl2119.21 (17)C19—C20—H20118.7
C15—C14—C13118.8 (2)C6—O2—Cu1126.23 (13)
C15—C14—H14120.6C9—O1—Cu1109.62 (13)
C13—C14—H14120.6C7—N2—N1117.24 (16)
C13—C12—C11119.2 (2)C7—N2—Cu1129.88 (14)
C13—C12—H12120.4N1—N2—Cu1112.82 (12)
C11—C12—H12120.4C9—N1—N2109.36 (16)
N3—C16—C17122.8 (2)C20—N3—C16117.44 (18)
N3—C16—H16118.6C20—N3—Cu1121.31 (14)
C17—C16—H16118.6C16—N3—Cu1121.24 (14)
C6—C1—C2—C30.8 (3)C18—C19—C20—N30.6 (3)
C7—C1—C2—C3177.68 (19)C5—C6—O2—Cu1166.71 (15)
C2—C1—C6—O2177.84 (19)C1—C6—O2—Cu116.1 (3)
C7—C1—C6—O20.6 (3)N2—Cu1—O2—C617.20 (17)
C2—C1—C6—C50.7 (3)N3—Cu1—O2—C6153.23 (17)
C7—C1—C6—C5177.69 (19)N1—C9—O1—Cu17.5 (3)
O1—C9—C10—C15177.2 (2)C10—C9—O1—Cu1170.89 (14)
N1—C9—C10—C151.3 (3)N2—Cu1—O1—C97.65 (14)
O1—C9—C10—C110.0 (3)N3—Cu1—O1—C9177.77 (14)
N1—C9—C10—C11178.6 (2)C1—C7—N2—N1178.98 (17)
C2—C1—C7—N2172.96 (19)C8—C7—N2—N10.2 (3)
C6—C1—C7—N28.6 (3)C1—C7—N2—Cu11.9 (3)
C2—C1—C7—C87.8 (3)C8—C7—N2—Cu1177.31 (16)
C6—C1—C7—C8170.6 (2)O2—Cu1—N2—C78.57 (19)
C1—C2—C3—C40.3 (3)O1—Cu1—N2—C7175.44 (19)
C1—C2—C3—Cl2179.44 (17)N3—Cu1—N2—C7105.7 (4)
C12—C13—C14—C150.6 (4)O2—Cu1—N2—N1168.59 (13)
Cl1—C13—C14—C15179.93 (19)O1—Cu1—N2—N17.40 (13)
C14—C13—C12—C111.1 (4)N3—Cu1—N2—N177.1 (4)
Cl1—C13—C12—C11179.58 (18)O1—C9—N1—N21.4 (3)
C13—C12—C11—C100.8 (3)C10—C9—N1—N2176.98 (16)
C15—C10—C11—C120.0 (3)C7—N2—N1—C9176.99 (18)
C9—C10—C11—C12177.4 (2)Cu1—N2—N1—C95.5 (2)
C13—C14—C15—C100.2 (4)C19—C20—N3—C160.8 (3)
C11—C10—C15—C140.5 (3)C19—C20—N3—Cu1178.99 (17)
C9—C10—C15—C14176.8 (2)C17—C16—N3—C200.2 (3)
O2—C6—C5—C4177.5 (2)C17—C16—N3—Cu1179.63 (18)
C1—C6—C5—C40.1 (3)O2—Cu1—N3—C2010.18 (16)
N3—C16—C17—C180.6 (4)O1—Cu1—N3—C20172.84 (16)
C6—C5—C4—C30.5 (4)N2—Cu1—N3—C20104.2 (4)
C2—C3—C4—C50.4 (4)O2—Cu1—N3—C16170.03 (17)
Cl2—C3—C4—C5178.78 (19)O1—Cu1—N3—C166.95 (17)
C20—C19—C18—C170.2 (4)N2—Cu1—N3—C1675.6 (4)
C16—C17—C18—C190.8 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C15H10Cl2N2O2)2(C5H5N)2]
Mr927.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.913 (2), 8.0783 (16), 19.997 (4)
β (°) 95.66 (3)
V3)1915.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.28 × 0.25 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.688, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
9685, 3411, 2976
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.02
No. of reflections3411
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.8824 (14)Cu1—N32.0275 (17)
Cu1—O11.9209 (15)Cu1—O2i2.6055 (16)
Cu1—N21.9475 (17)
Symmetry code: (i) x, y, z.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–09)

References

First citationBruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationChang, J.-G. (2008). Acta Cryst. E64, o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds